Files
OpenSceneGraph/src/osg/MemoryManager.cpp
Robert Osfield d763a47d2e Mods to MemoryManager to make the optimized build produce dummy
implementations for all the public functions found in the header,
this should prevent problems when not compiling in the MemoryManager
under IRIX 64 build.
2002-06-20 18:17:36 +00:00

1680 lines
73 KiB
C++

// ---------------------------------------------------------------------------------------------------------------------------------
// Copyright 2000, Paul Nettle. All rights reserved.
//
// You are free to use this source code in any commercial or non-commercial product.
//
// mmgr.cpp - Memory manager & tracking software
//
// The most recent version of this software can be found at: ftp://ftp.GraphicsPapers.com/pub/ProgrammingTools/MemoryManagers/
//
// [NOTE: Best when viewed with 8-character tabs]
//
// ---------------------------------------------------------------------------------------------------------------------------------
//
// !!IMPORTANT!!
//
// This software is self-documented with periodic comments. Before you start using this software, perform a search for the string
// "-DOC-" to locate pertinent information about how to use this software.
//
// You are also encouraged to read the comment blocks throughout this source file. They will help you understand how this memory
// tracking software works, so you can better utilize it within your applications.
//
// NOTES:
//
// 1. This code purposely uses no external routines that allocate RAM (other than the raw allocation routines, such as malloc). We
// do this because we want this to be as self-contained as possible. As an example, we don't use assert, because when running
// under WIN32, the assert brings up a dialog box, which allocates RAM. Doing this in the middle of an allocation would be bad.
//
// 2. When trying to override new/delete under MFC (which has its own version of global new/delete) the linker will complain. In
// order to fix this error, use the compiler option: /FORCE, which will force it to build an executable even with linker errors.
// Be sure to check those errors each time you compile, otherwise, you may miss a valid linker error.
//
// 3. If you see something that looks odd to you or seems like a strange way of going about doing something, then consider that this
// code was carefully thought out. If something looks odd, then just assume I've got a good reason for doing it that way (an
// example is the use of the class MemStaticTimeTracker.)
//
// 4. With MFC applications, you will need to comment out any occurance of "#define new DEBUG_NEW" from all source files.
//
// 5. Include file dependencies are _very_important_ for getting the MMGR to integrate nicely into your application. Be careful if
// you're including standard includes from within your own project inclues; that will break this very specific dependency order.
// It should look like this:
//
// #include <stdio.h> // Standard includes MUST come first
// #include <stdlib.h> //
// #include <streamio> //
//
// #include "mmgr.h" // mmgr.h MUST come next
//
// #include "myfile1.h" // Project includes MUST come last
// #include "myfile2.h" //
// #include "myfile3.h" //
//
// ---------------------------------------------------------------------------------------------------------------------------------
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <time.h>
#include <stdarg.h>
#include <new>
#if defined(__CYGWIN__) || !defined(WIN32)
#include <unistd.h>
#endif
#include <osg/MemoryManager>
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- If you're like me, it's hard to gain trust in foreign code. This memory manager will try to INDUCE your code to crash (for
// very good reasons... like making bugs obvious as early as possible.) Some people may be inclined to remove this memory tracking
// software if it causes crashes that didn't exist previously. In reality, these new crashes are the BEST reason for using this
// software!
//
// Whether this software causes your application to crash, or if it reports errors, you need to be able to TRUST this software. To
// this end, you are given some very simple debugging tools.
//
// The quickest way to locate problems is to enable the STRESS_TEST macro (below.) This should catch 95% of the crashes before they
// occur by validating every allocation each time this memory manager performs an allocation function. If that doesn't work, keep
// reading...
//
// If you enable the TEST_MEMORY_MANAGER #define (below), this memory manager will log an entry in the memory.log file each time it
// enters and exits one of its primary allocation handling routines. Each call that succeeds should place an "ENTER" and an "EXIT"
// into the log. If the program crashes within the memory manager, it will log an "ENTER", but not an "EXIT". The log will also
// report the name of the routine.
//
// Just because this memory manager crashes does not mean that there is a bug here! First, an application could inadvertantly damage
// the heap, causing malloc(), realloc() or free() to crash. Also, an application could inadvertantly damage some of the memory used
// by this memory tracking software, causing it to crash in much the same way that a damaged heap would affect the standard
// allocation routines.
//
// In the event of a crash within this code, the first thing you'll want to do is to locate the actual line of code that is
// crashing. You can do this by adding log() entries throughout the routine that crashes, repeating this process until you narrow
// in on the offending line of code. If the crash happens in a standard C allocation routine (i.e. malloc, realloc or free) don't
// bother contacting me, your application has damaged the heap. You can help find the culprit in your code by enabling the
// STRESS_TEST macro (below.)
//
// If you truely suspect a bug in this memory manager (and you had better be sure about it! :) you can contact me at
// midnight@GraphicsPapers.com. Before you do, however, check for a newer version at:
//
// ftp://ftp.GraphicsPapers.com/pub/ProgrammingTools/MemoryManagers/
//
// When using this debugging aid, make sure that you are NOT setting the alwaysLogAll variable on, otherwise the log could be
// cluttered and hard to read.
// ---------------------------------------------------------------------------------------------------------------------------------
// ---------------------------------------------------------------------------------------------------------------------------------
// Defaults for the constants & statics in the MemoryManager class
// ---------------------------------------------------------------------------------------------------------------------------------
const unsigned int m_alloc_unknown = 0;
const unsigned int m_alloc_new = 1;
const unsigned int m_alloc_new_array = 2;
const unsigned int m_alloc_malloc = 3;
const unsigned int m_alloc_calloc = 4;
const unsigned int m_alloc_realloc = 5;
const unsigned int m_alloc_delete = 6;
const unsigned int m_alloc_delete_array = 7;
const unsigned int m_alloc_free = 8;
static sMStats stats;
sMStats m_getMemoryStatistics()
{
return stats;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// follows are the full implementations for use with OSG_USE_MEMORY_MANAGER in debug builds,
// dummy implementions exists at bottom of file.
// ---------------------------------------------------------------------------------------------------------------------------------
#ifdef OSG_USE_MEMORY_MANAGER
//#define TEST_MEMORY_MANAGER
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Enable this sucker if you really want to stress-test your app's memory usage, or to help find hard-to-find bugs
// ---------------------------------------------------------------------------------------------------------------------------------
//#define STRESS_TEST
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Enable this sucker if you want to stress-test your app's error-handling. Set RANDOM_FAIL to the percentage of failures you
// want to test with (0 = none, >100 = all failures).
// ---------------------------------------------------------------------------------------------------------------------------------
//#define RANDOM_FAILURE 100.0
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Locals -- modify these flags to suit your needs
// ---------------------------------------------------------------------------------------------------------------------------------
#ifdef STRESS_TEST
static const unsigned int hashBits = 12;
static bool randomWipe = true;
static bool alwaysValidateAll = true;
static bool alwaysLogAll = true;
static bool alwaysWipeAll = true;
static bool cleanupLogOnFirstRun = true;
static const unsigned int paddingSize = 1024; // An extra 8K per allocation!
#else
static const unsigned int hashBits = 12;
static bool randomWipe = false;
static bool alwaysValidateAll = false;
static bool alwaysLogAll = false;
static bool alwaysWipeAll = true;
static bool cleanupLogOnFirstRun = true;
static const unsigned int paddingSize = 4;
#endif
// ---------------------------------------------------------------------------------------------------------------------------------
// We define our own assert, because we don't want to bring up an assertion dialog, since that allocates RAM. Our new assert
// simply declares a forced breakpoint.
// ---------------------------------------------------------------------------------------------------------------------------------
#if defined(WIN32) && !defined(__CYGWIN__)
#ifdef _DEBUG
#define m_assert(x) if ((x) == false) __asm { int 3 }
#else
#define m_assert(x) {}
#endif
#else // Linux uses assert, which we can use safely, since it doesn't bring up a dialog within the program.
#define m_assert assert
#endif
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Get to know these values. They represent the values that will be used to fill unused and deallocated RAM.
// ---------------------------------------------------------------------------------------------------------------------------------
static unsigned int prefixPattern = 0xbaadf00d; // Fill pattern for bytes preceeding allocated blocks
static unsigned int postfixPattern = 0xdeadc0de; // Fill pattern for bytes following allocated blocks
static unsigned int unusedPattern = 0xfeedface; // Fill pattern for freshly allocated blocks
static unsigned int releasedPattern = 0xdeadbeef; // Fill pattern for deallocated blocks
// ---------------------------------------------------------------------------------------------------------------------------------
// Other locals
// ---------------------------------------------------------------------------------------------------------------------------------
static const unsigned int hashSize = 1 << hashBits;
static const char *allocationTypes[] = {"Unknown",
"new", "new[]", "malloc", "calloc",
"realloc", "delete", "delete[]", "free"};
static sAllocUnit *hashTable[hashSize];
static sAllocUnit *reservoir;
static unsigned int currentAllocationCount = 0;
static unsigned int breakOnAllocationCount = 0;
static const char *sourceFile = "??";
static unsigned int sourceLine = 0;
static bool staticDeinitTime = false;
static sAllocUnit **reservoirBuffer = NULL;
static unsigned int reservoirBufferSize = 0;
// ---------------------------------------------------------------------------------------------------------------------------------
// We use a static class to let us know when we're in the midst of static deinitialization
// ---------------------------------------------------------------------------------------------------------------------------------
static void dumpLeakReport();
static void doCleanupLogOnFirstRun();
static void activateStressTest()
{
randomWipe = true;
alwaysValidateAll = true;
alwaysLogAll = true;
alwaysWipeAll = true;
cleanupLogOnFirstRun = true;
}
class MemStaticTimeTracker
{
public:
MemStaticTimeTracker()
{
doCleanupLogOnFirstRun();
char *ptr;
if( (ptr = getenv("OSG_MM_STRESS_TEST")) != 0)
{
activateStressTest();
}
if( (ptr = getenv("OSG_MM_BREAK_ON_ALLOCATION")) != 0)
{
if (strcmp(ptr,"OFF")!=0)
{
int value = atoi(ptr);
m_breakOnAllocation(value);
}
}
}
~MemStaticTimeTracker()
{
staticDeinitTime = true;
dumpLeakReport();
}
};
static MemStaticTimeTracker mstt;
// ---------------------------------------------------------------------------------------------------------------------------------
// Local functions only
// ---------------------------------------------------------------------------------------------------------------------------------
static void doCleanupLogOnFirstRun()
{
if (cleanupLogOnFirstRun)
{
unlink("memory.log");
cleanupLogOnFirstRun = false;
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
static const char *sourceFileStripper(const char *sourceFile)
{
const char *ptr = strrchr(sourceFile, '\\');
if (ptr) return ptr + 1;
ptr = strrchr(sourceFile, '/');
if (ptr) return ptr + 1;
return sourceFile;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static const char *ownerString(const char *sourceFile, const unsigned int sourceLine)
{
static char str[90];
memset(str, 0, sizeof(str));
sprintf(str, "%s(%05d)", sourceFileStripper(sourceFile), sourceLine);
return str;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static const char *insertCommas(unsigned int value)
{
static char str[30];
memset(str, 0, sizeof(str));
sprintf(str, "%u", value);
if (strlen(str) > 3)
{
memmove(&str[strlen(str)-3], &str[strlen(str)-4], 4);
str[strlen(str) - 4] = ',';
}
if (strlen(str) > 7)
{
memmove(&str[strlen(str)-7], &str[strlen(str)-8], 8);
str[strlen(str) - 8] = ',';
}
if (strlen(str) > 11)
{
memmove(&str[strlen(str)-11], &str[strlen(str)-12], 12);
str[strlen(str) - 12] = ',';
}
return str;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static const char *memorySizeString(unsigned long size)
{
static char str[90];
if (size > (1024*1024)) sprintf(str, "%10s (%7.2fM)", insertCommas(size), (float) size / (1024.0f * 1024.0f));
else if (size > 1024) sprintf(str, "%10s (%7.2fK)", insertCommas(size), (float) size / 1024.0f);
else sprintf(str, "%10s bytes ", insertCommas(size));
return str;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static sAllocUnit *findAllocUnit(const void *reportedAddress)
{
// Just in case...
m_assert(reportedAddress != NULL);
// Use the address to locate the hash index. Note that we shift off the lower four bits. This is because most allocated
// addresses will be on four-, eight- or even sixteen-byte boundaries. If we didn't do this, the hash index would not have
// very good coverage.
unsigned int hashIndex = ((unsigned int) reportedAddress >> 4) & (hashSize - 1);
sAllocUnit *ptr = hashTable[hashIndex];
while(ptr)
{
if (ptr->reportedAddress == reportedAddress) return ptr;
ptr = ptr->next;
}
return NULL;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static size_t calculateActualSize(const size_t reportedSize)
{
// We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as
// being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's
// 8 bytes, which means an int can actually be larger than a long.)
return reportedSize + paddingSize * sizeof(long) * 2;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static size_t calculateReportedSize(const size_t actualSize)
{
// We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as
// being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's
// 8 bytes, which means an int can actually be larger than a long.)
return actualSize - paddingSize * sizeof(long) * 2;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void *calculateReportedAddress(const void *actualAddress)
{
// We allow this...
if (!actualAddress) return NULL;
// JUst account for the padding
return (void *) ((char *) actualAddress + sizeof(long) * paddingSize);
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void wipeWithPattern(sAllocUnit *allocUnit, unsigned long pattern, const unsigned int originalReportedSize = 0)
{
// For a serious test run, we use wipes of random a random value. However, if this causes a crash, we don't want it to
// crash in a differnt place each time, so we specifically DO NOT call srand. If, by chance your program calls srand(),
// you may wish to disable that when running with a random wipe test. This will make any crashes more consistent so they
// can be tracked down easier.
if (randomWipe)
{
pattern = ((rand() & 0xff) << 24) | ((rand() & 0xff) << 16) | ((rand() & 0xff) << 8) | (rand() & 0xff);
}
// -DOC- We should wipe with 0's if we're not in debug mode, so we can help hide bugs if possible when we release the
// product. So uncomment the following line for releases.
//
// Note that the "alwaysWipeAll" should be turned on for this to have effect, otherwise it won't do much good. But we'll
// leave it this way (as an option) because this does slow things down.
// pattern = 0;
// This part of the operation is optional
if (alwaysWipeAll && allocUnit->reportedSize > originalReportedSize)
{
// Fill the bulk
long *lptr = (long *) ((char *)allocUnit->reportedAddress + originalReportedSize);
int length = allocUnit->reportedSize - originalReportedSize;
int i;
for (i = 0; i < (length >> 2); i++, lptr++)
{
*lptr = pattern;
}
// Fill the remainder
unsigned int shiftCount = 0;
char *cptr = (char *) lptr;
for (i = 0; i < (length & 0x3); i++, cptr++, shiftCount += 8)
{
*cptr = static_cast<char>((pattern >> shiftCount) & 0xff);
}
}
// Write in the prefix/postfix bytes
long *pre = (long *) allocUnit->actualAddress;
long *post = (long *) ((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(long));
for (unsigned int i = 0; i < paddingSize; i++, pre++, post++)
{
*pre = prefixPattern;
*post = postfixPattern;
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void resetGlobals()
{
sourceFile = "??";
sourceLine = 0;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void log(const char *format, ...)
{
// Build the buffer
static char buffer[2048];
va_list ap;
va_start(ap, format);
vsprintf(buffer, format, ap);
va_end(ap);
// Cleanup the log?
if (cleanupLogOnFirstRun) doCleanupLogOnFirstRun();
// Open the log file
FILE *fp = fopen("memory.log", "ab");
// If you hit this assert, then the memory logger is unable to log information to a file (can't open the file for some
// reason.) You can interrogate the variable 'buffer' to see what was supposed to be logged (but won't be.)
m_assert(fp);
if (!fp) return;
// Spit out the data to the log
fprintf(fp, "%s\r\n", buffer);
fclose(fp);
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void dumpAllocations(FILE *fp)
{
fprintf(fp, "Alloc. Addr Size Addr Size BreakOn BreakOn \r\n");
fprintf(fp, "Number Reported Reported Actual Actual Unused Method Dealloc Realloc Allocated by \r\n");
fprintf(fp, "------ ---------- ---------- ---------- ---------- ---------- -------- ------- ------- --------------------------------------------------- \r\n");
for (unsigned int i = 0; i < hashSize; i++)
{
sAllocUnit *ptr = hashTable[i];
while(ptr)
{
fprintf(fp, "%06d 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X %-8s %c %c %s\r\n",
ptr->allocationNumber,
(unsigned int) ptr->reportedAddress, ptr->reportedSize,
(unsigned int) ptr->actualAddress, ptr->actualSize,
m_calcUnused(ptr),
allocationTypes[ptr->allocationType],
ptr->breakOnDealloc ? 'Y':'N',
ptr->breakOnRealloc ? 'Y':'N',
ownerString(ptr->sourceFile, ptr->sourceLine));
ptr = ptr->next;
}
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void dumpLeakReport()
{
// Open the report file
FILE *fp = fopen("memleaks.log", "w+b");
//FILE *fp = stderr;
// If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for
// some reason.)
m_assert(fp);
if (!fp) return;
// Any leaks?
// Header
static char timeString[25];
memset(timeString, 0, sizeof(timeString));
time_t t = time(NULL);
struct tm *tme = localtime(&t);
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "| Memory leak report for: %02d/%02d/%04d %02d:%02d:%02d |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec);
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "\r\n");
fprintf(fp, "\r\n");
if (stats.totalAllocUnitCount)
{
fprintf(fp, "%d memory leak%s found:\r\n", stats.totalAllocUnitCount, stats.totalAllocUnitCount == 1 ? "":"s");
}
else
{
fprintf(fp, "Congratulations! No memory leaks found!\r\n");
// We can finally free up our own memory allocations
if (reservoirBuffer)
{
for (unsigned int i = 0; i < reservoirBufferSize; i++)
{
free(reservoirBuffer[i]);
}
free(reservoirBuffer);
reservoirBuffer = 0;
reservoirBufferSize = 0;
reservoir = NULL;
}
}
fprintf(fp, "\r\n");
if (stats.totalAllocUnitCount)
{
dumpAllocations(fp);
}
fclose(fp);
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Flags & options -- Call these routines to enable/disable the following options
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_alwaysValidateAll()
{
// Force a validation of all allocation units each time we enter this software
return alwaysValidateAll;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_alwaysLogAll()
{
// Force a log of every allocation & deallocation into memory.log
return alwaysLogAll;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_alwaysWipeAll()
{
// Force this software to always wipe memory with a pattern when it is being allocated/dallocated
return alwaysWipeAll;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_randomeWipe()
{
// Force this software to use a random pattern when wiping memory -- good for stress testing
return randomWipe;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is
// reallocated.
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_breakOnRealloc(void *reportedAddress)
{
// Locate the existing allocation unit
sAllocUnit *au = findAllocUnit(reportedAddress);
// If you hit this assert, you tried to set a breakpoint on reallocation for an address that doesn't exist. Interrogate the
// stack frame or the variable 'au' to see which allocation this is.
m_assert(au != NULL);
// If you hit this assert, you tried to set a breakpoint on reallocation for an address that wasn't allocated in a way that
// is compatible with reallocation.
m_assert(au->allocationType == m_alloc_malloc ||
au->allocationType == m_alloc_calloc ||
au->allocationType == m_alloc_realloc);
return au->breakOnRealloc;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is
// deallocated.
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_breakOnDealloc(void *reportedAddress)
{
// Locate the existing allocation unit
sAllocUnit *au = findAllocUnit(reportedAddress);
// If you hit this assert, you tried to set a breakpoint on deallocation for an address that doesn't exist. Interrogate the
// stack frame or the variable 'au' to see which allocation this is.
m_assert(au != NULL);
return au->breakOnDealloc;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- When tracking down a difficult bug, use this routine to force a breakpoint on a specific allocation count
// ---------------------------------------------------------------------------------------------------------------------------------
void m_breakOnAllocation(unsigned int count)
{
breakOnAllocationCount = count;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Used by the macros
// ---------------------------------------------------------------------------------------------------------------------------------
void m_setOwner(const char *file, const unsigned int line)
{
sourceFile = file;
sourceLine = line;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Global new/new[]
//
// These are the standard new/new[] operators. They are merely interface functions that operate like normal new/new[], but use our
// memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------
using namespace std;
void *operator new(size_t reportedSize) throw (std::bad_alloc)
{
#ifdef TEST_MEMORY_MANAGER
log("ENTER: new");
#endif
// ANSI says: allocation requests of 0 bytes will still return a valid value
if (reportedSize == 0) reportedSize = 1;
// ANSI says: loop continuously because the error handler could possibly free up some memory
for(;;)
{
// Try the allocation
void *ptr = m_allocator(sourceFile, sourceLine, m_alloc_new, reportedSize);
if (ptr)
{
#ifdef TEST_MEMORY_MANAGER
log("EXIT : new");
#endif
return ptr;
}
// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
// set it back again.
new_handler nh = set_new_handler(0);
set_new_handler(nh);
// If there is an error handler, call it
if (nh)
{
(*nh)();
}
// Otherwise, throw the exception
else
{
#ifdef TEST_MEMORY_MANAGER
log("EXIT : new");
#endif
throw std::bad_alloc();
}
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
void *operator new[](size_t reportedSize) throw (std::bad_alloc)
{
#ifdef TEST_MEMORY_MANAGER
log("ENTER: new[]");
#endif
// The ANSI standard says that allocation requests of 0 bytes will still return a valid value
if (reportedSize == 0) reportedSize = 1;
// ANSI says: loop continuously because the error handler could possibly free up some memory
for(;;)
{
// Try the allocation
void *ptr = m_allocator(sourceFile, sourceLine, m_alloc_new_array, reportedSize);
if (ptr)
{
#ifdef TEST_MEMORY_MANAGER
log("EXIT : new[]");
#endif
return ptr;
}
// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
// set it back again.
new_handler nh = set_new_handler(0);
set_new_handler(nh);
// If there is an error handler, call it
if (nh)
{
(*nh)();
}
// Otherwise, throw the exception
else
{
#ifdef TEST_MEMORY_MANAGER
log("EXIT : new[]");
#endif
throw std::bad_alloc();
}
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Other global new/new[]
//
// These are the standard new/new[] operators as used by Microsoft's memory tracker. We don't want them interfering with our memory
// tracking efforts. Like the previous versions, these are merely interface functions that operate like normal new/new[], but use
// our memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------
void *operator new(size_t reportedSize, const char *sourceFile, int sourceLine) throw (std::bad_alloc)
{
#ifdef TEST_MEMORY_MANAGER
log("ENTER: new");
#endif
// The ANSI standard says that allocation requests of 0 bytes will still return a valid value
if (reportedSize == 0) reportedSize = 1;
// ANSI says: loop continuously because the error handler could possibly free up some memory
for(;;)
{
// Try the allocation
void *ptr = m_allocator(sourceFile, sourceLine, m_alloc_new, reportedSize);
if (ptr)
{
#ifdef TEST_MEMORY_MANAGER
log("EXIT : new");
#endif
return ptr;
}
// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
// set it back again.
new_handler nh = set_new_handler(0);
set_new_handler(nh);
// If there is an error handler, call it
if (nh)
{
(*nh)();
}
// Otherwise, throw the exception
else
{
#ifdef TEST_MEMORY_MANAGER
log("EXIT : new");
#endif
throw std::bad_alloc();
}
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
void *operator new[](size_t reportedSize, const char *sourceFile, int sourceLine) throw (std::bad_alloc)
{
#ifdef TEST_MEMORY_MANAGER
log("ENTER: new[]");
#endif
// The ANSI standard says that allocation requests of 0 bytes will still return a valid value
if (reportedSize == 0) reportedSize = 1;
// ANSI says: loop continuously because the error handler could possibly free up some memory
for(;;)
{
// Try the allocation
void *ptr = m_allocator(sourceFile, sourceLine, m_alloc_new_array, reportedSize);
if (ptr)
{
#ifdef TEST_MEMORY_MANAGER
log("EXIT : new[]");
#endif
return ptr;
}
// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
// set it back again.
new_handler nh = set_new_handler(0);
set_new_handler(nh);
// If there is an error handler, call it
if (nh)
{
(*nh)();
}
// Otherwise, throw the exception
else
{
#ifdef TEST_MEMORY_MANAGER
log("EXIT : new[]");
#endif
throw std::bad_alloc();
}
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Global delete/delete[]
//
// These are the standard delete/delete[] operators. They are merely interface functions that operate like normal delete/delete[],
// but use our memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------
void operator delete(void *reportedAddress) throw ()
{
#ifdef TEST_MEMORY_MANAGER
log("ENTER: delete");
#endif
// ANSI says: delete & delete[] allow NULL pointers (they do nothing)
if (!reportedAddress) return;
m_deallocator(sourceFile, sourceLine, m_alloc_delete, reportedAddress);
#ifdef TEST_MEMORY_MANAGER
log("EXIT : delete");
#endif
}
// ---------------------------------------------------------------------------------------------------------------------------------
void operator delete[](void *reportedAddress) throw ()
{
#ifdef TEST_MEMORY_MANAGER
log("ENTER: delete[]");
#endif
// ANSI says: delete & delete[] allow NULL pointers (they do nothing)
if (!reportedAddress) return;
m_deallocator(sourceFile, sourceLine, m_alloc_delete_array, reportedAddress);
#ifdef TEST_MEMORY_MANAGER
log("EXIT : delete[]");
#endif
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Allocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------
void *m_allocator(const char *sourceFile, const unsigned int sourceLine, const unsigned int allocationType, const size_t reportedSize)
{
try
{
#ifdef TEST_MEMORY_MANAGER
log("ENTER: m_allocator()");
#endif
// Increase our allocation count
currentAllocationCount++;
// Log the request
if (alwaysLogAll) log("%05d %-40s %8s : %s", currentAllocationCount, ownerString(sourceFile, sourceLine), allocationTypes[allocationType], memorySizeString(reportedSize));
// If you hit this assert, you requested a breakpoint on a specific allocation count
m_assert(currentAllocationCount != breakOnAllocationCount);
// If necessary, grow the reservoir of unused allocation units
if (!reservoir)
{
// Allocate 256 reservoir elements
reservoir = (sAllocUnit *) malloc(sizeof(sAllocUnit) * 256);
// If you hit this assert, then the memory manager failed to allocate internal memory for tracking the
// allocations
m_assert(reservoir != NULL);
// Danger Will Robinson!
if (reservoir == NULL) throw "Unable to allocate RAM for internal memory tracking data";
// Build a linked-list of the elements in our reservoir
memset(reservoir, 0, sizeof(sAllocUnit) * 256);
for (unsigned int i = 0; i < 256 - 1; i++)
{
reservoir[i].next = &reservoir[i+1];
}
// Add this address to our reservoirBuffer so we can free it later
sAllocUnit **temp = (sAllocUnit **) realloc(reservoirBuffer, (reservoirBufferSize + 1) * sizeof(sAllocUnit *));
m_assert(temp);
if (temp)
{
reservoirBuffer = temp;
reservoirBuffer[reservoirBufferSize++] = reservoir;
}
}
// Logical flow says this should never happen...
m_assert(reservoir != NULL);
// Grab a new allocaton unit from the front of the reservoir
sAllocUnit *au = reservoir;
reservoir = au->next;
// Populate it with some real data
memset(au, 0, sizeof(sAllocUnit));
au->actualSize = calculateActualSize(reportedSize);
#ifdef RANDOM_FAILURE
double a = rand();
double b = RAND_MAX / 100.0 * RANDOM_FAILURE;
if (a > b)
{
au->actualAddress = malloc(au->actualSize);
}
else
{
log("!Random faiure!");
au->actualAddress = NULL;
}
#else
au->actualAddress = malloc(au->actualSize);
#endif
au->reportedSize = reportedSize;
au->reportedAddress = calculateReportedAddress(au->actualAddress);
au->allocationType = allocationType;
au->sourceLine = sourceLine;
au->allocationNumber = currentAllocationCount;
if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1);
else strcpy (au->sourceFile, "??");
// We don't want to assert with random failures, because we want the application to deal with them.
#ifndef RANDOM_FAILURE
// If you hit this assert, then the requested allocation simply failed (you're out of memory.) Interrogate the
// variable 'au' or the stack frame to see what you were trying to do.
m_assert(au->actualAddress != NULL);
#endif
if (au->actualAddress == NULL)
{
throw "Request for allocation failed. Out of memory.";
}
// If you hit this assert, then this allocation was made from a source that isn't setup to use this memory tracking
// software, use the stack frame to locate the source and include our H file.
m_assert(allocationType != m_alloc_unknown);
// Insert the new allocation into the hash table
unsigned int hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1);
if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au;
au->next = hashTable[hashIndex];
au->prev = NULL;
hashTable[hashIndex] = au;
// Account for the new allocatin unit in our stats
stats.totalReportedMemory += au->reportedSize;
stats.totalActualMemory += au->actualSize;
stats.totalAllocUnitCount++;
if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory;
if (stats.totalActualMemory > stats.peakActualMemory) stats.peakActualMemory = stats.totalActualMemory;
if (stats.totalAllocUnitCount > stats.peakAllocUnitCount) stats.peakAllocUnitCount = stats.totalAllocUnitCount;
stats.accumulatedReportedMemory += au->reportedSize;
stats.accumulatedActualMemory += au->actualSize;
stats.accumulatedAllocUnitCount++;
// Prepare the allocation unit for use (wipe it with recognizable garbage)
wipeWithPattern(au, unusedPattern);
// calloc() expects the reported memory address range to be filled with 0's
if (allocationType == m_alloc_calloc)
{
memset(au->reportedAddress, 0, au->reportedSize);
}
// Validate every single allocated unit in memory
if (alwaysValidateAll) m_validateAllAllocUnits();
// Log the result
if (alwaysLogAll) log(" OK: %010p (hash: %d)", au->reportedAddress, hashIndex);
// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
// source (i.e. they didn't include our H file) then we won't think it was the last allocation.
resetGlobals();
// Return the (reported) address of the new allocation unit
#ifdef TEST_MEMORY_MANAGER
log("EXIT : m_allocator()");
#endif
return au->reportedAddress;
}
catch(const char *err)
{
// Deal with the errors
log(err);
resetGlobals();
#ifdef TEST_MEMORY_MANAGER
log("EXIT : m_allocator()");
#endif
return NULL;
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Reallocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------
void *m_reallocator(const char *sourceFile, const unsigned int sourceLine, const unsigned int reallocationType, const size_t reportedSize, void *reportedAddress)
{
try
{
#ifdef TEST_MEMORY_MANAGER
log("ENTER: m_reallocator()");
#endif
// Calling realloc with a NULL should force same operations as a malloc
if (!reportedAddress)
{
return m_allocator(sourceFile, sourceLine, reallocationType, reportedSize);
}
// Increase our allocation count
currentAllocationCount++;
// If you hit this assert, you requested a breakpoint on a specific allocation count
m_assert(currentAllocationCount != breakOnAllocationCount);
// Log the request
if (alwaysLogAll) log("%05d %-40s %8s(%010p): %s", currentAllocationCount, ownerString(sourceFile, sourceLine), allocationTypes[reallocationType], reportedAddress, memorySizeString(reportedSize));
// Locate the existing allocation unit
sAllocUnit *au = findAllocUnit(reportedAddress);
// If you hit this assert, you tried to reallocate RAM that wasn't allocated by this memory manager.
m_assert(au != NULL);
if (au == NULL) throw "Request to reallocate RAM that was never allocated";
// If you hit this assert, then the allocation unit that is about to be reallocated is damaged. But you probably
// already know that from a previous assert you should have seen in validateAllocUnit() :)
m_assert(m_validateAllocUnit(au));
// If you hit this assert, then this reallocation was made from a source that isn't setup to use this memory
// tracking software, use the stack frame to locate the source and include our H file.
m_assert(reallocationType != m_alloc_unknown);
// If you hit this assert, you were trying to reallocate RAM that was not allocated in a way that is compatible with
// realloc. In other words, you have a allocation/reallocation mismatch.
m_assert(au->allocationType == m_alloc_malloc ||
au->allocationType == m_alloc_calloc ||
au->allocationType == m_alloc_realloc);
// If you hit this assert, then the "break on realloc" flag for this allocation unit is set (and will continue to be
// set until you specifically shut it off. Interrogate the 'au' variable to determine information about this
// allocation unit.
m_assert(au->breakOnRealloc == false);
// Keep track of the original size
unsigned int originalReportedSize = au->reportedSize;
// Do the reallocation
void *oldReportedAddress = reportedAddress;
size_t newActualSize = calculateActualSize(reportedSize);
void *newActualAddress = NULL;
#ifdef RANDOM_FAILURE
double a = rand();
double b = RAND_MAX / 100.0 * RANDOM_FAILURE;
if (a > b)
{
newActualAddress = realloc(au->actualAddress, newActualSize);
}
else
{
log("!Random faiure!");
}
#else
newActualAddress = realloc(au->actualAddress, newActualSize);
#endif
// We don't want to assert with random failures, because we want the application to deal with them.
#ifndef RANDOM_FAILURE
// If you hit this assert, then the requested allocation simply failed (you're out of memory) Interrogate the
// variable 'au' to see the original allocation. You can also query 'newActualSize' to see the amount of memory
// trying to be allocated. Finally, you can query 'reportedSize' to see how much memory was requested by the caller.
m_assert(newActualAddress);
#endif
if (!newActualAddress) throw "Request for reallocation failed. Out of memory.";
// Remove this allocation from our stats (we'll add the new reallocation again later)
stats.totalReportedMemory -= au->reportedSize;
stats.totalActualMemory -= au->actualSize;
// Update the allocation with the new information
au->actualSize = newActualSize;
au->actualAddress = newActualAddress;
au->reportedSize = calculateReportedSize(newActualSize);
au->reportedAddress = calculateReportedAddress(newActualAddress);
au->allocationType = reallocationType;
au->sourceLine = sourceLine;
au->allocationNumber = currentAllocationCount;
if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1);
else strcpy (au->sourceFile, "??");
// The reallocation may cause the address to change, so we should relocate our allocation unit within the hash table
unsigned int hashIndex = (unsigned int) -1;
if (oldReportedAddress != au->reportedAddress)
{
// Remove this allocation unit from the hash table
{
unsigned int hashIndex = ((unsigned int) oldReportedAddress >> 4) & (hashSize - 1);
if (hashTable[hashIndex] == au)
{
hashTable[hashIndex] = hashTable[hashIndex]->next;
}
else
{
if (au->prev) au->prev->next = au->next;
if (au->next) au->next->prev = au->prev;
}
}
// Re-insert it back into the hash table
hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1);
if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au;
au->next = hashTable[hashIndex];
au->prev = NULL;
hashTable[hashIndex] = au;
}
// Account for the new allocatin unit in our stats
stats.totalReportedMemory += au->reportedSize;
stats.totalActualMemory += au->actualSize;
if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory;
if (stats.totalActualMemory > stats.peakActualMemory) stats.peakActualMemory = stats.totalActualMemory;
int deltaReportedSize = reportedSize - originalReportedSize;
if (deltaReportedSize > 0)
{
stats.accumulatedReportedMemory += deltaReportedSize;
stats.accumulatedActualMemory += deltaReportedSize;
}
// Prepare the allocation unit for use (wipe it with recognizable garbage)
wipeWithPattern(au, unusedPattern, originalReportedSize);
// If you hit this assert, then something went wrong, because the allocation unit was properly validated PRIOR to
// the reallocation. This should not happen.
m_assert(m_validateAllocUnit(au));
// Validate every single allocated unit in memory
if (alwaysValidateAll) m_validateAllAllocUnits();
// Log the result
if (alwaysLogAll) log(" OK: %010p (hash: %d)", au->reportedAddress, hashIndex);
// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
// source (i.e. they didn't include our H file) then we won't think it was the last allocation.
resetGlobals();
// Return the (reported) address of the new allocation unit
#ifdef TEST_MEMORY_MANAGER
log("EXIT : m_reallocator()");
#endif
return au->reportedAddress;
}
catch(const char *err)
{
// Deal with the errors
log(err);
resetGlobals();
#ifdef TEST_MEMORY_MANAGER
log("EXIT : m_reallocator()");
#endif
return NULL;
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Deallocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------
void m_deallocator(const char *sourceFile, const unsigned int sourceLine, const unsigned int deallocationType, const void *reportedAddress)
{
try
{
#ifdef TEST_MEMORY_MANAGER
log("ENTER: m_deallocator()");
#endif
// Log the request
if (alwaysLogAll) log(" %-40s %8s(%010p)", ownerString(sourceFile, sourceLine), allocationTypes[deallocationType], reportedAddress);
// Go get the allocation unit
sAllocUnit *au = findAllocUnit(reportedAddress);
// If you hit this assert, you tried to deallocate RAM that wasn't allocated by this memory manager.
m_assert(au != NULL);
if (au == NULL) throw "Request to deallocate RAM that was never allocated";
// If you hit this assert, then the allocation unit that is about to be deallocated is damaged. But you probably
// already know that from a previous assert you should have seen in validateAllocUnit() :)
m_assert(m_validateAllocUnit(au));
// If you hit this assert, then this deallocation was made from a source that isn't setup to use this memory
// tracking software, use the stack frame to locate the source and include our H file.
m_assert(deallocationType != m_alloc_unknown);
// If you hit this assert, you were trying to deallocate RAM that was not allocated in a way that is compatible with
// the deallocation method requested. In other words, you have a allocation/deallocation mismatch.
// Types of errors in your code look for are AllocationType DeallocationType but should Dealloc with
// new delete [] or free delete
// new [] delete, or free delete []
// malloc delete, delete [] free
m_assert((deallocationType == m_alloc_delete && au->allocationType == m_alloc_new ) ||
(deallocationType == m_alloc_delete_array && au->allocationType == m_alloc_new_array) ||
(deallocationType == m_alloc_free && au->allocationType == m_alloc_malloc ) ||
(deallocationType == m_alloc_free && au->allocationType == m_alloc_calloc ) ||
(deallocationType == m_alloc_free && au->allocationType == m_alloc_realloc ) ||
(deallocationType == m_alloc_unknown ) );
// If you hit this assert, then the "break on dealloc" flag for this allocation unit is set. Interrogate the 'au'
// variable to determine information about this allocation unit.
m_assert(au->breakOnDealloc == false);
// Wipe the deallocated RAM with a new pattern. This doen't actually do us much good in debug mode under WIN32,
// because Microsoft's memory debugging & tracking utilities will wipe it right after we do. Oh well.
wipeWithPattern(au, releasedPattern);
// Do the deallocation
free(au->actualAddress);
// Remove this allocation unit from the hash table
unsigned int hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1);
if (hashTable[hashIndex] == au)
{
hashTable[hashIndex] = au->next;
}
else
{
if (au->prev) au->prev->next = au->next;
if (au->next) au->next->prev = au->prev;
}
// Remove this allocation from our stats
stats.totalReportedMemory -= au->reportedSize;
stats.totalActualMemory -= au->actualSize;
stats.totalAllocUnitCount--;
// Add this allocation unit to the front of our reservoir of unused allocation units
memset(au, 0, sizeof(sAllocUnit));
au->next = reservoir;
reservoir = au;
// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
// source (i.e. they didn't include our H file) then we won't think it was the last allocation.
resetGlobals();
// Validate every single allocated unit in memory
if (alwaysValidateAll) m_validateAllAllocUnits();
// If we're in the midst of static deinitialization time, track any pending memory leaks
if (staticDeinitTime) dumpLeakReport();
}
catch(const char *err)
{
// Deal with errors
log(err);
resetGlobals();
}
#ifdef TEST_MEMORY_MANAGER
log("EXIT : m_deallocator()");
#endif
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- The following utilitarian allow you to become proactive in tracking your own memory, or help you narrow in on those tough
// bugs.
// ---------------------------------------------------------------------------------------------------------------------------------
bool m_validateAddress(const void *reportedAddress)
{
// Just see if the address exists in our allocation routines
return findAllocUnit(reportedAddress) != NULL;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool m_validateAllocUnit(const sAllocUnit *allocUnit)
{
// Make sure the padding is untouched
long *pre = (long *) allocUnit->actualAddress;
long *post = (long *) ((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(long));
bool errorFlag = false;
for (unsigned int i = 0; i < paddingSize; i++, pre++, post++)
{
if (*pre != (long) prefixPattern)
{
log("A memory allocation unit was corrupt because of an underrun:");
m_dumpAllocUnit(allocUnit, " ");
errorFlag = true;
}
// If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the
// owner?) has underrun the allocation unit (modified a few bytes prior to the start). You can interrogate the
// variable 'allocUnit' to see statistics and information about this damaged allocation unit.
m_assert(*pre == (long) prefixPattern);
if (*post != (long) postfixPattern)
{
log("A memory allocation unit was corrupt because of an overrun:");
m_dumpAllocUnit(allocUnit, " ");
errorFlag = true;
}
// If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the
// owner?) has overrun the allocation unit (modified a few bytes after the end). You can interrogate the variable
// 'allocUnit' to see statistics and information about this damaged allocation unit.
m_assert(*post == (long) postfixPattern);
}
// Return the error status (we invert it, because a return of 'false' means error)
return !errorFlag;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool m_validateAllAllocUnits()
{
// Just go through each allocation unit in the hash table and count the ones that have errors
unsigned int errors = 0;
unsigned int allocCount = 0;
for (unsigned int i = 0; i < hashSize; i++)
{
sAllocUnit *ptr = hashTable[i];
while(ptr)
{
allocCount++;
if (!m_validateAllocUnit(ptr)) errors++;
ptr = ptr->next;
}
}
// Test for hash-table correctness
if (allocCount != stats.totalAllocUnitCount)
{
log("Memory tracking hash table corrupt!");
errors++;
}
// If you hit this assert, then the internal memory (hash table) used by this memory tracking software is damaged! The
// best way to track this down is to use the alwaysLogAll flag in conjunction with STRESS_TEST macro to narrow in on the
// offending code. After running the application with these settings (and hitting this assert again), interrogate the
// memory.log file to find the previous successful operation. The corruption will have occurred between that point and this
// assertion.
m_assert(allocCount == stats.totalAllocUnitCount);
// If you hit this assert, then you've probably already been notified that there was a problem with a allocation unit in a
// prior call to validateAllocUnit(), but this assert is here just to make sure you know about it. :)
m_assert(errors == 0);
// Log any errors
if (errors) log("While validting all allocation units, %d allocation unit(s) were found to have problems", errors);
// Return the error status
return errors != 0;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Unused RAM calculation routines. Use these to determine how much of your RAM is unused (in bytes)
// ---------------------------------------------------------------------------------------------------------------------------------
unsigned int m_calcUnused(const sAllocUnit *allocUnit)
{
const unsigned long *ptr = (const unsigned long *) allocUnit->reportedAddress;
unsigned int count = 0;
for (unsigned int i = 0; i < allocUnit->reportedSize; i += sizeof(long), ptr++)
{
if (*ptr == unusedPattern) count += sizeof(long);
}
return count;
}
// ---------------------------------------------------------------------------------------------------------------------------------
unsigned int m_calcAllUnused()
{
// Just go through each allocation unit in the hash table and count the unused RAM
unsigned int total = 0;
for (unsigned int i = 0; i < hashSize; i++)
{
sAllocUnit *ptr = hashTable[i];
while(ptr)
{
total += m_calcUnused(ptr);
ptr = ptr->next;
}
}
return total;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- The following functions are for logging and statistics reporting.
// ---------------------------------------------------------------------------------------------------------------------------------
void m_dumpAllocUnit(const sAllocUnit *allocUnit, const char *prefix)
{
log("%sAddress (reported): %010p", prefix, allocUnit->reportedAddress);
log("%sAddress (actual) : %010p", prefix, allocUnit->actualAddress);
log("%sSize (reported) : 0x%08X (%s)", prefix, allocUnit->reportedSize, memorySizeString(allocUnit->reportedSize));
log("%sSize (actual) : 0x%08X (%s)", prefix, allocUnit->actualSize, memorySizeString(allocUnit->actualSize));
log("%sOwner : %s(%d)", prefix, allocUnit->sourceFile, allocUnit->sourceLine);
log("%sAllocation type : %s", prefix, allocationTypes[allocUnit->allocationType]);
log("%sAllocation number : %d", prefix, allocUnit->allocationNumber);
}
// ---------------------------------------------------------------------------------------------------------------------------------
void m_dumpMemoryReport(const char *filename, const bool overwrite)
{
// Open the report file
FILE *fp = NULL;
if (overwrite) fp = fopen(filename, "w+b");
else fp = fopen(filename, "ab");
// If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for
// some reason.)
m_assert(fp);
if (!fp) return;
// Header
static char timeString[25];
memset(timeString, 0, sizeof(timeString));
time_t t = time(NULL);
struct tm *tme = localtime(&t);
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "| Memory report for: %02d/%02d/%04d %02d:%02d:%02d |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec);
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "\r\n");
fprintf(fp, "\r\n");
// Report summary
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "| T O T A L S |\r\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, " Allocation unit count: %10s\r\n", insertCommas(stats.totalAllocUnitCount));
fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.totalReportedMemory));
fprintf(fp, " Actual total memory in use: %s\r\n", memorySizeString(stats.totalActualMemory));
fprintf(fp, " Memory tracking overhead: %s\r\n", memorySizeString(stats.totalActualMemory - stats.totalReportedMemory));
fprintf(fp, "\r\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "| P E A K S |\r\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, " Allocation unit count: %10s\r\n", insertCommas(stats.peakAllocUnitCount));
fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.peakReportedMemory));
fprintf(fp, " Actual: %s\r\n", memorySizeString(stats.peakActualMemory));
fprintf(fp, " Memory tracking overhead: %s\r\n", memorySizeString(stats.peakActualMemory - stats.peakReportedMemory));
fprintf(fp, "\r\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "| A C C U M U L A T E D |\r\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, " Allocation unit count: %s\r\n", memorySizeString(stats.accumulatedAllocUnitCount));
fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.accumulatedReportedMemory));
fprintf(fp, " Actual: %s\r\n", memorySizeString(stats.accumulatedActualMemory));
fprintf(fp, "\r\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "| U N U S E D |\r\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, " Memory allocated but not in use: %s\r\n", memorySizeString(m_calcAllUnused()));
fprintf(fp, "\r\n");
dumpAllocations(fp);
fclose(fp);
}
// ---------------------------------------------------------------------------------------------------------------------------------
#else // OSG_USE_MEMORY_MANAGER
// ----------------------------------------------------------------------------------------------------------------
// dummy implementation for optimized build.
// ----------------------------------------------------------------------------------------------------------------
void m_setOwner(const char *, const unsigned int ) { }
bool &m_breakOnRealloc(void *) { static bool result=false; return result; }
bool &m_breakOnDealloc(void *) { static bool result=false; return result; }
void m_breakOnAllocation(unsigned int ) {}
void *m_allocator(const char *, const unsigned int ,
const unsigned int , const size_t ) { return 0L;}
void *m_reallocator(const char *, const unsigned int ,
const unsigned int , const size_t , void *) { return 0L;}
void m_deallocator(const char *, const unsigned int ,
const unsigned int , const void *) {}
bool m_validateAddress(const void *) { return true; }
bool m_validateAllocUnit(const sAllocUnit *) { return true; }
bool m_validateAllAllocUnits() { return true; }
unsigned int m_calcUnused(const sAllocUnit *) { return 0; }
unsigned int m_calcAllUnused() { return 0; }
void m_dumpAllocUnit(const sAllocUnit *, const char *) {}
void m_dumpMemoryReport(const char *, const bool ) {}
#endif // OSG_USE_MEMORY_MANAGER
// ---------------------------------------------------------------------------------------------------------------------------------
// mmgr.cpp - End of file
// ---------------------------------------------------------------------------------------------------------------------------------