/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield * * This library is open source and may be redistributed and/or modified under * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or * (at your option) any later version. The full license is in LICENSE file * included with this distribution, and on the openscenegraph.org website. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * OpenSceneGraph Public License for more details. */ #include #include #include #include #include using namespace osg; using namespace osgGA; class CollectParentPaths : public osg::NodeVisitor { public: CollectParentPaths() : osg::NodeVisitor(osg::NodeVisitor::TRAVERSE_PARENTS) {} virtual void apply(osg::Node& node) { if (node.getNumParents()==0) { _nodePaths.push_back(getNodePath()); } traverse(node); } osg::NodePath _nodePath; typedef std::vector< osg::NodePath > NodePathList; NodePathList _nodePaths; }; NodeTrackerManipulator::NodeTrackerManipulator() { _trackerMode = NODE_CENTER_AND_ROTATION; _rotationMode = TRACKBALL; _distance = 1.0; _thrown = false; } NodeTrackerManipulator::~NodeTrackerManipulator() { } osg::NodePath NodeTrackerManipulator::getNodePath() const { osg::NodePath nodePath; for(ObserveredNodePath::const_iterator itr = _trackNodePath.begin(); itr != _trackNodePath.end(); ++itr) { nodePath.push_back(const_cast(itr->get())); } return nodePath; } bool NodeTrackerManipulator::validateNodePath() const { for(ObserveredNodePath::const_iterator itr = _trackNodePath.begin(); itr != _trackNodePath.begin(); ++itr) { if (*itr==0) { osg::notify(osg::NOTICE)<<"Warning: tracked node path has been invalidated by changes in the scene graph."<(_trackNodePath).clear(); return false; } } return true; } void NodeTrackerManipulator::setTrackerMode(TrackerMode mode) { _trackerMode = mode; } void NodeTrackerManipulator::setRotationMode(RotationMode mode) { _rotationMode = mode; if (getAutoComputeHomePosition()) computeHomePosition(); } void NodeTrackerManipulator::setNode(osg::Node* node) { _node = node; if (_node.get()) { const osg::BoundingSphere& boundingSphere=_node->getBound(); const float minimumDistanceScale = 0.001f; _minimumDistance = osg::clampBetween( boundingSphere._radius * minimumDistanceScale, 0.00001f,1.0f); osg::notify(osg::INFO)<<"Setting Tracker manipulator _minimumDistance to "<<_minimumDistance<accept(cpp); if (!cpp._nodePaths.empty()) { osg::notify(osg::INFO)<<"NodeTrackerManipulator::setTrackNode(Node*"<getName()<<"): Path set"<getName()<<")"<className()<<" '"<<_trackNodePath[i]->getName()<<"'"<getBound(); setHomePosition(boundingSphere._center+osg::Vec3( 0.0,-3.5f * boundingSphere._radius,0.0f), boundingSphere._center, osg::Vec3(0.0f,0.0f,1.0f), _autoComputeHomePosition); } } void NodeTrackerManipulator::init(const GUIEventAdapter& ,GUIActionAdapter& ) { flushMouseEventStack(); } void NodeTrackerManipulator::getUsage(osg::ApplicationUsage& usage) const { usage.addKeyboardMouseBinding("NodeTracker: Space","Reset the viewing position to home"); usage.addKeyboardMouseBinding("NodeTracker: +","When in stereo, increase the fusion distance"); usage.addKeyboardMouseBinding("NodeTracker: -","When in stereo, reduce the fusion distance"); } bool NodeTrackerManipulator::handle(const GUIEventAdapter& ea,GUIActionAdapter& us) { switch(ea.getEventType()) { case(GUIEventAdapter::PUSH): { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; return true; } case(GUIEventAdapter::RELEASE): { if (ea.getButtonMask()==0) { double timeSinceLastRecordEvent = _ga_t0.valid() ? (ea.getTime() - _ga_t0->getTime()) : DBL_MAX; if (timeSinceLastRecordEvent>0.02) addMouseEvent(ea); if (isMouseMoving()) { if (calcMovement()) { us.requestRedraw(); us.requestContinuousUpdate(true); _thrown = true; } } else { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; } } else { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; } return true; } case(GUIEventAdapter::DRAG): { addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; return true; } case(GUIEventAdapter::MOVE): { return false; } case(GUIEventAdapter::KEYDOWN): if (ea.getKey()==' ') { flushMouseEventStack(); _thrown = false; home(ea,us); us.requestRedraw(); us.requestContinuousUpdate(false); return true; } return false; case(GUIEventAdapter::FRAME): if (_thrown) { if (calcMovement()) us.requestRedraw(); } return false; default: return false; } } bool NodeTrackerManipulator::isMouseMoving() { if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false; static const float velocity = 0.1f; float dx = _ga_t0->getXnormalized()-_ga_t1->getXnormalized(); float dy = _ga_t0->getYnormalized()-_ga_t1->getYnormalized(); float len = sqrtf(dx*dx+dy*dy); float dt = _ga_t0->getTime()-_ga_t1->getTime(); return (len>dt*velocity); } void NodeTrackerManipulator::flushMouseEventStack() { _ga_t1 = NULL; _ga_t0 = NULL; } void NodeTrackerManipulator::addMouseEvent(const GUIEventAdapter& ea) { _ga_t1 = _ga_t0; _ga_t0 = &ea; } void NodeTrackerManipulator::setByMatrix(const osg::Matrixd& matrix) { osg::Vec3d eye,center,up; matrix.getLookAt(eye,center,up,_distance); computePosition(eye,center,up); } void NodeTrackerManipulator::computeNodeWorldToLocal(osg::Matrixd& worldToLocal) const { if (validateNodePath()) { worldToLocal = osg::computeWorldToLocal(getNodePath()); } } void NodeTrackerManipulator::computeNodeLocalToWorld(osg::Matrixd& localToWorld) const { if (validateNodePath()) { localToWorld = osg::computeLocalToWorld(getNodePath()); } } void NodeTrackerManipulator::computeNodeCenterAndRotation(osg::Vec3d& nodeCenter, osg::Quat& nodeRotation) const { osg::Matrixd localToWorld, worldToLocal; computeNodeLocalToWorld(localToWorld); computeNodeWorldToLocal(worldToLocal); if (validateNodePath()) nodeCenter = osg::Vec3d(_trackNodePath.back()->getBound().center())*localToWorld; else nodeCenter = osg::Vec3d(0.0f,0.0f,0.0f)*localToWorld; switch(_trackerMode) { case(NODE_CENTER_AND_AZIM): { CoordinateFrame coordinateFrame = getCoordinateFrame(nodeCenter); osg::Matrixd localToFrame(localToWorld*osg::Matrixd::inverse(coordinateFrame)); double azim = atan2(-localToFrame(0,1),localToFrame(0,0)); osg::Quat nodeRotationRelToFrame, rotationOfFrame; nodeRotationRelToFrame.makeRotate(-azim,0.0,0.0,1.0); rotationOfFrame = coordinateFrame.getRotate(); nodeRotation = nodeRotationRelToFrame*rotationOfFrame; break; } case(NODE_CENTER_AND_ROTATION): { // scale the matrix to get rid of any scales before we extract the rotation. double sx = 1.0/sqrt(localToWorld(0,0)*localToWorld(0,0) + localToWorld(1,0)*localToWorld(1,0) + localToWorld(2,0)*localToWorld(2,0)); double sy = 1.0/sqrt(localToWorld(0,1)*localToWorld(0,1) + localToWorld(1,1)*localToWorld(1,1) + localToWorld(2,1)*localToWorld(2,1)); double sz = 1.0/sqrt(localToWorld(0,2)*localToWorld(0,2) + localToWorld(1,2)*localToWorld(1,2) + localToWorld(2,2)*localToWorld(2,2)); localToWorld = localToWorld*osg::Matrixd::scale(sx,sy,sz); nodeRotation = localToWorld.getRotate(); break; } case(NODE_CENTER): default: { CoordinateFrame coordinateFrame = getCoordinateFrame(nodeCenter); nodeRotation = coordinateFrame.getRotate(); break; } } } osg::Matrixd NodeTrackerManipulator::getMatrix() const { osg::Vec3d nodeCenter; osg::Quat nodeRotation; computeNodeCenterAndRotation(nodeCenter,nodeRotation); return osg::Matrixd::translate(0.0,0.0,_distance)*osg::Matrixd::rotate(_rotation)*osg::Matrixd::rotate(nodeRotation)*osg::Matrix::translate(nodeCenter); } osg::Matrixd NodeTrackerManipulator::getInverseMatrix() const { osg::Vec3d nodeCenter; osg::Quat nodeRotation; computeNodeCenterAndRotation(nodeCenter,nodeRotation); return osg::Matrixd::translate(-nodeCenter)*osg::Matrixd::rotate(nodeRotation.inverse())*osg::Matrixd::rotate(_rotation.inverse())*osg::Matrixd::translate(0.0,0.0,-_distance); } void NodeTrackerManipulator::computePosition(const osg::Vec3d& eye,const osg::Vec3d& center,const osg::Vec3d& up) { if (!_node) return; // compute rotation matrix osg::Vec3 lv(center-eye); _distance = lv.length(); osg::Matrixd lookat; lookat.makeLookAt(eye,center,up); _rotation = lookat.getRotate().inverse(); } bool NodeTrackerManipulator::calcMovement() { // return if less then two events have been added. if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false; double dx = _ga_t0->getXnormalized()-_ga_t1->getXnormalized(); double dy = _ga_t0->getYnormalized()-_ga_t1->getYnormalized(); // return if there is no movement. if (dx==0 && dy==0) return false; osg::Vec3d nodeCenter; osg::Quat nodeRotation; computeNodeCenterAndRotation(nodeCenter, nodeRotation); unsigned int buttonMask = _ga_t1->getButtonMask(); if (buttonMask==GUIEventAdapter::LEFT_MOUSE_BUTTON) { if (_rotationMode==TRACKBALL) { // rotate camera. osg::Vec3 axis; double angle; double px0 = _ga_t0->getXnormalized(); double py0 = _ga_t0->getYnormalized(); double px1 = _ga_t1->getXnormalized(); double py1 = _ga_t1->getYnormalized(); trackball(axis,angle,px1,py1,px0,py0); osg::Quat new_rotate; new_rotate.makeRotate(angle,axis); _rotation = _rotation*new_rotate; } else { osg::Matrix rotation_matrix; rotation_matrix.makeRotate(_rotation); osg::Vec3d lookVector = -getUpVector(rotation_matrix); osg::Vec3d sideVector = getSideVector(rotation_matrix); osg::Vec3d upVector = getFrontVector(rotation_matrix); osg::Vec3d localUp(0.0f,0.0f,1.0f); osg::Vec3d forwardVector = localUp^sideVector; sideVector = forwardVector^localUp; forwardVector.normalize(); sideVector.normalize(); osg::Quat rotate_elevation; rotate_elevation.makeRotate(dy,sideVector); osg::Quat rotate_azim; rotate_azim.makeRotate(-dx,localUp); _rotation = _rotation * rotate_elevation * rotate_azim; } return true; } else if (buttonMask==GUIEventAdapter::MIDDLE_MOUSE_BUTTON || buttonMask==(GUIEventAdapter::LEFT_MOUSE_BUTTON|GUIEventAdapter::RIGHT_MOUSE_BUTTON)) { return true; } else if (buttonMask==GUIEventAdapter::RIGHT_MOUSE_BUTTON) { // zoom model. double fd = _distance; double scale = 1.0f+dy; if (fd*scale>_minimumDistance) { _distance *= scale; } else { _distance = _minimumDistance; } return true; } return false; } void NodeTrackerManipulator::clampOrientation() { } /* * This size should really be based on the distance from the center of * rotation to the point on the object underneath the mouse. That * point would then track the mouse as closely as possible. This is a * simple example, though, so that is left as an Exercise for the * Programmer. */ const float TRACKBALLSIZE = 0.8f; /* * Ok, simulate a track-ball. Project the points onto the virtual * trackball, then figure out the axis of rotation, which is the cross * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0) * Note: This is a deformed trackball-- is a trackball in the center, * but is deformed into a hyperbolic sheet of rotation away from the * center. This particular function was chosen after trying out * several variations. * * It is assumed that the arguments to this routine are in the range * (-1.0 ... 1.0) */ void NodeTrackerManipulator::trackball(osg::Vec3& axis,double & angle, double p1x, double p1y, double p2x, double p2y) { /* * First, figure out z-coordinates for projection of P1 and P2 to * deformed sphere */ osg::Matrix rotation_matrix(_rotation); osg::Vec3d uv = osg::Vec3d(0.0,1.0,0.0)*rotation_matrix; osg::Vec3d sv = osg::Vec3d(1.0,0.0,0.0)*rotation_matrix; osg::Vec3d lv = osg::Vec3d(0.0,0.0,-1.0)*rotation_matrix; osg::Vec3d p1 = sv*p1x+uv*p1y-lv*tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y); osg::Vec3d p2 = sv*p2x+uv*p2y-lv*tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y); /* * Now, we want the cross product of P1 and P2 */ // Robert, // // This was the quick 'n' dirty fix to get the trackball doing the right // thing after fixing the Quat rotations to be right-handed. You may want // to do something more elegant. // axis = p1^p2; axis = p2^p1; axis.normalize(); /* * Figure out how much to rotate around that axis. */ double t = (p2-p1).length() / (2.0*TRACKBALLSIZE); /* * Avoid problems with out-of-control values... */ if (t > 1.0) t = 1.0; if (t < -1.0) t = -1.0; angle = inRadians(asin(t)); } /* * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet * if we are away from the center of the sphere. */ double NodeTrackerManipulator::tb_project_to_sphere(double r, double x, double y) { float d, t, z; d = sqrt(x*x + y*y); /* Inside sphere */ if (d < r * 0.70710678118654752440) { z = sqrt(r*r - d*d); } /* On hyperbola */ else { t = r / 1.41421356237309504880; z = t*t / d; } return z; }