#include "DistanceAccumulator.h" #include #include #include #include #include /** Function that sees whether one DistancePair should come before another in an sorted list. Used to sort the vector of DistancePairs. */ bool precedes(const DistanceAccumulator::DistancePair &a, const DistanceAccumulator::DistancePair &b) { // This results in sorting in order of descending far distances if(a.second > b.second) return true; else return false; } /** Computes distance betwen a point and the viewpoint of a matrix */ double distance(const osg::Vec3 &coord, const osg::Matrix& matrix) { return -( coord[0]*matrix(0,2) + coord[1]*matrix(1,2) + coord[2]*matrix(2,2) + matrix(3,2) ); } #define CURRENT_CLASS DistanceAccumulator CURRENT_CLASS::CURRENT_CLASS() : osg::NodeVisitor(TRAVERSE_ALL_CHILDREN), _nearFarRatio(0.0) { setMatrices(osg::Matrix::identity(), osg::Matrix::identity()); reset(); setNearFarRatio(0.0005); } CURRENT_CLASS::~CURRENT_CLASS() {} void CURRENT_CLASS::pushLocalFrustum() { osg::Matrix& currMatrix = _viewMatrices.back(); // Compute the frustum in local space osg::Polytope localFrustum; localFrustum.setToUnitFrustum(false, false); localFrustum.transformProvidingInverse(currMatrix*_projectionMatrices.back()); _localFrusta.push_back(localFrustum); // Compute new bounding box corners osg::Vec3d lookVector(-currMatrix(0,2), -currMatrix(1,2), -currMatrix(2,2)); bbCornerPair corner; corner.second = (lookVector.x()>=0?1:0) | (lookVector.y()>=0?2:0) | (lookVector.z()>=0?4:0); corner.first = (~corner.second)&7; _bbCorners.push_back(corner); } void CURRENT_CLASS::apply(osg::CameraNode& /*camera*/) { // We don't support scenes with CameraNodes in them return; } void CURRENT_CLASS::apply(osg::Projection &proj) { // Push the new projection matrix view frustum _projectionMatrices.push_back(proj.getMatrix()); pushLocalFrustum(); traverse(proj); // Traverse the rest of the scene graph // Reload original matrix and frustum _localFrusta.pop_back(); _bbCorners.pop_back(); _projectionMatrices.pop_back(); } void CURRENT_CLASS::apply(osg::Transform &transform) { // Compute transform for current node osg::Matrix currMatrix = _viewMatrices.back(); bool pushMatrix = transform.computeLocalToWorldMatrix(currMatrix, this); if(pushMatrix) { // Store the new modelview matrix and view frustum _viewMatrices.push_back(currMatrix); pushLocalFrustum(); } traverse(transform); // Traverse the rest of the scene graph if(pushMatrix) { // Restore the old modelview matrix and view frustum _localFrusta.pop_back(); _bbCorners.pop_back(); _viewMatrices.pop_back(); } } void CURRENT_CLASS::apply(osg::Geode &geode) { osg::Drawable *drawable; double zNear, zFar; // Handle each drawable in this geode for(unsigned int i = 0; i < geode.getNumDrawables(); i++) { drawable = geode.getDrawable(i); const osg::BoundingBox &bb = drawable->getBound(); if(bb.valid()) { // Make sure drawable will be visible in the scene if(!_localFrusta.back().contains(bb)) continue; // Compute near/far distances for current drawable zNear = distance(bb.corner(_bbCorners.back().first), _viewMatrices.back()); zFar = distance(bb.corner(_bbCorners.back().second), _viewMatrices.back()); if(zNear > zFar) std::swap(zNear, zFar); if(zFar > 0.0) // Make sure some of drawable is visible { // Make sure near plane is in front of viewpoint. if(zNear <= 0.0) { zNear = zFar*_nearFarRatio; if(zNear >= 1.0) zNear = 1.0; // 1.0 limit chosen arbitrarily! } // Add distance pair for current drawable and current rendering mode _distancePairs.push_back(DistancePair(zNear, zFar)); // Override the current nearest/farthest planes if necessary if(zNear < _limits.first) _limits.first = zNear; if(zFar > _limits.second) _limits.second = zFar; } } } } void CURRENT_CLASS::setMatrices(const osg::Matrix &modelview, const osg::Matrix &projection) { _modelview = modelview; _projection = projection; } void CURRENT_CLASS::reset() { // Clear vectors & values _distancePairs.clear(); _cameraPairs.clear(); _limits.first = DBL_MAX; _limits.second = 0.0; // Initial transform matrix is the modelview matrix _viewMatrices.clear(); _viewMatrices.push_back(_modelview); // Set the initial projection matrix _projectionMatrices.clear(); _projectionMatrices.push_back(_projection); // Create a frustum without near/far planes, for cull computations _localFrusta.clear(); _bbCorners.clear(); pushLocalFrustum(); } void CURRENT_CLASS::computeCameraPairs() { // Nothing in the scene, so no cameras needed if(_distancePairs.empty()) return; // Entire scene can be handled by just one camera if(_limits.first >= _limits.second*_nearFarRatio) { _cameraPairs.push_back(_limits); return; } PairList::iterator i,j; // Sort the list of distance pairs by descending far distance std::sort(_distancePairs.begin(), _distancePairs.end(), precedes); // Combine overlapping distance pairs. The resulting set of distance // pairs (called combined pairs) will not overlap. PairList combinedPairs; DistancePair currPair = _distancePairs.front(); for(i = _distancePairs.begin(); i != _distancePairs.end(); i++) { // Current distance pair does not overlap current combined pair, so // save the current combined pair and start a new one. if(i->second < 0.99*currPair.first) { combinedPairs.push_back(currPair); currPair = *i; } // Current distance pair overlaps current combined pair, so expand // current combined pair to encompass distance pair. else currPair.first = std::min(i->first, currPair.first); } combinedPairs.push_back(currPair); // Add last pair // Compute the (near,far) distance pairs for each camera. // Each of these distance pairs is called a "view segment". double currNearLimit, numSegs, new_ratio; double ratio_invlog = 1.0/log(_nearFarRatio); unsigned int temp; for(i = combinedPairs.begin(); i != combinedPairs.end(); i++) { currPair = *i; // Save current view segment // Compute the fractional number of view segments needed to span // the current combined distance pair. currNearLimit = currPair.second*_nearFarRatio; if(currPair.first >= currNearLimit) numSegs = 1.0; else { numSegs = log(currPair.first/currPair.second)*ratio_invlog; // Compute the near plane of the last view segment //currNearLimit *= pow(_nearFarRatio, -floor(-numSegs) - 1); for(temp = (unsigned int)(-floor(-numSegs)); temp > 1; temp--) { currNearLimit *= _nearFarRatio; } } // See if the closest view segment can absorb other combined pairs for(j = i+1; j != combinedPairs.end(); j++) { // No other distance pairs can be included if(j->first < currNearLimit) break; } // If we did absorb another combined distance pair, recompute the // number of required view segments. if(i != j-1) { i = j-1; currPair.first = i->first; if(currPair.first >= currPair.second*_nearFarRatio) numSegs = 1.0; else numSegs = log(currPair.first/currPair.second)*ratio_invlog; } /* Compute an integer number of segments by rounding the fractional number of segments according to how many segments there are. In general, the more segments there are, the more likely that the integer number of segments will be rounded down. The purpose of this is to try to minimize the number of view segments that are used to render any section of the scene without violating the specified _nearFarRatio by too much. */ if(numSegs < 10.0) numSegs = floor(numSegs + 1.0 - 0.1*floor(numSegs)); else numSegs = floor(numSegs); // Compute the near/far ratio that will be used for each view segment // in this section of the scene. new_ratio = pow(currPair.first/currPair.second, 1.0/numSegs); // Add numSegs new view segments to the camera pairs list for(temp = (unsigned int)numSegs; temp > 0; temp--) { currPair.first = currPair.second*new_ratio; _cameraPairs.push_back(currPair); currPair.second = currPair.first; } } } void CURRENT_CLASS::setNearFarRatio(double ratio) { if(_nearFarRatio == ratio || ratio <= 0.0 || ratio >= 1.0) return; _nearFarRatio = ratio; } #undef CURRENT_CLASS