Files
OpenSceneGraph/src/osg/AutoTransform.cpp
2020-01-10 10:12:13 +00:00

317 lines
10 KiB
C++

/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#include <osg/AutoTransform>
#include <osg/CullStack>
#include <osg/Notify>
#include <osg/io_utils>
using namespace osg;
AutoTransform::AutoTransform():
_autoUpdateEyeMovementTolerance(0.0),
_autoRotateMode(NO_ROTATION),
_autoScaleToScreen(false),
_scale(1.0,1.0,1.0),
_minimumScale(0.0),
_maximumScale(DBL_MAX),
_autoScaleTransitionWidthRatio(0.25),
_axis(0.0f,0.0f,1.0f),
_normal(0.0f,-1.0f,0.0f),
_cachedMode(NO_ROTATION),
_side(1.0f,0.0,0.0f)
{
// setNumChildrenRequiringUpdateTraversal(1);
}
AutoTransform::AutoTransform(const AutoTransform& pat,const CopyOp& copyop):
Transform(pat,copyop),
_position(pat._position),
_pivotPoint(pat._pivotPoint),
_autoUpdateEyeMovementTolerance(pat._autoUpdateEyeMovementTolerance),
_autoRotateMode(pat._autoRotateMode),
_autoScaleToScreen(pat._autoScaleToScreen),
_rotation(pat._rotation),
_scale(pat._scale),
_minimumScale(pat._minimumScale),
_maximumScale(pat._maximumScale),
_autoScaleTransitionWidthRatio(pat._autoScaleTransitionWidthRatio),
_axis(pat._axis),
_normal(pat._normal),
_cachedMode(pat._cachedMode),
_side(pat._side)
{
// setNumChildrenRequiringUpdateTraversal(getNumChildrenRequiringUpdateTraversal()+1);
}
void AutoTransform::setAutoScaleToScreen(bool autoScaleToScreen)
{
_autoScaleToScreen = autoScaleToScreen;
if (_autoScaleToScreen) setCullingActive(false);
}
void AutoTransform::setAutoRotateMode(AutoRotateMode mode)
{
_autoRotateMode = mode;
_cachedMode = CACHE_DIRTY;
updateCache();
}
void AutoTransform::setAxis(const Vec3& axis)
{
_axis = axis;
_axis.normalize();
updateCache();
}
void AutoTransform::setNormal(const Vec3& normal)
{
_normal = normal;
_normal.normalize();
updateCache();
}
void AutoTransform::updateCache()
{
if (_autoRotateMode==ROTATE_TO_AXIS)
{
if (_axis==Vec3(1.0f,0.0,0.0f) && _normal==Vec3(0.0f,-1.0,0.0f)) _cachedMode = AXIAL_ROT_X_AXIS;
else if (_axis==Vec3(0.0f,1.0,0.0f) && _normal==Vec3(1.0f, 0.0,0.0f)) _cachedMode = AXIAL_ROT_Y_AXIS;
else if (_axis==Vec3(0.0f,0.0,1.0f) && _normal==Vec3(0.0f,-1.0,0.0f)) _cachedMode = AXIAL_ROT_Z_AXIS;
else _cachedMode = ROTATE_TO_AXIS;
}
else _cachedMode = _autoRotateMode;
_side = _axis^_normal;
_side.normalize();
}
void AutoTransform::setScale(const Vec3d& scale)
{
_scale = scale;
if (_scale.x()<_minimumScale) _scale.x() = _minimumScale;
if (_scale.y()<_minimumScale) _scale.y() = _minimumScale;
if (_scale.z()<_minimumScale) _scale.z() = _minimumScale;
if (_scale.x()>_maximumScale) _scale.x() = _maximumScale;
if (_scale.y()>_maximumScale) _scale.y() = _maximumScale;
if (_scale.z()>_maximumScale) _scale.z() = _maximumScale;
dirtyBound();
}
bool AutoTransform::computeLocalToWorldMatrix(Matrix& matrix,NodeVisitor* nv) const
{
if (_referenceFrame==RELATIVE_RF)
{
matrix.preMult(computeMatrix(nv));
}
else // absolute
{
matrix = computeMatrix(nv);
}
return true;
}
bool AutoTransform::computeWorldToLocalMatrix(Matrix& matrix,NodeVisitor* nv) const
{
if (_referenceFrame==RELATIVE_RF)
{
matrix.postMult(osg::Matrix::inverse(computeMatrix(nv)));
}
else // absolute
{
matrix = osg::Matrix::inverse(computeMatrix(nv));
}
return true;
}
osg::Matrixd AutoTransform::computeMatrix(const osg::NodeVisitor* nv) const
{
Quat rotation = _rotation;
osg::Vec3d scale = _scale;
const CullStack* cs = nv ? nv->asCullStack() : 0;
if (cs)
{
osg::Vec3d eyePoint = cs->getEyeLocal();
osg::Vec3d localUp = cs->getUpLocal();
if (getAutoScaleToScreen())
{
double size = 1.0/cs->pixelSize(getPosition(),0.48f);
if (_autoScaleTransitionWidthRatio>0.0)
{
if (_minimumScale>0.0)
{
double j = _minimumScale;
double i = (_maximumScale<DBL_MAX) ?
_minimumScale+(_maximumScale-_minimumScale)*_autoScaleTransitionWidthRatio :
_minimumScale*(1.0+_autoScaleTransitionWidthRatio);
double c = 1.0/(4.0*(i-j));
double b = 1.0 - 2.0*c*i;
double a = j + b*b / (4.0*c);
double k = -b / (2.0*c);
if (size<k) size = _minimumScale;
else if (size<i) size = a + b*size + c*(size*size);
}
if (_maximumScale<DBL_MAX)
{
double n = _maximumScale;
double m = (_minimumScale>0.0) ?
_maximumScale+(_minimumScale-_maximumScale)*_autoScaleTransitionWidthRatio :
_maximumScale*(1.0-_autoScaleTransitionWidthRatio);
double c = 1.0 / (4.0*(m-n));
double b = 1.0 - 2.0*c*m;
double a = n + b*b/(4.0*c);
double p = -b / (2.0*c);
if (size>p) size = _maximumScale;
else if (size>m) size = a + b*size + c*(size*size);
}
}
else
{
if (_minimumScale>0.0 && size<_minimumScale)
{
size = _minimumScale;
}
if (_maximumScale<DBL_MAX && size>_maximumScale)
{
size = _maximumScale;
}
}
// TODO setScale(size);
scale.set(size, size, size);
}
if (_autoRotateMode==ROTATE_TO_SCREEN)
{
osg::Vec3d mv_translation;
osg::Vec3d mv_scale;
osg::Quat mv_rotation;
osg::Quat mv_so;
cs->getModelViewMatrix()->decompose( mv_translation, mv_rotation, mv_scale, mv_so );
// TODO setRotation(rotation.inverse());
rotation = mv_rotation.inverse();
}
else if (_autoRotateMode==ROTATE_TO_CAMERA)
{
osg::Vec3d PosToEye = _position - eyePoint;
osg::Matrix lookto = osg::Matrix::lookAt(
osg::Vec3d(0,0,0), PosToEye, localUp);
Quat q;
q.set(osg::Matrix::inverse(lookto));
// TODO setRotation(q);
rotation = q;
}
else if (_autoRotateMode==ROTATE_TO_AXIS)
{
Matrix matrix;
Vec3 ev(eyePoint - _position);
switch(_cachedMode)
{
case(AXIAL_ROT_Z_AXIS):
{
ev.z() = 0.0f;
float ev_length = ev.length();
if (ev_length>0.0f)
{
//float rotation_zrotation_z = atan2f(ev.x(),ev.y());
//mat.makeRotate(inRadians(rotation_z),0.0f,0.0f,1.0f);
float inv = 1.0f/ev_length;
float s = ev.x()*inv;
float c = -ev.y()*inv;
matrix(0,0) = c;
matrix(1,0) = -s;
matrix(0,1) = s;
matrix(1,1) = c;
}
break;
}
case(AXIAL_ROT_Y_AXIS):
{
ev.y() = 0.0f;
float ev_length = ev.length();
if (ev_length>0.0f)
{
//float rotation_zrotation_z = atan2f(ev.x(),ev.y());
//mat.makeRotate(inRadians(rotation_z),0.0f,0.0f,1.0f);
float inv = 1.0f/ev_length;
float s = -ev.z()*inv;
float c = ev.x()*inv;
matrix(0,0) = c;
matrix(2,0) = s;
matrix(0,2) = -s;
matrix(2,2) = c;
}
break;
}
case(AXIAL_ROT_X_AXIS):
{
ev.x() = 0.0f;
float ev_length = ev.length();
if (ev_length>0.0f)
{
//float rotation_zrotation_z = atan2f(ev.x(),ev.y());
//mat.makeRotate(inRadians(rotation_z),0.0f,0.0f,1.0f);
float inv = 1.0f/ev_length;
float s = -ev.z()*inv;
float c = -ev.y()*inv;
matrix(1,1) = c;
matrix(2,1) = -s;
matrix(1,2) = s;
matrix(2,2) = c;
}
break;
}
case(ROTATE_TO_AXIS): // need to implement
{
float ev_side = ev*_side;
float ev_normal = ev*_normal;
float angle = atan2f(ev_side,ev_normal);
matrix.makeRotate(angle,_axis);
break;
}
}
Quat q;
q.set(matrix);
// TODO setRotation(q);
rotation = q;
}
}
_rotation = rotation;
_scale = scale;
// setRotation(rotation);
// setScale(scale);
osg::Matrixd matrix;
matrix.makeRotate(rotation);
matrix.postMultTranslate(_position);
matrix.preMultScale(scale);
matrix.preMultTranslate(-_pivotPoint);
return matrix;
}