Files
OpenSceneGraph/src/osgUtil/CullVisitor.cpp
2003-05-07 09:35:43 +00:00

1005 lines
28 KiB
C++

/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2003 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#include <osg/Transform>
#include <osg/Projection>
#include <osg/Geode>
#include <osg/LOD>
#include <osg/Billboard>
#include <osg/LightSource>
#include <osg/ClipNode>
#include <osg/OccluderNode>
#include <osg/Notify>
#include <osg/TexEnv>
#include <osg/AlphaFunc>
#include <osg/LineSegment>
#include <osgUtil/CullVisitor>
#include <osgUtil/RenderToTextureStage>
#include <osgDB/ReadFile>
#include <float.h>
#include <algorithm>
#include <osg/Timer>
using namespace osg;
using namespace osgUtil;
inline float MAX_F(float a, float b)
{ return a>b?a:b; }
inline int EQUAL_F(float a, float b)
{ return a == b || fabsf(a-b) <= MAX_F(fabsf(a),fabsf(b))*1e-3f; }
class PrintVisitor : public NodeVisitor
{
public:
PrintVisitor():NodeVisitor(NodeVisitor::TRAVERSE_ALL_CHILDREN)
{
_indent = 0;
_step = 4;
}
inline void moveIn() { _indent += _step; }
inline void moveOut() { _indent -= _step; }
inline void writeIndent()
{
for(int i=0;i<_indent;++i) std::cout << " ";
}
virtual void apply(Node& node)
{
moveIn();
writeIndent(); std::cout << node.className() <<std::endl;
traverse(node);
moveOut();
}
virtual void apply(Geode& node) { apply((Node&)node); }
virtual void apply(Billboard& node) { apply((Geode&)node); }
virtual void apply(LightSource& node) { apply((Group&)node); }
virtual void apply(ClipNode& node) { apply((Group&)node); }
virtual void apply(Group& node) { apply((Node&)node); }
virtual void apply(Transform& node) { apply((Group&)node); }
virtual void apply(Projection& node) { apply((Group&)node); }
virtual void apply(Switch& node) { apply((Group&)node); }
virtual void apply(LOD& node) { apply((Group&)node); }
virtual void apply(Impostor& node) { apply((LOD&)node); }
protected:
int _indent;
int _step;
};
CullVisitor::CullVisitor():
NodeVisitor(CULL_VISITOR,TRAVERSE_ACTIVE_CHILDREN),
_currentRenderGraph(NULL),
_currentRenderBin(NULL),
_computeNearFar(COMPUTE_NEAR_FAR_USING_BOUNDING_VOLUMES),
_nearFarRatio(0.0005f),
_computed_znear(FLT_MAX),
_computed_zfar(-FLT_MAX),
_impostorActive(true),
_depthSortImpostorSprites(false),
_impostorPixelErrorThreshold(4.0f),
_numFramesToKeepImpostorSprites(10),
_currentReuseRenderLeafIndex(0)
{
_impostorSpriteManager = new ImpostorSpriteManager;
}
CullVisitor::~CullVisitor()
{
reset();
}
void CullVisitor::reset()
{
//
// first unref all referenced objects and then empty the containers.
//
CullStack::reset();
// reset the calculated near far planes.
_computed_znear = FLT_MAX;
_computed_zfar = -FLT_MAX;
osg::Vec3 lookVector(0.0,0.0,-1.0);
_bbCornerFar = (lookVector.x()>=0?1:0) |
(lookVector.y()>=0?2:0) |
(lookVector.z()>=0?4:0);
_bbCornerNear = (~_bbCornerFar)&7;
// reset the resuse lists.
_currentReuseMatrixIndex = 0;
_currentReuseRenderLeafIndex = 0;
for(RenderLeafList::iterator itr=_reuseRenderLeafList.begin();
itr!=_reuseRenderLeafList.end();
++itr)
{
(*itr)->reset();
}
if (_impostorSpriteManager.valid()) _impostorSpriteManager->reset();
}
float CullVisitor::getDistanceToEyePoint(const Vec3& pos, bool withLODScale) const
{
if (withLODScale) return (pos-getEyeLocal()).length()*getLODScale();
else return (pos-getEyeLocal()).length();
}
inline float distance(const osg::Vec3& coord,const osg::Matrix& matrix)
{
return -(coord[0]*matrix(0,2)+coord[1]*matrix(1,2)+coord[2]*matrix(2,2)+matrix(3,2));
}
float CullVisitor::getDistanceFromEyePoint(const osg::Vec3& pos, bool withLODScale) const
{
const Matrix& matrix = *_modelviewStack.back();
float dist = distance(pos,matrix);
if (withLODScale) return dist*getLODScale();
else return dist;
}
void CullVisitor::popProjectionMatrix()
{
if (_computeNearFar && _computed_zfar>0.0f)
{
// adjust the projection matrix so that it encompases the local coords.
// so it doesn't cull them out.
osg::Matrix& projection = *_projectionStack.back();
if (projection(0,3)==0.0f && projection(1,3)==0.0f && projection(2,3)==0.0f)
{
//cout << "Orthographic projection "<<projection<<endl;
}
else
{
//cout << "Perspective projection "<<projection<<endl;
double desired_znear = _computed_znear *0.98f;
double desired_zfar = _computed_zfar *1.02f;
double min_near_plane = _computed_zfar*_nearFarRatio;
if (desired_znear<min_near_plane) desired_znear=min_near_plane;
// assign the clamped values back to the computed values.
_computed_znear = desired_znear;
_computed_zfar = desired_zfar;
double trans_near_plane = (-desired_znear*projection(2,2)+projection(3,2))/(-desired_znear*projection(2,3)+projection(3,3));
double trans_far_plane = (-desired_zfar*projection(2,2)+projection(3,2))/(-desired_zfar*projection(2,3)+projection(3,3));
double ratio = fabs(2.0f/(trans_near_plane-trans_far_plane));
double center = -(trans_near_plane+trans_far_plane)/2.0f;
projection.postMult(osg::Matrix(1.0f,0.0f,0.0f,0.0f,
0.0f,1.0f,0.0f,0.0f,
0.0f,0.0f,ratio,0.0f,
0.0f,0.0f,center*ratio,1.0f));
}
}
CullStack::popProjectionMatrix();
}
void CullVisitor::updateCalculatedNearFar(const osg::Matrix& matrix,const osg::BoundingBox& bb)
{
float d_near = distance(bb.corner(_bbCornerNear),matrix);
float d_far = distance(bb.corner(_bbCornerFar),matrix);
if (d_near<=d_far)
{
if (d_near<_computed_znear) _computed_znear = d_near;
if (d_far>_computed_zfar) _computed_zfar = d_far;
}
else
{
if ( !EQUAL_F(d_near, d_far) )
{
osg::notify(osg::WARN)<<"Warning: CullVisitor::updateCalculatedNearFar(.) near>far in range calculation,"<< std::endl;
osg::notify(osg::WARN)<<" correcting by swapping values d_near="<<d_near<<" dfar="<<d_far<< std::endl;
}
// note, need to reverse the d_near/d_far association because they are
// the wrong way around...
if (d_far<_computed_znear) _computed_znear = d_far;
if (d_near>_computed_zfar) _computed_zfar = d_near;
}
}
void CullVisitor::updateCalculatedNearFar(const osg::Vec3& pos)
{
float d;
if (!_modelviewStack.empty())
{
const osg::Matrix& matrix = *(_modelviewStack.back());
d = distance(pos,matrix);
}
else
{
d = -pos.z();
}
if (d<_computed_znear) _computed_znear = d;
if (d>_computed_zfar) _computed_zfar = d;
}
void CullVisitor::apply(Node& node)
{
if (isCulled(node)) return;
// push the culling mode.
pushCurrentMask();
// push the node's state.
StateSet* node_state = node.getStateSet();
if (node_state) pushStateSet(node_state);
handle_cull_callbacks_and_traverse(node);
// pop the node's state off the geostate stack.
if (node_state) popStateSet();
// pop the culling mode.
popCurrentMask();
}
void CullVisitor::apply(Geode& node)
{
if (isCulled(node)) return;
// push the node's state.
StateSet* node_state = node.getStateSet();
if (node_state) pushStateSet(node_state);
RefMatrix& matrix = getModelViewMatrix();
for(unsigned int i=0;i<node.getNumDrawables();++i)
{
Drawable* drawable = node.getDrawable(i);
const BoundingBox &bb =drawable->getBound();
if( drawable->getCullCallback() )
{
if( drawable->getCullCallback()->cull( this, drawable, _state.valid()?_state.get():NULL ) == true )
continue;
}
else
{
if (isCulled(bb)) continue;
}
if (_computeNearFar && bb.valid()) updateCalculatedNearFar(matrix,*drawable);
// push the geoset's state on the geostate stack.
StateSet* stateset = drawable->getStateSet();
if (stateset) pushStateSet(stateset);
if (bb.valid()) addDrawableAndDepth(drawable,&matrix,distance(bb.center(),matrix));
else addDrawableAndDepth(drawable,&matrix,0.0f);
if (stateset) popStateSet();
}
// pop the node's state off the geostate stack.
if (node_state) popStateSet();
}
void CullVisitor::apply(Billboard& node)
{
if (isCulled(node)) return;
// push the node's state.
StateSet* node_state = node.getStateSet();
if (node_state) pushStateSet(node_state);
const Vec3& eye_local = getEyeLocal();
const RefMatrix& modelview = getModelViewMatrix();
for(unsigned int i=0;i<node.getNumDrawables();++i)
{
const Vec3& pos = node.getPos(i);
Drawable* drawable = node.getDrawable(i);
// need to modify isCulled to handle the billboard offset.
// if (isCulled(drawable->getBound())) continue;
RefMatrix* billboard_matrix = createOrReuseMatrix(modelview);
node.getMatrix(*billboard_matrix,eye_local,pos);
float d = distance(pos,modelview);
if (_computeNearFar)
{
if (d<_computed_znear) _computed_znear = d;
if (d>_computed_zfar) _computed_zfar = d;
}
StateSet* stateset = drawable->getStateSet();
if (stateset) pushStateSet(stateset);
addDrawableAndDepth(drawable,billboard_matrix,d);
if (stateset) popStateSet();
}
// pop the node's state off the geostate stack.
if (node_state) popStateSet();
}
void CullVisitor::apply(LightSource& node)
{
// push the node's state.
StateSet* node_state = node.getStateSet();
if (node_state) pushStateSet(node_state);
StateAttribute* light = node.getLight();
if (light)
{
if (node.getReferenceFrame()==osg::LightSource::RELATIVE_TO_PARENTS)
{
RefMatrix& matrix = getModelViewMatrix();
addPositionedAttribute(&matrix,light);
}
else
{
// relative to absolute.
addPositionedAttribute(0,light);
}
}
handle_cull_callbacks_and_traverse(node);
// pop the node's state off the geostate stack.
if (node_state) popStateSet();
}
void CullVisitor::apply(ClipNode& node)
{
// push the node's state.
StateSet* node_state = node.getStateSet();
if (node_state) pushStateSet(node_state);
RefMatrix& matrix = getModelViewMatrix();
const ClipNode::ClipPlaneList& planes = node.getClipPlaneList();
for(ClipNode::ClipPlaneList::const_iterator itr=planes.begin();
itr!=planes.end();
++itr)
{
addPositionedAttribute(&matrix,itr->get());
}
handle_cull_callbacks_and_traverse(node);
// pop the node's state off the geostate stack.
if (node_state) popStateSet();
}
void CullVisitor::apply(Group& node)
{
if (isCulled(node)) return;
// push the culling mode.
pushCurrentMask();
// push the node's state.
StateSet* node_state = node.getStateSet();
if (node_state) pushStateSet(node_state);
handle_cull_callbacks_and_traverse(node);
// pop the node's state off the render graph stack.
if (node_state) popStateSet();
// pop the culling mode.
popCurrentMask();
}
void CullVisitor::apply(Transform& node)
{
if (isCulled(node)) return;
// push the culling mode.
pushCurrentMask();
// push the node's state.
StateSet* node_state = node.getStateSet();
if (node_state) pushStateSet(node_state);
ref_ptr<RefMatrix> matrix = createOrReuseMatrix(getModelViewMatrix());
node.getLocalToWorldMatrix(*matrix,this);
pushModelViewMatrix(matrix.get());
handle_cull_callbacks_and_traverse(node);
popModelViewMatrix();
// pop the node's state off the render graph stack.
if (node_state) popStateSet();
// pop the culling mode.
popCurrentMask();
}
void CullVisitor::apply(Projection& node)
{
if (isCulled(node)) return;
// push the culling mode.
pushCurrentMask();
// push the node's state.
StateSet* node_state = node.getStateSet();
if (node_state) pushStateSet(node_state);
// record previous near and far values.
float previous_znear = _computed_znear;
float previous_zfar = _computed_zfar;
_computed_znear = FLT_MAX;
_computed_zfar = -FLT_MAX;
ref_ptr<osg::RefMatrix> matrix = createOrReuseMatrix(node.getMatrix());
pushProjectionMatrix(matrix.get());
handle_cull_callbacks_and_traverse(node);
popProjectionMatrix();
_computed_znear = previous_znear;
_computed_zfar = previous_zfar;
// pop the node's state off the render graph stack.
if (node_state) popStateSet();
// pop the culling mode.
popCurrentMask();
}
void CullVisitor::apply(Switch& node)
{
apply((Group&)node);
}
void CullVisitor::apply(LOD& node)
{
if (isCulled(node)) return;
// push the culling mode.
pushCurrentMask();
// push the node's state.
StateSet* node_state = node.getStateSet();
if (node_state) pushStateSet(node_state);
handle_cull_callbacks_and_traverse(node);
// pop the node's state off the render graph stack.
if (node_state) popStateSet();
// pop the culling mode.
popCurrentMask();
}
void CullVisitor::apply(osg::ClearNode& node)
{
// simply override the current earth sky.
setClearNode(&node);
// push the node's state.
StateSet* node_state = node.getStateSet();
if (node_state) pushStateSet(node_state);
handle_cull_callbacks_and_traverse(node);
// pop the node's state off the render graph stack.
if (node_state) popStateSet();
}
void CullVisitor::apply(osg::OccluderNode& node)
{
// need to check if occlusion node is in the occluder
// list, if so disable the appropriate ShadowOccluderVolume
disableAndPushOccludersCurrentMask(_nodePath);
if (isCulled(node))
{
popOccludersCurrentMask(_nodePath);
return;
}
// push the culling mode.
pushCurrentMask();
// push the node's state.
StateSet* node_state = node.getStateSet();
if (node_state) pushStateSet(node_state);
handle_cull_callbacks_and_traverse(node);
// pop the node's state off the render graph stack.
if (node_state) popStateSet();
// pop the culling mode.
popCurrentMask();
// pop the current mask for the disabled occluder
popOccludersCurrentMask(_nodePath);
}
void CullVisitor::apply(Impostor& node)
{
if (isCulled(node)) return;
osg::Vec3 eyeLocal = getEyeLocal();
// push the culling mode.
pushCurrentMask();
// push the node's state.
StateSet* node_state = node.getStateSet();
if (node_state) pushStateSet(node_state);
const BoundingSphere& bs = node.getBound();
unsigned int contextID = 0;
if (_state.valid()) contextID = _state->getContextID();
float distance2 = (eyeLocal-bs.center()).length2();
if (!_impostorActive ||
distance2*_LODScale*_LODScale<node.getImpostorThreshold2() ||
distance2<bs.radius2()*2.0f)
{
// outwith the impostor distance threshold therefore simple
// traverse the appropriate child of the LOD.
handle_cull_callbacks_and_traverse(node);
}
else if (_viewportStack.empty())
{
// need to use impostor but no valid viewport is defined to simply
// default to using the LOD child as above.
handle_cull_callbacks_and_traverse(node);
}
else
{
// within the impostor distance threshold therefore attempt
// to use impostor instead.
RefMatrix& matrix = getModelViewMatrix();
// search for the best fit ImpostorSprite;
ImpostorSprite* impostorSprite = node.findBestImpostorSprite(contextID,eyeLocal);
if (impostorSprite)
{
// impostor found, now check to see if it is good enough to use
float error = impostorSprite->calcPixelError(getMVPW());
if (error>_impostorPixelErrorThreshold)
{
// chosen impostor sprite pixel error is too great to use
// from this eye point, therefore invalidate it.
impostorSprite=NULL;
}
}
// need to think about sprite reuse and support for multiple context's.
if (impostorSprite==NULL)
{
// no appropriate sprite has been found therefore need to create
// one for use.
// create the impostor sprite.
impostorSprite = createImpostorSprite(node);
//if (impostorSprite) impostorSprite->_color.set(0.0f,0.0f,1.0f,1.0f);
}
//else impostorSprite->_color.set(1.0f,1.0f,1.0f,1.0f);
if (impostorSprite)
{
// update frame number to show that impostor is in action.
impostorSprite->setLastFrameUsed(getTraversalNumber());
if (_computeNearFar) updateCalculatedNearFar(matrix,*impostorSprite);
StateSet* stateset = impostorSprite->getStateSet();
if (stateset) pushStateSet(stateset);
addDrawableAndDepth(impostorSprite,&matrix,distance(node.getCenter(),matrix));
if (stateset) popStateSet();
}
else
{
// no impostor has been selected or created so default to
// traversing the usual LOD selected child.
handle_cull_callbacks_and_traverse(node);
}
}
// pop the node's state off the render graph stack.
if (node_state) popStateSet();
// pop the culling mode.
popCurrentMask();
}
ImpostorSprite* CullVisitor::createImpostorSprite(Impostor& node)
{
unsigned int contextID = 0;
if (_state.valid()) contextID = _state->getContextID();
// default to true right now, will dertermine if perspective from the
// projection matrix...
bool isPerspectiveProjection = true;
const Matrix& matrix = getModelViewMatrix();
const BoundingSphere& bs = node.getBound();
osg::Vec3 eye_local = getEyeLocal();
if (!bs.valid())
{
osg::notify(osg::WARN) << "bb invalid"<<&node<<std::endl;
return NULL;
}
Vec3 eye_world(0.0,0.0,0.0);
Vec3 center_world = bs.center()*matrix;
// no appropriate sprite has been found therefore need to create
// one for use.
// create the render to texture stage.
ref_ptr<RenderToTextureStage> rtts = new RenderToTextureStage;
// set up lighting.
// currently ignore lights in the scene graph itself..
// will do later.
RenderStage* previous_stage = _currentRenderBin->_stage;
// set up the background color and clear mask.
osg::Vec4 clear_color = previous_stage->getClearColor();
clear_color[3] = 0.0f; // set the alpha to zero.
rtts->setClearColor(clear_color);
rtts->setClearMask(previous_stage->getClearMask());
// set up to charge the same RenderStageLighting is the parent previous stage.
rtts->setRenderStageLighting(previous_stage->getRenderStageLighting());
// record the render bin, to be restored after creation
// of the render to text
RenderBin* previousRenderBin = _currentRenderBin;
// set the current renderbin to be the newly created stage.
_currentRenderBin = rtts.get();
// create quad coords (in local coords)
Vec3 center_local = bs.center();
Vec3 camera_up_local = getUpLocal();
Vec3 lv_local = center_local-eye_local;
float distance_local = lv_local.length();
lv_local /= distance_local;
Vec3 sv_local = lv_local^camera_up_local;
sv_local.normalize();
Vec3 up_local = sv_local^lv_local;
float width = bs.radius();
if (isPerspectiveProjection)
{
// expand the width to account for projection onto sprite.
width *= (distance_local/sqrtf(distance_local*distance_local-bs.radius2()));
}
// scale up and side vectors to sprite width.
up_local *= width;
sv_local *= width;
// create the corners of the sprite.
Vec3 c00(center_local - sv_local - up_local);
Vec3 c10(center_local + sv_local - up_local);
Vec3 c01(center_local - sv_local + up_local);
Vec3 c11(center_local + sv_local + up_local);
// adjust camera left,right,up,down to fit (in world coords)
Vec3 near_local ( center_local-lv_local*width );
Vec3 far_local ( center_local+lv_local*width );
Vec3 top_local ( center_local+up_local);
Vec3 right_local ( center_local+sv_local);
Vec3 near_world = near_local * matrix;
Vec3 far_world = far_local * matrix;
Vec3 top_world = top_local * matrix;
Vec3 right_world = right_local * matrix;
float znear = (near_world-eye_world).length();
float zfar = (far_world-eye_world).length();
float top = (top_world-center_world).length();
float right = (right_world-center_world).length();
znear *= 0.9f;
zfar *= 1.1f;
// set up projection.
osg::RefMatrix* projection = new osg::RefMatrix;
if (isPerspectiveProjection)
{
// deal with projection issue move the top and right points
// onto the near plane.
float ratio = znear/(center_world-eye_world).length();
top *= ratio;
right *= ratio;
projection->makeFrustum(-right,right,-top,top,znear,zfar);
}
else
{
projection->makeOrtho(-right,right,-top,top,znear,zfar);
}
pushProjectionMatrix(projection);
Vec3 rotate_from = bs.center()-eye_local;
Vec3 rotate_to = getLookVectorLocal();
osg::RefMatrix* rotate_matrix = new osg::RefMatrix(
osg::Matrix::translate(-eye_local)*
osg::Matrix::rotate(rotate_from,rotate_to)*
osg::Matrix::translate(eye_local)*
getModelViewMatrix());
// pushing the cull view state will update it so it takes
// into account the new camera orientation.
pushModelViewMatrix(rotate_matrix);
StateSet* localPreRenderState = _impostorSpriteManager->createOrReuseStateSet();
pushStateSet(localPreRenderState);
{
// traversing the usual LOD selected child.
handle_cull_callbacks_and_traverse(node);
}
popStateSet();
// restore the previous model view matrix.
popModelViewMatrix();
// restore the previous model view matrix.
popProjectionMatrix();
// restore the previous renderbin.
_currentRenderBin = previousRenderBin;
if (rtts->_renderGraphList.size()==0 && rtts->_bins.size()==0)
{
// getting to this point means that all the subgraph has been
// culled by small feature culling or is beyond LOD ranges.
return NULL;
}
const osg::Viewport& viewport = *getViewport();
// calc texture size for eye, bs.
// convert the corners of the sprite (in world coords) into their
// equivilant window coordinates by using the camera's project method.
const osg::Matrix& MVPW = getMVPW();
Vec3 c00_win = c00 * MVPW;
Vec3 c11_win = c11 * MVPW;
// adjust texture size to be nearest power of 2.
float s = c11_win.x()-c00_win.x();
float t = c11_win.y()-c00_win.y();
// may need to reverse sign of width or height if a matrix has
// been applied which flips the orientation of this subgraph.
if (s<0.0f) s = -s;
if (t<0.0f) t = -t;
// bias value used to assist the rounding up or down of
// the texture dimensions to the nearest power of two.
// bias near 0.0 will almost always round down.
// bias near 1.0 will almost always round up.
float bias = 0.7f;
float sp2 = logf((float)s)/logf(2.0f);
float rounded_sp2 = floorf(sp2+bias);
int new_s = (int)(powf(2.0f,rounded_sp2));
float tp2 = logf((float)t)/logf(2.0f);
float rounded_tp2 = floorf(tp2+bias);
int new_t = (int)(powf(2.0f,rounded_tp2));
// if dimension is bigger than window divide it down.
while (new_s>viewport.width()) new_s /= 2;
// if dimension is bigger than window divide it down.
while (new_t>viewport.height()) new_t /= 2;
// offset the impostor viewport from the center of the main window
// viewport as often the edges of the viewport might be obscured by
// other windows, which can cause image/reading writing problems.
int center_x = viewport.x()+viewport.width()/2;
int center_y = viewport.y()+viewport.height()/2;
Viewport* new_viewport = new Viewport;
new_viewport->setViewport(center_x-new_s/2,center_y-new_t/2,new_s,new_t);
rtts->setViewport(new_viewport);
localPreRenderState->setAttribute(new_viewport);
// create the impostor sprite.
ImpostorSprite* impostorSprite =
_impostorSpriteManager->createOrReuseImpostorSprite(new_s,new_t,getTraversalNumber()-_numFramesToKeepImpostorSprites);
if (impostorSprite==NULL)
{
osg::notify(osg::WARN)<<"Warning: unable to create required impostor sprite."<<std::endl;
return NULL;
}
// update frame number to show that impostor is in action.
impostorSprite->setLastFrameUsed(getTraversalNumber());
// have successfully created an impostor sprite so now need to
// add it into the impostor.
node.addImpostorSprite(contextID,impostorSprite);
if (_depthSortImpostorSprites)
{
// the depth sort bin should probably be user definable,
// will look into this later. RO July 2001.
StateSet* stateset = impostorSprite->getStateSet();
stateset->setRenderBinDetails(10,"DepthSortedBin");
}
Texture2D* texture = impostorSprite->getTexture();
// update frame number to show that impostor is in action.
impostorSprite->setLastFrameUsed(getTraversalNumber());
Vec3* coords = impostorSprite->getCoords();
Vec2* texcoords = impostorSprite->getTexCoords();
coords[0] = c01;
texcoords[0].set(0.0f,1.0f);
coords[1] = c00;
texcoords[1].set(0.0f,0.0f);
coords[2] = c10;
texcoords[2].set(1.0f,0.0f);
coords[3] = c11;
texcoords[3].set(1.0f,1.0f);
impostorSprite->dirtyBound();
Vec3* controlcoords = impostorSprite->getControlCoords();
if (isPerspectiveProjection)
{
// deal with projection issue by moving the coorners of the quad
// towards the eye point.
float ratio = width/(center_local-eye_local).length();
float one_minus_ratio = 1.0f-ratio;
Vec3 eye_local_ratio = eye_local*ratio;
controlcoords[0] = coords[0]*one_minus_ratio + eye_local_ratio;
controlcoords[1] = coords[1]*one_minus_ratio + eye_local_ratio;
controlcoords[2] = coords[2]*one_minus_ratio + eye_local_ratio;
controlcoords[3] = coords[3]*one_minus_ratio + eye_local_ratio;
}
else
{
// project the control points forward towards the eyepoint,
// but since this an othographics projection this projection is
// parallel.
Vec3 dv = lv_local*width;
controlcoords[0] = coords[0]-dv;
controlcoords[1] = coords[1]-dv;
controlcoords[2] = coords[2]-dv;
controlcoords[3] = coords[3]-dv;
}
impostorSprite->setStoredLocalEyePoint(eye_local);
// and the render to texture stage to the current stages
// dependancy list.
_currentRenderBin->_stage->addToDependencyList(rtts.get());
// attach texture to the RenderToTextureStage.
rtts->setTexture(texture);
// must sort the RenderToTextureStage so that all leaves are
// accounted correctly in all renderbins i.e depth sorted bins.
rtts->sort();
return impostorSprite;
}