Files
OpenSceneGraph/src/osgPlugins/fbx/fbxRMesh.cpp

1172 lines
46 KiB
C++

#include <cassert>
#include <sstream>
#include <osg/BlendFunc>
#include <osg/Geode>
#include <osg/Image>
#include <osg/MatrixTransform>
#include <osg/TexMat>
#include <osg/TexGen>
#include <osg/TexEnvCombine>
#include <osgUtil/TriStripVisitor>
#include <osgUtil/Tessellator>
#include <osgDB/ReadFile>
#include <osgAnimation/RigGeometry>
#include <osgAnimation/MorphGeometry>
#include <osgAnimation/BasicAnimationManager>
#if defined(_MSC_VER)
#pragma warning( disable : 4505 )
#pragma warning( default : 4996 )
#endif
#include <fbxsdk.h>
#include "fbxReader.h"
enum GeometryType
{
GEOMETRY_STATIC,
GEOMETRY_RIG,
GEOMETRY_MORPH
};
osg::Vec3d convertVec3(const FbxVector4& v)
{
return osg::Vec3d(
v[0],
v[1],
v[2]);
}
template <typename T>
bool layerElementValid(const FbxLayerElementTemplate<T>* pLayerElement)
{
if (!pLayerElement)
return false;
switch (pLayerElement->GetMappingMode())
{
case FbxLayerElement::eByControlPoint:
case FbxLayerElement::eByPolygonVertex:
case FbxLayerElement::eByPolygon:
break;
default:
return false;
}
switch (pLayerElement->GetReferenceMode())
{
case FbxLayerElement::eDirect:
case FbxLayerElement::eIndexToDirect:
return true;
default:
break;
}
return false;
}
template <typename T>
int getVertexIndex(const FbxLayerElementTemplate<T>* pLayerElement,
const FbxMesh* fbxMesh,
int nPolygon, int nPolyVertex, int nMeshVertex)
{
int index = 0;
switch (pLayerElement->GetMappingMode())
{
case FbxLayerElement::eByControlPoint:
index = fbxMesh->GetPolygonVertex(nPolygon, nPolyVertex);
break;
case FbxLayerElement::eByPolygonVertex:
index = nMeshVertex;
break;
case FbxLayerElement::eByPolygon:
index = nPolygon;
break;
default:
OSG_WARN << "getVertexIndex: unsupported FBX mapping mode" << std::endl;
}
if (pLayerElement->GetReferenceMode() == FbxLayerElement::eDirect)
{
return index;
}
return pLayerElement->GetIndexArray().GetAt(index);
}
template <typename T>
int getPolygonIndex(const FbxLayerElementTemplate<T>* pLayerElement, int nPolygon)
{
if (pLayerElement &&
pLayerElement->GetMappingMode() == FbxLayerElement::eByPolygon)
{
switch (pLayerElement->GetReferenceMode())
{
case FbxLayerElement::eDirect:
return nPolygon;
case FbxLayerElement::eIndexToDirect:
return pLayerElement->GetIndexArray().GetAt(nPolygon);
default:
break;
}
}
return 0;
}
template <typename FbxT>
FbxT getElement(const FbxLayerElementTemplate<FbxT>* pLayerElement,
const FbxMesh* fbxMesh,
int nPolygon, int nPolyVertex, int nMeshVertex)
{
return pLayerElement->GetDirectArray().GetAt(getVertexIndex(
pLayerElement, fbxMesh, nPolygon, nPolyVertex, nMeshVertex));
}
typedef std::map<unsigned, osg::ref_ptr<osg::Geometry> > GeometryMap;
osg::Array* createVec2Array(bool doublePrecision)
{
if (doublePrecision) return new osg::Vec2dArray;
else return new osg::Vec2Array;
}
osg::Array* createVec3Array(bool doublePrecision)
{
if (doublePrecision) return new osg::Vec3dArray;
else return new osg::Vec3Array;
}
osg::Array* createVec4Array(bool doublePrecision)
{
if (doublePrecision) return new osg::Vec4dArray;
else return new osg::Vec4Array;
}
osg::Geometry* getGeometry(osg::Geode* pGeode, GeometryMap& geometryMap,
std::vector<StateSetContent>& stateSetList,
GeometryType gt,
unsigned int mti,
bool bNormal,
bool useDiffuseMap,
bool useOpacityMap,
bool useEmissiveMap,
// more here...
bool bColor,
const osgDB::Options& options,
bool lightmapTextures)
{
GeometryMap::iterator it = geometryMap.find(mti);
if (it != geometryMap.end())
{
return it->second.get();
}
osg::ref_ptr<osg::Geometry> pGeometry;
if (gt == GEOMETRY_MORPH)
{
pGeometry = new osgAnimation::MorphGeometry;
}
else
{
pGeometry = new osg::Geometry;
}
osgDB::Options::PrecisionHint precision = options.getPrecisionHint();
pGeometry->setVertexArray(createVec3Array((precision & osgDB::Options::DOUBLE_PRECISION_VERTEX) != 0), osg::Array::BIND_PER_VERTEX);
if (bNormal) pGeometry->setNormalArray(createVec3Array((precision & osgDB::Options::DOUBLE_PRECISION_NORMAL) != 0), osg::Array::BIND_PER_VERTEX);
// create as much textures coordinates as needed...
if (useDiffuseMap)
pGeometry->setTexCoordArray(StateSetContent::DIFFUSE_TEXTURE_UNIT, createVec2Array((precision & osgDB::Options::DOUBLE_PRECISION_TEX_COORD) != 0), osg::Array::BIND_PER_VERTEX);
if (useOpacityMap)
pGeometry->setTexCoordArray(StateSetContent::OPACITY_TEXTURE_UNIT, createVec2Array((precision & osgDB::Options::DOUBLE_PRECISION_TEX_COORD) != 0), osg::Geometry::BIND_PER_VERTEX);
if (useEmissiveMap)
pGeometry->setTexCoordArray(StateSetContent::EMISSIVE_TEXTURE_UNIT, createVec2Array((precision & osgDB::Options::DOUBLE_PRECISION_TEX_COORD) != 0), osg::Geometry::BIND_PER_VERTEX);
// create more textures coordinates here...
if (bColor) pGeometry->setColorArray(createVec4Array((precision & osgDB::Options::DOUBLE_PRECISION_COLOR) != 0), osg::Geometry::BIND_PER_VERTEX);
if (mti < stateSetList.size())
{
osg::StateSet* stateSet = pGeometry->getOrCreateStateSet();
bool transparent = false;
const StateSetContent& ssc = stateSetList[mti];
// set material...
if (osg::Material* pMaterial = ssc.material.get())
{
stateSet->setAttributeAndModes(pMaterial);
transparent = pMaterial->getDiffuse(osg::Material::FRONT).w() < 1.0f;
}
// diffuse texture map...
if (ssc.diffuseTexture)
{
stateSet->setTextureAttributeAndModes(StateSetContent::DIFFUSE_TEXTURE_UNIT, ssc.diffuseTexture.get());
if (ssc.diffuseScaleU != 1.0 || ssc.diffuseScaleV != 1.0)
{
// set UV scaling...
osg::ref_ptr<osg::TexMat> texmat = new osg::TexMat();
osg::Matrix uvScaling;
uvScaling.makeScale(osg::Vec3(ssc.diffuseScaleU, ssc.diffuseScaleV, 1.0));
texmat->setMatrix(uvScaling);
stateSet->setTextureAttributeAndModes(StateSetContent::DIFFUSE_TEXTURE_UNIT, texmat.get(), osg::StateAttribute::ON);
}
if (lightmapTextures)
{
double factor = ssc.diffuseFactor;
osg::ref_ptr<osg::TexEnvCombine> texenv = new osg::TexEnvCombine();
texenv->setCombine_RGB(osg::TexEnvCombine::INTERPOLATE);
texenv->setSource0_RGB(osg::TexEnvCombine::TEXTURE);
texenv->setSource1_RGB(osg::TexEnvCombine::PREVIOUS);
texenv->setSource2_RGB(osg::TexEnvCombine::CONSTANT);
texenv->setConstantColor(osg::Vec4(factor, factor, factor, factor));
stateSet->setTextureAttributeAndModes(StateSetContent::DIFFUSE_TEXTURE_UNIT, texenv.get(), osg::StateAttribute::ON);
}
// setup transparency
if (!transparent && ssc.diffuseTexture->getImage())
transparent = ssc.diffuseTexture->getImage()->isImageTranslucent();
}
// opacity texture map...
if (ssc.opacityTexture)
{
stateSet->setTextureAttributeAndModes(StateSetContent::OPACITY_TEXTURE_UNIT, ssc.opacityTexture.get());
if (ssc.opacityScaleU != 1.0 || ssc.opacityScaleV != 1.0)
{
// set UV scaling...
osg::ref_ptr<osg::TexMat> texmat = new osg::TexMat();
osg::Matrix uvScaling;
uvScaling.makeScale(osg::Vec3(ssc.opacityScaleU, ssc.opacityScaleV, 1.0));
texmat->setMatrix(uvScaling);
stateSet->setTextureAttributeAndModes(StateSetContent::OPACITY_TEXTURE_UNIT, texmat.get(), osg::StateAttribute::ON);
}
// setup combiner to ignore RGB...
osg::ref_ptr<osg::TexEnvCombine> texenv = new osg::TexEnvCombine();
texenv->setCombine_RGB(osg::TexEnvCombine::REPLACE);
texenv->setSource0_RGB(osg::TexEnvCombine::PREVIOUS);
stateSet->setTextureAttributeAndModes(StateSetContent::OPACITY_TEXTURE_UNIT, texenv.get(), osg::StateAttribute::ON);
// setup transparency...
if (!transparent && ssc.opacityTexture->getImage())
transparent = ssc.opacityTexture->getImage()->isImageTranslucent();
}
// reflection texture map...
if (ssc.reflectionTexture)
{
stateSet->setTextureAttributeAndModes(StateSetContent::REFLECTION_TEXTURE_UNIT, ssc.reflectionTexture.get());
// setup spherical map...
osg::ref_ptr<osg::TexGen> texgen = new osg::TexGen();
texgen->setMode(osg::TexGen::SPHERE_MAP);
stateSet->setTextureAttributeAndModes(StateSetContent::REFLECTION_TEXTURE_UNIT, texgen.get(), osg::StateAttribute::ON);
// setup combiner for factor...
double factor = ssc.reflectionFactor;
osg::ref_ptr<osg::TexEnvCombine> texenv = new osg::TexEnvCombine();
texenv->setCombine_RGB(osg::TexEnvCombine::INTERPOLATE);
texenv->setSource0_RGB(osg::TexEnvCombine::TEXTURE);
texenv->setSource1_RGB(osg::TexEnvCombine::PREVIOUS);
texenv->setSource2_RGB(osg::TexEnvCombine::CONSTANT);
texenv->setConstantColor(osg::Vec4(factor, factor, factor, factor));
stateSet->setTextureAttributeAndModes(StateSetContent::REFLECTION_TEXTURE_UNIT, texenv.get(), osg::StateAttribute::ON);
}
// emissive texture map
if (ssc.emissiveTexture)
{
if (ssc.emissiveScaleU != 1.0 || ssc.emissiveScaleV != 1.0)
{
// set UV scaling...
osg::ref_ptr<osg::TexMat> texmat = new osg::TexMat();
osg::Matrix uvScaling;
uvScaling.makeScale(osg::Vec3(ssc.emissiveScaleU, ssc.emissiveScaleV, 1.0));
texmat->setMatrix(uvScaling);
stateSet->setTextureAttributeAndModes(StateSetContent::EMISSIVE_TEXTURE_UNIT, texmat.get(), osg::StateAttribute::ON);
}
stateSet->setTextureAttributeAndModes(StateSetContent::EMISSIVE_TEXTURE_UNIT, ssc.emissiveTexture.get());
}
// add more texture maps here...
if (transparent)
{
stateSet->setRenderingHint(osg::StateSet::TRANSPARENT_BIN);
stateSet->setAttributeAndModes(new osg::BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
}
}
geometryMap.insert(std::pair<unsigned, osg::ref_ptr<osg::Geometry> >(mti, pGeometry));
pGeode->addDrawable(pGeometry.get());
return pGeometry.get();
}
osgAnimation::VertexInfluence& getVertexInfluence(
osgAnimation::VertexInfluenceMap& vim, const std::string& name)
{
osgAnimation::VertexInfluenceMap::iterator it = vim.lower_bound(name);
if (it == vim.end() || name != it->first)
{
it = vim.insert(it, osgAnimation::VertexInfluenceMap::value_type(
name, osgAnimation::VertexInfluence()));
it->second.setName(name);
}
return it->second;
}
void addChannel(
osgAnimation::Channel* pChannel,
osg::ref_ptr<osgAnimation::AnimationManagerBase>& pAnimManager,
const char* pTakeName)
{
if (!pChannel)
{
return;
}
if (!pAnimManager) pAnimManager = new osgAnimation::BasicAnimationManager;
osgAnimation::Animation* pAnimation = 0;
const osgAnimation::AnimationList& anims = pAnimManager->getAnimationList();
for (size_t i = 0; i < anims.size(); ++i)
{
if (anims[i]->getName() == pTakeName)
{
pAnimation = anims[i].get();
}
}
if (!pAnimation)
{
pAnimation = new osgAnimation::Animation;
pAnimation->setName(pTakeName);
pAnimManager->registerAnimation(pAnimation);
}
pAnimation->addChannel(pChannel);
}
void readAnimation(FbxNode* pNode, FbxScene& fbxScene, const std::string& targetName,
osg::ref_ptr<osgAnimation::AnimationManagerBase>& pAnimationManager,
FbxMesh* pMesh, int nBlendShape, int nBlendShapeChannel, int nShape)
{
for (int i = 0; i < fbxScene.GetSrcObjectCount<FbxAnimStack>(); ++i)
{
FbxAnimStack* pAnimStack = FbxCast<FbxAnimStack>(fbxScene.GetSrcObject<FbxAnimStack>(i));
int nbAnimLayers = pAnimStack->GetMemberCount<FbxAnimLayer>();
const char* pTakeName = pAnimStack->GetName();
if (!pTakeName || !*pTakeName)
continue;
for (int j = 0; j < nbAnimLayers; j++)
{
FbxAnimLayer* pAnimLayer = pAnimStack->GetMember<FbxAnimLayer>(j);
FbxAnimCurve* pCurve = pMesh->GetShapeChannel(nBlendShape, nBlendShapeChannel, pAnimLayer, false);
if (!pCurve)
{
continue;
}
int nKeys = pCurve->KeyGetCount();
if (!nKeys)
{
continue;
}
osgAnimation::FloatLinearChannel* pChannel = new osgAnimation::FloatLinearChannel;
std::vector<osgAnimation::TemplateKeyframe<float> >& keyFrameCntr = *pChannel->getOrCreateSampler()->getOrCreateKeyframeContainer();
for (int k = 0; k < nKeys; ++k)
{
FbxAnimCurveKey key = pCurve->KeyGet(k);
double fTime = key.GetTime().GetSecondDouble();
float fValue = static_cast<float>(key.GetValue() * 0.01);
keyFrameCntr.push_back(osgAnimation::FloatKeyframe(fTime,fValue));
}
pChannel->setTargetName(targetName);
std::stringstream ss;
ss << nShape;
pChannel->setName(ss.str());
addChannel(pChannel, pAnimationManager, pTakeName);
}
}
}
void addBindMatrix(
BindMatrixMap& boneBindMatrices,
FbxNode* pBone,
const osg::Matrix& bindMatrix,
osgAnimation::RigGeometry* pRigGeometry)
{
boneBindMatrices.insert(BindMatrixMap::value_type(
BindMatrixMap::key_type(pBone, pRigGeometry), bindMatrix));
}
void addVec2ArrayElement(osg::Array& a, const FbxVector2& v)
{
if (a.getType() == osg::Array::Vec2dArrayType)
{
static_cast<osg::Vec2dArray&>(a).push_back(osg::Vec2d(v[0], v[1]));
}
else
{
static_cast<osg::Vec2Array&>(a).push_back(osg::Vec2(
static_cast<float>(v[0]),
static_cast<float>(v[1])));
}
}
void addVec3ArrayElement(osg::Array& a, const FbxVector4& v)
{
if (a.getType() == osg::Array::Vec3dArrayType)
{
static_cast<osg::Vec3dArray&>(a).push_back(osg::Vec3d(v[0], v[1], v[2]));
}
else
{
static_cast<osg::Vec3Array&>(a).push_back(osg::Vec3(
static_cast<float>(v[0]),
static_cast<float>(v[1]),
static_cast<float>(v[2])));
}
}
void addColorArrayElement(osg::Array& a, const FbxColor& c)
{
if (a.getType() == osg::Array::Vec4dArrayType)
{
static_cast<osg::Vec4dArray&>(a).push_back(osg::Vec4d(c.mRed, c.mGreen, c.mBlue, c.mAlpha));
}
else
{
static_cast<osg::Vec4Array&>(a).push_back(osg::Vec4(
static_cast<float>(c.mRed),
static_cast<float>(c.mGreen),
static_cast<float>(c.mBlue),
static_cast<float>(c.mAlpha)));
}
}
// scans StateSetList looking for the (first) channel name for the specified map type...
std::string getUVChannelForTextureMap(std::vector<StateSetContent>& stateSetList, const char* pName)
{
// will return the first occurrence in the state set list...
// TODO: what if more than one channel for the same map type?
for (unsigned int i = 0; i < stateSetList.size(); i++)
{
if (0 == strcmp(pName, FbxSurfaceMaterial::sDiffuse))
return stateSetList[i].diffuseChannel;
if (0 == strcmp(pName, FbxSurfaceMaterial::sTransparentColor))
return stateSetList[i].opacityChannel;
if (0 == strcmp(pName, FbxSurfaceMaterial::sReflection))
return stateSetList[i].reflectionChannel;
if (0 == strcmp(pName, FbxSurfaceMaterial::sEmissive))
return stateSetList[i].emissiveChannel;
// more here...
}
return "";
}
// scans mesh layers looking for the UV element corresponding to the specified channel name...
const FbxLayerElementUV* getUVElementForChannel(std::string uvChannelName,
FbxLayerElement::EType elementType, FbxMesh* pFbxMesh)
{
// scan layers for specified UV channel...
for (int cLayerIndex = 0; cLayerIndex < pFbxMesh->GetLayerCount(); cLayerIndex++)
{
const FbxLayer* pFbxLayer = pFbxMesh->GetLayer(cLayerIndex);
if (!pFbxLayer)
continue;
if (const FbxLayerElementUV* uv = pFbxLayer->GetUVs())
{
if (0 == uvChannelName.compare(uv->GetName()))
return uv;
}
}
for (int cLayerIndex = 0; cLayerIndex < pFbxMesh->GetLayerCount(); cLayerIndex++)
{
const FbxLayer* pFbxLayer = pFbxMesh->GetLayer(cLayerIndex);
if (!pFbxLayer)
continue;
if (const FbxLayerElementUV* uv = pFbxLayer->GetUVs(elementType))
{
return uv;
}
}
return 0;
}
typedef std::pair<osg::Geometry*, int> GIPair;
typedef std::multimap<int, GIPair> FbxToOsgVertexMap;
typedef std::map<GIPair, int> OsgToFbxNormalMap;
void readMeshTriangle(const FbxMesh * fbxMesh, int i /*polygonIndex*/,
int posInPoly0, int posInPoly1, int posInPoly2,
int meshVertex0, int meshVertex1, int meshVertex2,
FbxToOsgVertexMap& fbxToOsgVertMap,
OsgToFbxNormalMap& osgToFbxNormMap,
const FbxVector4* pFbxVertices,
const FbxLayerElementNormal* pFbxNormals,
const FbxLayerElementUV* pFbxUVs_diffuse,
const FbxLayerElementUV* pFbxUVs_opacity,
const FbxLayerElementUV* pFbxUVs_emissive,
const FbxLayerElementVertexColor* pFbxColors,
osg::Geometry* pGeometry,
osg::Array* pVertices,
osg::Array* pNormals,
osg::Array* pTexCoords_diffuse,
osg::Array* pTexCoords_opacity,
osg::Array* pTexCoords_emissive,
osg::Array* pColors)
{
int v0 = fbxMesh->GetPolygonVertex(i, posInPoly0),
v1 = fbxMesh->GetPolygonVertex(i, posInPoly1),
v2 = fbxMesh->GetPolygonVertex(i, posInPoly2);
fbxToOsgVertMap.insert(FbxToOsgVertexMap::value_type(v0, GIPair(pGeometry, pVertices->getNumElements())));
fbxToOsgVertMap.insert(FbxToOsgVertexMap::value_type(v1, GIPair(pGeometry, pVertices->getNumElements() + 1)));
fbxToOsgVertMap.insert(FbxToOsgVertexMap::value_type(v2, GIPair(pGeometry, pVertices->getNumElements() + 2)));
addVec3ArrayElement(*pVertices, pFbxVertices[v0]);
addVec3ArrayElement(*pVertices, pFbxVertices[v1]);
addVec3ArrayElement(*pVertices, pFbxVertices[v2]);
if (pNormals)
{
int n0 = getVertexIndex(pFbxNormals, fbxMesh, i, posInPoly0, meshVertex0);
int n1 = getVertexIndex(pFbxNormals, fbxMesh, i, posInPoly1, meshVertex1);
int n2 = getVertexIndex(pFbxNormals, fbxMesh, i, posInPoly2, meshVertex2);
osgToFbxNormMap.insert(OsgToFbxNormalMap::value_type(GIPair(pGeometry, pNormals->getNumElements()), n0));
osgToFbxNormMap.insert(OsgToFbxNormalMap::value_type(GIPair(pGeometry, pNormals->getNumElements() + 1), n1));
osgToFbxNormMap.insert(OsgToFbxNormalMap::value_type(GIPair(pGeometry, pNormals->getNumElements() + 2), n2));
addVec3ArrayElement(*pNormals, pFbxNormals->GetDirectArray().GetAt(n0));
addVec3ArrayElement(*pNormals, pFbxNormals->GetDirectArray().GetAt(n1));
addVec3ArrayElement(*pNormals, pFbxNormals->GetDirectArray().GetAt(n2));
}
// add texture maps data (avoid duplicates)...
if (pTexCoords_diffuse)
{
addVec2ArrayElement(*pTexCoords_diffuse, getElement(pFbxUVs_diffuse, fbxMesh, i, posInPoly0, meshVertex0));
addVec2ArrayElement(*pTexCoords_diffuse, getElement(pFbxUVs_diffuse, fbxMesh, i, posInPoly1, meshVertex1));
addVec2ArrayElement(*pTexCoords_diffuse, getElement(pFbxUVs_diffuse, fbxMesh, i, posInPoly2, meshVertex2));
}
if (pTexCoords_opacity && (pTexCoords_opacity != pTexCoords_diffuse))
{
addVec2ArrayElement(*pTexCoords_opacity, getElement(pFbxUVs_opacity, fbxMesh, i, posInPoly0, meshVertex0));
addVec2ArrayElement(*pTexCoords_opacity, getElement(pFbxUVs_opacity, fbxMesh, i, posInPoly1, meshVertex1));
addVec2ArrayElement(*pTexCoords_opacity, getElement(pFbxUVs_opacity, fbxMesh, i, posInPoly2, meshVertex2));
}
// Only spherical reflection maps are supported (so do not add coordinates for the reflection map)
if (pTexCoords_emissive && (pTexCoords_emissive != pTexCoords_opacity) && (pTexCoords_emissive != pTexCoords_diffuse))
{
addVec2ArrayElement(*pTexCoords_emissive, getElement(pFbxUVs_emissive, fbxMesh, i, posInPoly0, meshVertex0));
addVec2ArrayElement(*pTexCoords_emissive, getElement(pFbxUVs_emissive, fbxMesh, i, posInPoly1, meshVertex1));
addVec2ArrayElement(*pTexCoords_emissive, getElement(pFbxUVs_emissive, fbxMesh, i, posInPoly2, meshVertex2));
}
// add more texture maps here...
if (pColors)
{
addColorArrayElement(*pColors, getElement(pFbxColors, fbxMesh, i, posInPoly0, meshVertex0));
addColorArrayElement(*pColors, getElement(pFbxColors, fbxMesh, i, posInPoly1, meshVertex1));
addColorArrayElement(*pColors, getElement(pFbxColors, fbxMesh, i, posInPoly2, meshVertex2));
}
}
/// Says if a quad should be split using vertices 02 (or else 13)
bool quadSplit02(const FbxMesh * fbxMesh, int i /*polygonIndex*/,
int posInPoly0, int posInPoly1, int posInPoly2, int posInPoly3,
const FbxVector4* pFbxVertices)
{
// Algorithm may be a bit dumb. If you got a faster one, feel free to change.
// Here we test each of the 4 triangles and see if there is one in the opposite direction.
// Triangles: 012, 023, 013, 123
// For this, we do a cross product to get normals. We say here the first triangle is the reference, and do a dot product to see the direction.
// Normals: na (= (p1-p0)^(p2-p1)), nb, na, nd
// Dot products: rb (na.nb), rc, rd
// Results:
// if r*>0 => convex (02 and 13 are ok, so choose 02)
// if rb only <0, or r*<0 => concave, split on 13
// if rc only <0, or rd<0 => concave, split on 02
// else unhandled (crossed polygon?) => choose 02
// In short:
// if rb only <0, or r*<0 => return false
// else return true
int v0 = fbxMesh->GetPolygonVertex(i, posInPoly0);
int v1 = fbxMesh->GetPolygonVertex(i, posInPoly1);
int v2 = fbxMesh->GetPolygonVertex(i, posInPoly2);
int v3 = fbxMesh->GetPolygonVertex(i, posInPoly3);
osg::Vec3d p0(pFbxVertices[v0][0], pFbxVertices[v0][1], pFbxVertices[v0][2]);
osg::Vec3d p1(pFbxVertices[v1][0], pFbxVertices[v1][1], pFbxVertices[v1][2]);
osg::Vec3d p2(pFbxVertices[v2][0], pFbxVertices[v2][1], pFbxVertices[v2][2]);
osg::Vec3d p3(pFbxVertices[v3][0], pFbxVertices[v3][1], pFbxVertices[v3][2]);
osg::Vec3d na((p1 - p0) ^ (p2 - p1));
osg::Vec3d nb((p2 - p0) ^ (p3 - p2));
double rb(na * nb);
if (rb >= 0) return true; // Split at 02
osg::Vec3d nc((p1 - p0) ^ (p3 - p1));
osg::Vec3d nd((p2 - p1) ^ (p3 - p2));
double rc(na * nc);
double rd(na * nd);
return (rc >= 0 || rd >= 0);
}
struct PolygonRef
{
PolygonRef(osg::Geometry* pGeometry, int numPoly, int nVertex)
: pGeometry(pGeometry), numPoly(numPoly), nVertex(nVertex)
{}
osg::Geometry* pGeometry;
int numPoly;
int nVertex;
};
typedef std::vector<PolygonRef> PolygonRefList;
osgDB::ReaderWriter::ReadResult OsgFbxReader::readMesh(
FbxNode* pNode,
FbxMesh* fbxMesh,
std::vector<StateSetContent>& stateSetList,
const char* szName)
{
GeometryMap geometryMap;
osg::Geode* pGeode = new osg::Geode;
pGeode->setName(szName);
const FbxLayerElementNormal* pFbxNormals = 0;
const FbxLayerElementVertexColor* pFbxColors = 0;
const FbxLayerElementMaterial* pFbxMaterials = 0;
const FbxVector4* pFbxVertices = fbxMesh->GetControlPoints();
// scan layers for Normals, Colors and Materials elements (this will get the first available elements)...
for (int cLayerIndex = 0; cLayerIndex < fbxMesh->GetLayerCount(); cLayerIndex++)
{
const FbxLayer* pFbxLayer = fbxMesh->GetLayer(cLayerIndex);
if (!pFbxLayer)
continue;
// get normals, colors and materials...
if (!pFbxNormals)
pFbxNormals = pFbxLayer->GetNormals();
if (!pFbxColors)
pFbxColors = pFbxLayer->GetVertexColors();
if (!pFbxMaterials)
pFbxMaterials = pFbxLayer->GetMaterials();
}
// look for UV elements (diffuse, opacity, reflection, emissive, ...) and get their channels names...
std::string diffuseChannel = getUVChannelForTextureMap(stateSetList, FbxSurfaceMaterial::sDiffuse);
std::string opacityChannel = getUVChannelForTextureMap(stateSetList, FbxSurfaceMaterial::sTransparentColor);
std::string emissiveChannel = getUVChannelForTextureMap(stateSetList, FbxSurfaceMaterial::sEmissive);
// look for more UV elements here...
// UV elements...
const FbxLayerElementUV* pFbxUVs_diffuse = getUVElementForChannel(diffuseChannel, FbxLayerElement::eTextureDiffuse, fbxMesh);
const FbxLayerElementUV* pFbxUVs_opacity = getUVElementForChannel(opacityChannel, FbxLayerElement::eTextureTransparency, fbxMesh);
const FbxLayerElementUV* pFbxUVs_emissive = getUVElementForChannel(emissiveChannel, FbxLayerElement::eTextureEmissive, fbxMesh);
// more UV elements here...
// check elements validity...
if (!layerElementValid(pFbxNormals)) pFbxNormals = 0;
if (!layerElementValid(pFbxColors)) pFbxColors = 0;
if (!layerElementValid(pFbxUVs_diffuse)) pFbxUVs_diffuse = 0;
if (!layerElementValid(pFbxUVs_opacity)) pFbxUVs_opacity = 0;
if (!layerElementValid(pFbxUVs_emissive)) pFbxUVs_emissive = 0;
// more here...
int nPolys = fbxMesh->GetPolygonCount();
int nDeformerCount = fbxMesh->GetDeformerCount(FbxDeformer::eSkin);
int nDeformerBlendShapeCount = fbxMesh->GetDeformerCount(FbxDeformer::eBlendShape);
GeometryType geomType = GEOMETRY_STATIC;
//determine the type of geometry
if (nDeformerCount)
{
geomType = GEOMETRY_RIG;
}
else if (nDeformerBlendShapeCount)
{
geomType = GEOMETRY_MORPH;
}
FbxToOsgVertexMap fbxToOsgVertMap;
OsgToFbxNormalMap osgToFbxNormMap;
// First add only triangles and quads (easy to split into triangles without
// more processing)
// This is the reason we store polygons references:
PolygonRefList polygonRefList;
for (int i = 0, nVertex = 0; i < nPolys; ++i)
{
int lPolygonSize = fbxMesh->GetPolygonSize(i);
int materialIndex = getPolygonIndex(pFbxMaterials, i);
osg::Geometry* pGeometry = getGeometry(pGeode, geometryMap,
stateSetList, geomType, materialIndex,
pFbxNormals != 0,
pFbxUVs_diffuse != 0,
pFbxUVs_opacity != 0,
pFbxUVs_emissive != 0,
// more UV elements here...
pFbxColors != 0,
options,
lightmapTextures);
osg::Array* pVertices = pGeometry->getVertexArray();
osg::Array* pNormals = pGeometry->getNormalArray();
// get texture coordinates...
osg::Array* pTexCoords_diffuse = pGeometry->getTexCoordArray(StateSetContent::DIFFUSE_TEXTURE_UNIT);
osg::Array* pTexCoords_opacity = pGeometry->getTexCoordArray(StateSetContent::OPACITY_TEXTURE_UNIT);
osg::Array* pTexCoords_emissive = pGeometry->getTexCoordArray(StateSetContent::EMISSIVE_TEXTURE_UNIT);
// more texture coordinates here...
osg::Array* pColors = pGeometry->getColorArray();
if (lPolygonSize == 3)
{
// Triangle
readMeshTriangle(fbxMesh, i,
0, 1, 2,
nVertex, nVertex+1, nVertex+2,
fbxToOsgVertMap, osgToFbxNormMap,
pFbxVertices, pFbxNormals, pFbxUVs_diffuse, pFbxUVs_opacity, pFbxUVs_emissive, pFbxColors,
pGeometry,
pVertices, pNormals, pTexCoords_diffuse, pTexCoords_opacity, pTexCoords_emissive, pColors);
nVertex += 3;
}
else if (lPolygonSize == 4)
{
// Quad - Convert to triangles
// Use some fast specialized code to see how the should be decomposed
// Two cases : Split at '02' (012 and 023), or split at '13 (013 and 123)
bool split02 = quadSplit02(fbxMesh, i, 0, 1, 2, 3, pFbxVertices);
int p02 = split02 ? 2 : 3; // Triangle 0, point 2
int p10 = split02 ? 0 : 1; // Triangle 1, point 0
readMeshTriangle(fbxMesh, i,
0, 1, p02,
nVertex, nVertex+1, nVertex+p02,
fbxToOsgVertMap, osgToFbxNormMap,
pFbxVertices, pFbxNormals, pFbxUVs_diffuse, pFbxUVs_opacity, pFbxUVs_emissive, pFbxColors,
pGeometry,
pVertices, pNormals, pTexCoords_diffuse, pTexCoords_opacity, pTexCoords_emissive, pColors);
readMeshTriangle(fbxMesh, i,
p10, 2, 3,
nVertex+p10, nVertex+2, nVertex+3,
fbxToOsgVertMap, osgToFbxNormMap,
pFbxVertices, pFbxNormals, pFbxUVs_diffuse, pFbxUVs_opacity, pFbxUVs_emissive, pFbxColors,
pGeometry,
pVertices, pNormals, pTexCoords_diffuse, pTexCoords_opacity, pTexCoords_emissive, pColors);
nVertex += 4;
}
else if (tessellatePolygons)
{
// Polygons - Store to add after triangles
polygonRefList.push_back(PolygonRef(pGeometry, i, nVertex));
nVertex += lPolygonSize;
}
else
{
int nVertex0 = nVertex;
nVertex += (std::min)(2, lPolygonSize);
for (int j = 2; j < lPolygonSize; ++j, ++nVertex)
{
readMeshTriangle(fbxMesh, i,
0, j - 1, j,
nVertex0, nVertex - 1, nVertex,
fbxToOsgVertMap, osgToFbxNormMap,
pFbxVertices, pFbxNormals, pFbxUVs_diffuse, pFbxUVs_opacity, pFbxUVs_emissive, pFbxColors,
pGeometry,
pVertices, pNormals, pTexCoords_diffuse, pTexCoords_opacity, pTexCoords_emissive, pColors);
}
}
}
for (unsigned i = 0; i < pGeode->getNumDrawables(); ++i)
{
osg::Geometry* pGeometry = pGeode->getDrawable(i)->asGeometry();
osg::DrawArrays* pDrawArrays = new osg::DrawArrays(
GL_TRIANGLES, 0, pGeometry->getVertexArray()->getNumElements());
pGeometry->addPrimitiveSet(pDrawArrays);
}
// Now add polygons - Convert to triangles
// We put vertices in their own PrimitiveSet with Mode=POLYGON; then run the
// Tessellator on the Geometry which should tessellate the polygons
// automagically.
for (PolygonRefList::iterator it = polygonRefList.begin(), itEnd=polygonRefList.end();
it != itEnd; ++it)
{
int i = it->numPoly;
int lPolygonSize = fbxMesh->GetPolygonSize(i);
//int materialIndex = getPolygonIndex(pFbxMaterials, i);
osg::Geometry* pGeometry = it->pGeometry;
osg::Array* pVertices = pGeometry->getVertexArray();
osg::Array* pNormals = pGeometry->getNormalArray();
osg::Array* pTexCoords_diffuse = pGeometry->getTexCoordArray(StateSetContent::DIFFUSE_TEXTURE_UNIT);
osg::Array* pTexCoords_opacity = pGeometry->getTexCoordArray(StateSetContent::OPACITY_TEXTURE_UNIT);
osg::Array* pTexCoords_emissive = pGeometry->getTexCoordArray(StateSetContent::EMISSIVE_TEXTURE_UNIT);
osg::Array* pColors = pGeometry->getColorArray();
// Index of the 1st vertex of the polygon in the geometry
int osgVertex0 = pVertices->getNumElements();
for (int j = 0, nVertex = it->nVertex; j<lPolygonSize; ++j, ++nVertex)
{
int v0 = fbxMesh->GetPolygonVertex(i, j);
fbxToOsgVertMap.insert(FbxToOsgVertexMap::value_type(v0, GIPair(pGeometry, pVertices->getNumElements())));
addVec3ArrayElement(*pVertices, pFbxVertices[v0]);
if (pNormals)
{
int n0 = getVertexIndex(pFbxNormals, fbxMesh, i, j, nVertex);
osgToFbxNormMap.insert(OsgToFbxNormalMap::value_type(GIPair(pGeometry, pNormals->getNumElements()), n0));
addVec3ArrayElement(*pNormals, pFbxNormals->GetDirectArray().GetAt(n0));
}
// add texture maps data (avoid duplicates)...
if (pTexCoords_diffuse)
{
addVec2ArrayElement(*pTexCoords_diffuse, getElement(pFbxUVs_diffuse, fbxMesh, i, j, nVertex));
}
if (pTexCoords_opacity && (pTexCoords_opacity != pTexCoords_diffuse))
{
addVec2ArrayElement(*pTexCoords_opacity, getElement(pFbxUVs_opacity, fbxMesh, i, j, nVertex));
}
// Only spherical reflection maps are supported (so do not add coordinates for the reflection map)
if (pTexCoords_emissive && (pTexCoords_emissive != pTexCoords_opacity) && (pTexCoords_emissive != pTexCoords_diffuse))
{
addVec2ArrayElement(*pTexCoords_emissive, getElement(pFbxUVs_emissive, fbxMesh, i, j, nVertex));
}
// add more texture maps here...
if (pColors)
{
addColorArrayElement(*pColors, getElement(pFbxColors, fbxMesh, i, j, nVertex));
}
}
osg::DrawArrays* pDrawArrays = new osg::DrawArrays(
GL_POLYGON, osgVertex0, pGeometry->getVertexArray()->getNumElements() - osgVertex0);
pGeometry->addPrimitiveSet(pDrawArrays);
}
for (unsigned i = 0; i < pGeode->getNumDrawables(); ++i)
{
osg::Geometry* pGeometry = pGeode->getDrawable(i)->asGeometry();
// Now split polygons if necessary
osgUtil::Tessellator tessellator;
tessellator.retessellatePolygons(*pGeometry);
if (pGeode->getNumDrawables() > 1)
{
std::stringstream ss;
ss << pGeode->getName() << " " << i + 1;
pGeometry->setName(ss.str());
}
else
{
pGeometry->setName(pGeode->getName());
}
}
if (geomType == GEOMETRY_RIG)
{
typedef std::map<osg::ref_ptr<osg::Geometry>,
osg::ref_ptr<osgAnimation::RigGeometry> > GeometryRigGeometryMap;
GeometryRigGeometryMap old2newGeometryMap;
for (unsigned i = 0; i < pGeode->getNumDrawables(); ++i)
{
osg::Geometry* pGeometry = pGeode->getDrawable(i)->asGeometry();
osgAnimation::RigGeometry* pRig = new osgAnimation::RigGeometry;
pRig->setSourceGeometry(pGeometry);
pRig->copyFrom(*pGeometry);
old2newGeometryMap.insert(GeometryRigGeometryMap::value_type(
pGeometry, pRig));
pRig->setDataVariance(osg::Object::DYNAMIC);
pRig->setUseDisplayList( false );
pGeode->setDrawable(i, pRig);
pRig->setInfluenceMap(new osgAnimation::VertexInfluenceMap);
pGeometry = pRig;
}
for (int i = 0; i < nDeformerCount; ++i)
{
FbxSkin* pSkin = (FbxSkin*)fbxMesh->GetDeformer(i, FbxDeformer::eSkin);
int nClusters = pSkin->GetClusterCount();
for (int j = 0; j < nClusters; ++j)
{
FbxCluster* pCluster = pSkin->GetCluster(j);
//assert(KFbxCluster::eNORMALIZE == pCluster->GetLinkMode());
FbxNode* pBone = pCluster->GetLink();
FbxAMatrix transformLink;
pCluster->GetTransformLinkMatrix(transformLink);
FbxAMatrix transformLinkInverse = transformLink.Inverse();
const double* pTransformLinkInverse = transformLinkInverse;
osg::Matrix bindMatrix(pTransformLinkInverse);
int nIndices = pCluster->GetControlPointIndicesCount();
int* pIndices = pCluster->GetControlPointIndices();
double* pWeights = pCluster->GetControlPointWeights();
for (int k = 0; k < nIndices; ++k)
{
int fbxIndex = pIndices[k];
float weight = static_cast<float>(pWeights[k]);
for (FbxToOsgVertexMap::const_iterator it =
fbxToOsgVertMap.find(fbxIndex);
it != fbxToOsgVertMap.end() &&
it->first == fbxIndex; ++it)
{
GIPair gi = it->second;
osgAnimation::RigGeometry& rig =
dynamic_cast<osgAnimation::RigGeometry&>(
*old2newGeometryMap[gi.first]);
addBindMatrix(boneBindMatrices, pBone, bindMatrix, &rig);
osgAnimation::VertexInfluenceMap& vim =
*rig.getInfluenceMap();
osgAnimation::VertexInfluence& vi =
getVertexInfluence(vim, pBone->GetName());
vi.push_back(osgAnimation::VertexIndexWeight(
gi.second, weight));
}
}
}
}
}
else if (geomType == GEOMETRY_MORPH)
{
for (unsigned i = 0; i < pGeode->getNumDrawables(); ++i)
{
osg::Geometry* pGeometry = pGeode->getDrawable(i)->asGeometry();
osgAnimation::MorphGeometry& morph = dynamic_cast<osgAnimation::MorphGeometry&>(*pGeometry);
pGeode->addUpdateCallback(new osgAnimation::UpdateMorph(morph.getName()));
//read morph geometry
for (int nBlendShape = 0; nBlendShape < nDeformerBlendShapeCount; ++nBlendShape)
{
FbxBlendShape* pBlendShape = FbxCast<FbxBlendShape>(fbxMesh->GetDeformer(nBlendShape, FbxDeformer::eBlendShape));
const int nBlendShapeChannelCount = pBlendShape->GetBlendShapeChannelCount();
for (int nBlendShapeChannel = 0; nBlendShapeChannel < nBlendShapeChannelCount; ++nBlendShapeChannel)
{
FbxBlendShapeChannel* pBlendShapeChannel = pBlendShape->GetBlendShapeChannel(nBlendShapeChannel);
if (!pBlendShapeChannel->GetTargetShapeCount()) continue;
//Assume one shape
if (pBlendShapeChannel->GetTargetShapeCount() > 1)
{
OSG_WARN << "Multiple FBX Target Shapes, only the first will be used" << std::endl;
}
const FbxGeometryBase* pMorphShape = pBlendShapeChannel->GetTargetShape(0);
const FbxLayerElementNormal* pFbxShapeNormals = 0;
if (const FbxLayer* pFbxShapeLayer = pMorphShape->GetLayer(0))
{
pFbxShapeNormals = pFbxShapeLayer->GetNormals();
if (!layerElementValid(pFbxShapeNormals)) pFbxShapeNormals = 0;
}
osg::Geometry* pMorphTarget = new osg::Geometry(morph);
pMorphTarget->setVertexArray(static_cast<osg::Array*>(
pMorphTarget->getVertexArray()->clone(osg::CopyOp::DEEP_COPY_ARRAYS)));
if (pFbxShapeNormals)
{
if (osg::Array* pNormals = pMorphTarget->getNormalArray())
{
pMorphTarget->setNormalArray(static_cast<osg::Array*>(
pNormals->clone(osg::CopyOp::DEEP_COPY_ARRAYS)));
}
}
pMorphTarget->setName(pMorphShape->GetName());
morph.addMorphTarget(pMorphTarget, 0.0f);
readAnimation(pNode, fbxScene, morph.getName(), pAnimationManager, fbxMesh,
nBlendShape, nBlendShapeChannel, (int)morph.getMorphTargetList().size() - 1);
}
}
}
int nMorphTarget = 0;
for (int nBlendShape = 0; nBlendShape < nDeformerBlendShapeCount; ++nBlendShape)
{
FbxBlendShape* pBlendShape = FbxCast<FbxBlendShape>(fbxMesh->GetDeformer(nBlendShape, FbxDeformer::eBlendShape));
const int nBlendShapeChannelCount = pBlendShape->GetBlendShapeChannelCount();
for (int nBlendShapeChannel = 0; nBlendShapeChannel < nBlendShapeChannelCount; ++nBlendShapeChannel)
{
FbxBlendShapeChannel* pBlendShapeChannel = pBlendShape->GetBlendShapeChannel(nBlendShapeChannel);
if (!pBlendShapeChannel->GetTargetShapeCount()) continue;
//Assume one shape again
const FbxGeometryBase* pMorphShape = pBlendShapeChannel->GetTargetShape(0);
const FbxLayerElementNormal* pFbxShapeNormals = 0;
if (const FbxLayer* pFbxShapeLayer = pMorphShape->GetLayer(0))
{
pFbxShapeNormals = pFbxShapeLayer->GetNormals();
if (!layerElementValid(pFbxShapeNormals)) pFbxShapeNormals = 0;
}
const FbxVector4* pControlPoints = pMorphShape->GetControlPoints();
int nControlPoints = pMorphShape->GetControlPointsCount();
for (int fbxIndex = 0; fbxIndex < nControlPoints; ++fbxIndex)
{
osg::Vec3d vPos = convertVec3(pControlPoints[fbxIndex]);
for (FbxToOsgVertexMap::const_iterator it =
fbxToOsgVertMap.find(fbxIndex);
it != fbxToOsgVertMap.end() &&
it->first == fbxIndex; ++it)
{
GIPair gi = it->second;
osgAnimation::MorphGeometry& morphGeom =
dynamic_cast<osgAnimation::MorphGeometry&>(*gi.first);
osg::Geometry* pGeometry = morphGeom.getMorphTarget(nMorphTarget).getGeometry();
if (pGeometry->getVertexArray()->getType() == osg::Array::Vec3dArrayType)
{
osg::Vec3dArray* pVertices = static_cast<osg::Vec3dArray*>(pGeometry->getVertexArray());
(*pVertices)[gi.second] = vPos;
}
else
{
osg::Vec3Array* pVertices = static_cast<osg::Vec3Array*>(pGeometry->getVertexArray());
(*pVertices)[gi.second] = vPos;
}
if (pFbxShapeNormals && pGeometry->getNormalArray())
{
if (pGeometry->getNormalArray()->getType() == osg::Array::Vec3dArrayType)
{
osg::Vec3dArray* pNormals = static_cast<osg::Vec3dArray*>(pGeometry->getNormalArray());
(*pNormals)[gi.second] = convertVec3(
pFbxShapeNormals->GetDirectArray().GetAt(osgToFbxNormMap[gi]));
}
else
{
osg::Vec3Array* pNormals = static_cast<osg::Vec3Array*>(pGeometry->getNormalArray());
(*pNormals)[gi.second] = convertVec3(
pFbxShapeNormals->GetDirectArray().GetAt(osgToFbxNormMap[gi]));
}
}
}
}
//don't put this in the for loop as we don't want to do it if the loop continues early
++nMorphTarget;
}
}
}
FbxAMatrix fbxGeometricTransform;
fbxGeometricTransform.SetTRS(
pNode->GeometricTranslation.Get(),
pNode->GeometricRotation.Get(),
pNode->GeometricScaling.Get());
const double* pGeometricMat = fbxGeometricTransform;
osg::Matrix osgGeometricTransform(pGeometricMat);
if (geomType == GEOMETRY_RIG)
{
FbxSkin* pSkin = (FbxSkin*)fbxMesh->GetDeformer(0, FbxDeformer::eSkin);
if (pSkin->GetClusterCount())
{
FbxAMatrix fbxTransformMatrix;
pSkin->GetCluster(0)->GetTransformMatrix(fbxTransformMatrix);
const double* pTransformMatrix = fbxTransformMatrix;
osgGeometricTransform.postMult(osg::Matrix(pTransformMatrix));
}
}
osg::Node* pResult = pGeode;
if (!osgGeometricTransform.isIdentity())
{
osg::MatrixTransform* pMatTrans = new osg::MatrixTransform(osgGeometricTransform);
pMatTrans->addChild(pGeode);
pResult = pMatTrans;
}
if (geomType == GEOMETRY_RIG)
{
//Add the geometry to the skeleton ancestor of one of the bones.
FbxSkin* pSkin = (FbxSkin*)fbxMesh->GetDeformer(0, FbxDeformer::eSkin);
if (pSkin->GetClusterCount())
{
osgAnimation::Skeleton* pSkeleton = getSkeleton(
pSkin->GetCluster(0)->GetLink(), fbxSkeletons, skeletonMap);
pSkeleton->addChild(pResult);
return osgDB::ReaderWriter::ReadResult::FILE_LOADED;
}
}
return osgDB::ReaderWriter::ReadResult(pResult);
}
osgDB::ReaderWriter::ReadResult OsgFbxReader::readFbxMesh(FbxNode* pNode,
std::vector<StateSetContent>& stateSetList)
{
FbxMesh* lMesh = FbxCast<FbxMesh>(pNode->GetNodeAttribute());
if (!lMesh)
{
return osgDB::ReaderWriter::ReadResult::ERROR_IN_READING_FILE;
}
return readMesh(pNode, lMesh, stateSetList,
pNode->GetName());
}