From Mathias Froehlich, "This is a generic optimization that does not depend on any cpu or instruction
set. The optimization is based on the observation that matrix matrix multiplication with a dense matrix 4x4 is 4^3 Operations whereas multiplication with a transform, or scale matrix is only 4^2 operations. Which is a gain of a *FACTOR*4* for these special cases. The change implements these special cases, provides a unit test for these implementation and converts uses of the expensiver dense matrix matrix routine with the specialized versions. Depending on the transform nodes in the scenegraph this change gives a noticable improovement. For example the osgforest code using the MatrixTransform is about 20% slower than the same codepath using the PositionAttitudeTransform instead of the MatrixTransform with this patch applied. If I remember right, the sse type optimizations did *not* provide a factor 4 improovement. Also these changes are totally independent of any cpu or instruction set architecture. So I would prefer to have this current kind of change instead of some hand coded and cpu dependent assembly stuff. If we need that hand tuned stuff, these can go on top of this changes which must provide than hand optimized additional variants for the specialized versions to give a even better result in the end. An other change included here is a change to rotation matrix from quaterion code. There is a sqrt call which couold be optimized away. Since we divide in effect by sqrt(length)*sqrt(length) which is just length ... "
This commit is contained in:
@@ -18,6 +18,7 @@
|
||||
|
||||
#include <osg/GL>
|
||||
|
||||
#include <limits>
|
||||
#include <stdlib.h>
|
||||
|
||||
using namespace osg;
|
||||
@@ -62,56 +63,71 @@ void Matrix_implementation::set( value_type a00, value_type a01, value_type a02,
|
||||
#define QZ q._v[2]
|
||||
#define QW q._v[3]
|
||||
|
||||
void Matrix_implementation::setRotate(const Quat& q_in)
|
||||
void Matrix_implementation::setRotate(const Quat& q)
|
||||
{
|
||||
Quat q(q_in);
|
||||
double length2 = q.length2();
|
||||
if (length2!=1.0 && length2!=0)
|
||||
if (fabs(length2) <= std::numeric_limits<double>::min())
|
||||
{
|
||||
// normalize quat if required.
|
||||
q /= sqrt(length2);
|
||||
_mat[0][0] = 0.0; _mat[1][0] = 0.0; _mat[2][0] = 0.0;
|
||||
_mat[0][1] = 0.0; _mat[1][1] = 0.0; _mat[2][1] = 0.0;
|
||||
_mat[0][2] = 0.0; _mat[1][2] = 0.0; _mat[2][2] = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
double rlength2;
|
||||
// normalize quat if required.
|
||||
// We can avoid the expensive sqrt in this case since all 'coefficients' below are products of two q components.
|
||||
// That is a square of a square root, so it is possible to avoid that
|
||||
if (length2 != 1.0)
|
||||
{
|
||||
rlength2 = 2.0/length2;
|
||||
}
|
||||
else
|
||||
{
|
||||
rlength2 = 2.0;
|
||||
}
|
||||
|
||||
// Source: Gamasutra, Rotating Objects Using Quaternions
|
||||
//
|
||||
//http://www.gamasutra.com/features/19980703/quaternions_01.htm
|
||||
|
||||
double wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
|
||||
|
||||
// calculate coefficients
|
||||
x2 = rlength2*QX;
|
||||
y2 = rlength2*QY;
|
||||
z2 = rlength2*QZ;
|
||||
|
||||
xx = QX * x2;
|
||||
xy = QX * y2;
|
||||
xz = QX * z2;
|
||||
|
||||
yy = QY * y2;
|
||||
yz = QY * z2;
|
||||
zz = QZ * z2;
|
||||
|
||||
wx = QW * x2;
|
||||
wy = QW * y2;
|
||||
wz = QW * z2;
|
||||
|
||||
// Note. Gamasutra gets the matrix assignments inverted, resulting
|
||||
// in left-handed rotations, which is contrary to OpenGL and OSG's
|
||||
// methodology. The matrix assignment has been altered in the next
|
||||
// few lines of code to do the right thing.
|
||||
// Don Burns - Oct 13, 2001
|
||||
_mat[0][0] = 1.0 - (yy + zz);
|
||||
_mat[1][0] = xy - wz;
|
||||
_mat[2][0] = xz + wy;
|
||||
|
||||
|
||||
_mat[0][1] = xy + wz;
|
||||
_mat[1][1] = 1.0 - (xx + zz);
|
||||
_mat[2][1] = yz - wx;
|
||||
|
||||
_mat[0][2] = xz - wy;
|
||||
_mat[1][2] = yz + wx;
|
||||
_mat[2][2] = 1.0 - (xx + yy);
|
||||
}
|
||||
|
||||
// Source: Gamasutra, Rotating Objects Using Quaternions
|
||||
//
|
||||
//http://www.gamasutra.com/features/19980703/quaternions_01.htm
|
||||
|
||||
double wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
|
||||
|
||||
// calculate coefficients
|
||||
x2 = QX + QX;
|
||||
y2 = QY + QY;
|
||||
z2 = QZ + QZ;
|
||||
|
||||
xx = QX * x2;
|
||||
xy = QX * y2;
|
||||
xz = QX * z2;
|
||||
|
||||
yy = QY * y2;
|
||||
yz = QY * z2;
|
||||
zz = QZ * z2;
|
||||
|
||||
wx = QW * x2;
|
||||
wy = QW * y2;
|
||||
wz = QW * z2;
|
||||
|
||||
// Note. Gamasutra gets the matrix assignments inverted, resulting
|
||||
// in left-handed rotations, which is contrary to OpenGL and OSG's
|
||||
// methodology. The matrix assignment has been altered in the next
|
||||
// few lines of code to do the right thing.
|
||||
// Don Burns - Oct 13, 2001
|
||||
_mat[0][0] = 1.0 - (yy + zz);
|
||||
_mat[1][0] = xy - wz;
|
||||
_mat[2][0] = xz + wy;
|
||||
|
||||
|
||||
_mat[0][1] = xy + wz;
|
||||
_mat[1][1] = 1.0 - (xx + zz);
|
||||
_mat[2][1] = yz - wx;
|
||||
|
||||
_mat[0][2] = xz - wy;
|
||||
_mat[1][2] = yz + wx;
|
||||
_mat[2][2] = 1.0 - (xx + yy);
|
||||
|
||||
#if 0
|
||||
_mat[0][3] = 0.0;
|
||||
@@ -903,7 +919,7 @@ void Matrix_implementation::makeLookAt(const Vec3d& eye,const Vec3d& center,cons
|
||||
s[2], u[2], -f[2], 0.0,
|
||||
0.0, 0.0, 0.0, 1.0);
|
||||
|
||||
preMult(Matrix_implementation::translate(-eye));
|
||||
preMultTranslate(-eye);
|
||||
}
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user