// *************************************************************************** // // Generated automatically by genwrapper. // Please DO NOT EDIT this file! // // *************************************************************************** #include #include #include #include #include #include #include #include #include #include #include // Must undefine IN and OUT macros defined in Windows headers #ifdef IN #undef IN #endif #ifdef OUT #undef OUT #endif #include TYPE_NAME_ALIAS(double, osg::Quat::value_type) BEGIN_VALUE_REFLECTOR(osg::Quat) I_ReaderWriter(osgIntrospection::StdReaderWriter); // user-defined I_Comparator(osgIntrospection::PartialOrderComparator); // user-defined I_Constructor0(____Quat, "", ""); I_Constructor4(IN, osg::Quat::value_type, x, IN, osg::Quat::value_type, y, IN, osg::Quat::value_type, z, IN, osg::Quat::value_type, w, ____Quat__value_type__value_type__value_type__value_type, "", ""); I_Constructor1(IN, const osg::Vec4f &, v, Properties::NON_EXPLICIT, ____Quat__C5_Vec4f_R1, "", ""); I_Constructor1(IN, const osg::Vec4d &, v, Properties::NON_EXPLICIT, ____Quat__C5_Vec4d_R1, "", ""); I_Constructor2(IN, osg::Quat::value_type, angle, IN, const osg::Vec3f &, axis, ____Quat__value_type__C5_Vec3f_R1, "", ""); I_Constructor2(IN, osg::Quat::value_type, angle, IN, const osg::Vec3d &, axis, ____Quat__value_type__C5_Vec3d_R1, "", ""); I_Constructor6(IN, osg::Quat::value_type, angle1, IN, const osg::Vec3f &, axis1, IN, osg::Quat::value_type, angle2, IN, const osg::Vec3f &, axis2, IN, osg::Quat::value_type, angle3, IN, const osg::Vec3f &, axis3, ____Quat__value_type__C5_Vec3f_R1__value_type__C5_Vec3f_R1__value_type__C5_Vec3f_R1, "", ""); I_Constructor6(IN, osg::Quat::value_type, angle1, IN, const osg::Vec3d &, axis1, IN, osg::Quat::value_type, angle2, IN, const osg::Vec3d &, axis2, IN, osg::Quat::value_type, angle3, IN, const osg::Vec3d &, axis3, ____Quat__value_type__C5_Vec3d_R1__value_type__C5_Vec3d_R1__value_type__C5_Vec3d_R1, "", ""); I_Method0(osg::Vec4d, asVec4, Properties::NON_VIRTUAL, __Vec4d__asVec4, "", ""); I_Method0(osg::Vec3d, asVec3, Properties::NON_VIRTUAL, __Vec3d__asVec3, "", ""); I_Method4(void, set, IN, osg::Quat::value_type, x, IN, osg::Quat::value_type, y, IN, osg::Quat::value_type, z, IN, osg::Quat::value_type, w, Properties::NON_VIRTUAL, __void__set__value_type__value_type__value_type__value_type, "", ""); I_Method1(void, set, IN, const osg::Vec4f &, v, Properties::NON_VIRTUAL, __void__set__C5_osg_Vec4f_R1, "", ""); I_Method1(void, set, IN, const osg::Vec4d &, v, Properties::NON_VIRTUAL, __void__set__C5_osg_Vec4d_R1, "", ""); I_Method1(void, set, IN, const osg::Matrixf &, matrix, Properties::NON_VIRTUAL, __void__set__C5_Matrixf_R1, "", ""); I_Method1(void, set, IN, const osg::Matrixd &, matrix, Properties::NON_VIRTUAL, __void__set__C5_Matrixd_R1, "", ""); I_Method1(void, get, IN, osg::Matrixf &, matrix, Properties::NON_VIRTUAL, __void__get__Matrixf_R1, "", ""); I_Method1(void, get, IN, osg::Matrixd &, matrix, Properties::NON_VIRTUAL, __void__get__Matrixd_R1, "", ""); I_Method0(osg::Quat::value_type &, x, Properties::NON_VIRTUAL, __value_type_R1__x, "", ""); I_Method0(osg::Quat::value_type &, y, Properties::NON_VIRTUAL, __value_type_R1__y, "", ""); I_Method0(osg::Quat::value_type &, z, Properties::NON_VIRTUAL, __value_type_R1__z, "", ""); I_Method0(osg::Quat::value_type &, w, Properties::NON_VIRTUAL, __value_type_R1__w, "", ""); I_Method0(osg::Quat::value_type, x, Properties::NON_VIRTUAL, __value_type__x, "", ""); I_Method0(osg::Quat::value_type, y, Properties::NON_VIRTUAL, __value_type__y, "", ""); I_Method0(osg::Quat::value_type, z, Properties::NON_VIRTUAL, __value_type__z, "", ""); I_Method0(osg::Quat::value_type, w, Properties::NON_VIRTUAL, __value_type__w, "", ""); I_Method0(bool, zeroRotation, Properties::NON_VIRTUAL, __bool__zeroRotation, "return true if the Quat represents a zero rotation, and therefore can be ignored in computations. ", ""); I_Method0(osg::Quat::value_type, length, Properties::NON_VIRTUAL, __value_type__length, "Length of the quaternion = sqrt( vec . vec ). ", ""); I_Method0(osg::Quat::value_type, length2, Properties::NON_VIRTUAL, __value_type__length2, "Length of the quaternion = vec . vec. ", ""); I_Method0(osg::Quat, conj, Properties::NON_VIRTUAL, __Quat__conj, "Conjugate. ", ""); I_Method0(const osg::Quat, inverse, Properties::NON_VIRTUAL, __C5_Quat__inverse, "Multiplicative inverse method: q^(-1) = q^*/(q.q^*). ", ""); I_Method4(void, makeRotate, IN, osg::Quat::value_type, angle, IN, osg::Quat::value_type, x, IN, osg::Quat::value_type, y, IN, osg::Quat::value_type, z, Properties::NON_VIRTUAL, __void__makeRotate__value_type__value_type__value_type__value_type, "", ""); I_Method2(void, makeRotate, IN, osg::Quat::value_type, angle, IN, const osg::Vec3f &, vec, Properties::NON_VIRTUAL, __void__makeRotate__value_type__C5_Vec3f_R1, "", ""); I_Method2(void, makeRotate, IN, osg::Quat::value_type, angle, IN, const osg::Vec3d &, vec, Properties::NON_VIRTUAL, __void__makeRotate__value_type__C5_Vec3d_R1, "", ""); I_Method6(void, makeRotate, IN, osg::Quat::value_type, angle1, IN, const osg::Vec3f &, axis1, IN, osg::Quat::value_type, angle2, IN, const osg::Vec3f &, axis2, IN, osg::Quat::value_type, angle3, IN, const osg::Vec3f &, axis3, Properties::NON_VIRTUAL, __void__makeRotate__value_type__C5_Vec3f_R1__value_type__C5_Vec3f_R1__value_type__C5_Vec3f_R1, "", ""); I_Method6(void, makeRotate, IN, osg::Quat::value_type, angle1, IN, const osg::Vec3d &, axis1, IN, osg::Quat::value_type, angle2, IN, const osg::Vec3d &, axis2, IN, osg::Quat::value_type, angle3, IN, const osg::Vec3d &, axis3, Properties::NON_VIRTUAL, __void__makeRotate__value_type__C5_Vec3d_R1__value_type__C5_Vec3d_R1__value_type__C5_Vec3d_R1, "", ""); I_Method2(void, makeRotate, IN, const osg::Vec3f &, vec1, IN, const osg::Vec3f &, vec2, Properties::NON_VIRTUAL, __void__makeRotate__C5_Vec3f_R1__C5_Vec3f_R1, "Make a rotation Quat which will rotate vec1 to vec2. ", "Generally take a dot product to get the angle between these and then use a cross product to get the rotation axis Watch out for the two special cases when the vectors are co-incident or opposite in direction. "); I_Method2(void, makeRotate, IN, const osg::Vec3d &, vec1, IN, const osg::Vec3d &, vec2, Properties::NON_VIRTUAL, __void__makeRotate__C5_Vec3d_R1__C5_Vec3d_R1, "Make a rotation Quat which will rotate vec1 to vec2. ", "Generally take a dot product to get the angle between these and then use a cross product to get the rotation axis Watch out for the two special cases of when the vectors are co-incident or opposite in direction. "); I_Method2(void, makeRotate_original, IN, const osg::Vec3d &, vec1, IN, const osg::Vec3d &, vec2, Properties::NON_VIRTUAL, __void__makeRotate_original__C5_Vec3d_R1__C5_Vec3d_R1, "", ""); I_Method4(void, getRotate, IN, osg::Quat::value_type &, angle, IN, osg::Quat::value_type &, x, IN, osg::Quat::value_type &, y, IN, osg::Quat::value_type &, z, Properties::NON_VIRTUAL, __void__getRotate__value_type_R1__value_type_R1__value_type_R1__value_type_R1, "Return the angle and vector components represented by the quaternion. ", ""); I_Method2(void, getRotate, IN, osg::Quat::value_type &, angle, IN, osg::Vec3f &, vec, Properties::NON_VIRTUAL, __void__getRotate__value_type_R1__Vec3f_R1, "Return the angle and vector represented by the quaternion. ", ""); I_Method2(void, getRotate, IN, osg::Quat::value_type &, angle, IN, osg::Vec3d &, vec, Properties::NON_VIRTUAL, __void__getRotate__value_type_R1__Vec3d_R1, "Return the angle and vector represented by the quaternion. ", ""); I_Method3(void, slerp, IN, osg::Quat::value_type, t, IN, const osg::Quat &, from, IN, const osg::Quat &, to, Properties::NON_VIRTUAL, __void__slerp__value_type__C5_Quat_R1__C5_Quat_R1, "Spherical Linear Interpolation. ", "As t goes from 0 to 1, the Quat object goes from \"from\" to \"to\". "); END_REFLECTOR