I fixed some bugs and did some more tests with both of the video-plugins. I integrated CoreVideo with osgPresentation, ImageStream has a new virtual method called createSuitableTexture which returns NULL for default implementations. Specialized implementations like the QTKit-plugin return a CoreVideo-texture. I refactored the code in SlideShowConstructor::createTexturedQuad to use a texture returned from ImageStream::createSuitableTexture.
I did not use osgDB::readObjectFile to get the texture-object, as a lot of image-related code in SlideShowConstructor had to be refactored to use a texture. My changes are minimal and should not break existing code.
There's one minor issue with CoreVideo in general: As the implementation is asynchronous, there might be no texture available, when first showing the video the first frame. I am a bit unsure how to tackle this problem, any input on this is appreciated.
Back to the AVFoundation-plugin: the current implementation does not support CoreVideo as the QTKit-plugin supports it. There's no way to get decoded frames from AVFoundation stored on the GPU, which is kind of sad. I added some support for CoreVideo to transfer decoded frames back to the GPU, but in my testings the performance was worse than using the normal approach using glTexSubImage. This is why I disabled CoreVideo for AVFoundation. You can still request a CoreVideoTexture via readObjectFile, though.
"
parameter in osg::Image. To support this Image::setData(..) now has a new optional rowLength parameter which
defaults to 0, which provides the original behaviour, Image::setRowLength(int) and int Image::getRowLength() are also provided.
With the introduction of RowLength support in osg::Image it is now possible to create a sub image where
the t size of the image are smaller than the row length, useful for when you have a large image on the CPU
and which to use a small portion of it on the GPU. However, when these sub images are created the data
within the image is no longer contiguous so data access can no longer assume that all the data is in
one block. The new method Image::isDataContiguous() enables the user to check whether the data is contiguous,
and if not one can either access the data row by row using Image::data(column,row,image) accessor, or use the
new Image::DataIterator for stepping through each block on memory assocatied with the image.
To support the possibility of non contiguous osg::Image usage of image objects has had to be updated to
check DataContiguous and handle the case or use access via the DataIerator or by row by row. To achieve
this a relatively large number of files has had to be modified, in particular the texture classes and
image plugins that doing writing.
> loader to un-premultiply the alpha (now in the codebase).
Applying the code brightens the semi-transparent portion, but the black edges are still there (same on both osgviewer and FlightGear).
Therefore I believe that the alpha channel is completely ignored (on png, gif, tiff, etc...). I tweaked and tweaked and finally got a workaround.
Please commit the enclosed file to fix these issues.
My workaround is a bit tricky (and some lines are even weird for me), but it resolves the black edges.
These workarounds also work on GIF, TIFF, TGA, and PSD as long as I've tested so far.
Please read this for more info on this issue:
http://macflightgear.sourceforge.net/home/development-notes/devnote-dec-02-2009http://macflightgear.sourceforge.net/home/development-notes/devnote-dec-03-2009
I'm very happy if some of you guys find a better means of solving the black edges.
"