instead of four). Added support for multiplying mesh geometry by the matrix attached to the Lib3dsMesh structure, however this produces disjointed models so have to the default mode to bypass this multiplication code. Will need to revisit this in the future.
644 lines
12 KiB
C++
644 lines
12 KiB
C++
/*
|
|
* The 3D Studio File Format Library
|
|
* Copyright (C) 1996-2001 by J.E. Hoffmann <je-h@gmx.net>
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
* License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* $Id$
|
|
*/
|
|
#define LIB3DS_EXPORT
|
|
#include <matrix.h>
|
|
#include <quat.h>
|
|
#include <vector.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
|
|
/*!
|
|
* \defgroup matrix Matrix Mathematics
|
|
*
|
|
* \author J.E. Hoffmann <je-h@gmx.net>
|
|
*/
|
|
/*!
|
|
* \typedef Lib3dsMatrix
|
|
* \ingroup matrix
|
|
*/
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_zero(Lib3dsMatrix m)
|
|
{
|
|
int i,j;
|
|
|
|
for (i=0; i<4; i++) {
|
|
for (j=0; j<4; j++) m[i][j]=0.0f;
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_identity(Lib3dsMatrix m)
|
|
{
|
|
int i,j;
|
|
|
|
for (i=0; i<4; i++) {
|
|
for (j=0; j<4; j++) m[i][j]=0.0;
|
|
}
|
|
for (i=0; i<4; i++) m[i][i]=1.0;
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_copy(Lib3dsMatrix dest, Lib3dsMatrix src)
|
|
{
|
|
memcpy(dest, src, sizeof(Lib3dsMatrix));
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_neg(Lib3dsMatrix m)
|
|
{
|
|
int i,j;
|
|
|
|
for (j=0; j<4; j++) {
|
|
for (i=0; i<4; i++) {
|
|
m[j][i]=-m[j][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_abs(Lib3dsMatrix m)
|
|
{
|
|
int i,j;
|
|
|
|
for (j=0; j<4; j++) {
|
|
for (i=0; i<4; i++) {
|
|
m[j][i]=(Lib3dsFloat)fabs(m[j][i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_transpose(Lib3dsMatrix m)
|
|
{
|
|
int i,j;
|
|
Lib3dsFloat swp;
|
|
|
|
for (j=0; j<4; j++) {
|
|
for (i=j+1; i<4; i++) {
|
|
swp=m[j][i];
|
|
m[j][i]=m[i][j];
|
|
m[i][j]=swp;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_add(Lib3dsMatrix m, Lib3dsMatrix a, Lib3dsMatrix b)
|
|
{
|
|
int i,j;
|
|
|
|
for (j=0; j<4; j++) {
|
|
for (i=0; i<4; i++) {
|
|
m[j][i]=a[j][i]+b[j][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_sub(Lib3dsMatrix m, Lib3dsMatrix a, Lib3dsMatrix b)
|
|
{
|
|
int i,j;
|
|
|
|
for (j=0; j<4; j++) {
|
|
for (i=0; i<4; i++) {
|
|
m[j][i]=a[j][i]-b[j][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_mul(Lib3dsMatrix m, Lib3dsMatrix a, Lib3dsMatrix b)
|
|
{
|
|
int i,j,k;
|
|
Lib3dsFloat ab;
|
|
|
|
for (j=0; j<4; j++) {
|
|
for (i=0; i<4; i++) {
|
|
ab=0.0f;
|
|
for (k=0; k<4; k++) ab+=a[k][i]*b[j][k];
|
|
m[j][i]=ab;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_scalar(Lib3dsMatrix m, Lib3dsFloat k)
|
|
{
|
|
int i,j;
|
|
|
|
for (j=0; j<4; j++) {
|
|
for (i=0; i<4; i++) {
|
|
m[j][i]*=k;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static Lib3dsFloat
|
|
det2x2(
|
|
Lib3dsFloat a, Lib3dsFloat b,
|
|
Lib3dsFloat c, Lib3dsFloat d)
|
|
{
|
|
return((a)*(d)-(b)*(c));
|
|
}
|
|
|
|
|
|
static Lib3dsFloat
|
|
det3x3(
|
|
Lib3dsFloat a1, Lib3dsFloat a2, Lib3dsFloat a3,
|
|
Lib3dsFloat b1, Lib3dsFloat b2, Lib3dsFloat b3,
|
|
Lib3dsFloat c1, Lib3dsFloat c2, Lib3dsFloat c3)
|
|
{
|
|
return(
|
|
a1*det2x2(b2,b3,c2,c3)-
|
|
b1*det2x2(a2,a3,c2,c3)+
|
|
c1*det2x2(a2,a3,b2,b3)
|
|
);
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
Lib3dsFloat
|
|
lib3ds_matrix_det(Lib3dsMatrix m)
|
|
{
|
|
Lib3dsFloat a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4,d1,d2,d3,d4;
|
|
|
|
a1 = m[0][0];
|
|
b1 = m[1][0];
|
|
c1 = m[2][0];
|
|
d1 = m[3][0];
|
|
a2 = m[0][1];
|
|
b2 = m[1][1];
|
|
c2 = m[2][1];
|
|
d2 = m[3][1];
|
|
a3 = m[0][2];
|
|
b3 = m[1][2];
|
|
c3 = m[2][2];
|
|
d3 = m[3][2];
|
|
a4 = m[0][3];
|
|
b4 = m[1][3];
|
|
c4 = m[2][3];
|
|
d4 = m[3][3];
|
|
return(
|
|
a1 * det3x3(b2, b3, b4, c2, c3, c4, d2, d3, d4)-
|
|
b1 * det3x3(a2, a3, a4, c2, c3, c4, d2, d3, d4)+
|
|
c1 * det3x3(a2, a3, a4, b2, b3, b4, d2, d3, d4)-
|
|
d1 * det3x3(a2, a3, a4, b2, b3, b4, c2, c3, c4)
|
|
);
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_adjoint(Lib3dsMatrix m)
|
|
{
|
|
Lib3dsFloat a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4,d1,d2,d3,d4;
|
|
|
|
a1 = m[0][0];
|
|
b1 = m[1][0];
|
|
c1 = m[2][0];
|
|
d1 = m[3][0];
|
|
a2 = m[0][1];
|
|
b2 = m[1][1];
|
|
c2 = m[2][1];
|
|
d2 = m[3][1];
|
|
a3 = m[0][2];
|
|
b3 = m[1][2];
|
|
c3 = m[2][2];
|
|
d3 = m[3][2];
|
|
a4 = m[0][3];
|
|
b4 = m[1][3];
|
|
c4 = m[2][3];
|
|
d4 = m[3][3];
|
|
m[0][0]= det3x3 (b2, b3, b4, c2, c3, c4, d2, d3, d4);
|
|
m[0][1]= -det3x3 (a2, a3, a4, c2, c3, c4, d2, d3, d4);
|
|
m[0][2]= det3x3 (a2, a3, a4, b2, b3, b4, d2, d3, d4);
|
|
m[0][3]= -det3x3 (a2, a3, a4, b2, b3, b4, c2, c3, c4);
|
|
m[1][0]= -det3x3 (b1, b3, b4, c1, c3, c4, d1, d3, d4);
|
|
m[1][1]= det3x3 (a1, a3, a4, c1, c3, c4, d1, d3, d4);
|
|
m[1][2]= -det3x3 (a1, a3, a4, b1, b3, b4, d1, d3, d4);
|
|
m[1][3]= det3x3 (a1, a3, a4, b1, b3, b4, c1, c3, c4);
|
|
m[2][0]= det3x3 (b1, b2, b4, c1, c2, c4, d1, d2, d4);
|
|
m[2][1]= -det3x3 (a1, a2, a4, c1, c2, c4, d1, d2, d4);
|
|
m[2][2]= det3x3 (a1, a2, a4, b1, b2, b4, d1, d2, d4);
|
|
m[2][3]= -det3x3 (a1, a2, a4, b1, b2, b4, c1, c2, c4);
|
|
m[3][0]= -det3x3 (b1, b2, b3, c1, c2, c3, d1, d2, d3);
|
|
m[3][1]= det3x3 (a1, a2, a3, c1, c2, c3, d1, d2, d3);
|
|
m[3][2]= -det3x3 (a1, a2, a3, b1, b2, b3, d1, d2, d3);
|
|
m[3][3]= det3x3 (a1, a2, a3, b1, b2, b3, c1, c2, c3);
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*
|
|
* GGemsII, K.Wu, Fast Matrix Inversion
|
|
*/
|
|
Lib3dsBool
|
|
lib3ds_matrix_inv(Lib3dsMatrix m)
|
|
{
|
|
int i,j,k;
|
|
int pvt_i[4], pvt_j[4]; /* Locations of pivot elements */
|
|
Lib3dsFloat pvt_val; /* Value of current pivot element */
|
|
Lib3dsFloat hold; /* Temporary storage */
|
|
Lib3dsFloat determinat;
|
|
|
|
determinat = 1.0f;
|
|
for (k=0; k<4; k++) {
|
|
/* Locate k'th pivot element */
|
|
pvt_val=m[k][k]; /* Initialize for search */
|
|
pvt_i[k]=k;
|
|
pvt_j[k]=k;
|
|
for (i=k; i<4; i++) {
|
|
for (j=k; j<4; j++) {
|
|
if (fabs(m[i][j]) > fabs(pvt_val)) {
|
|
pvt_i[k]=i;
|
|
pvt_j[k]=j;
|
|
pvt_val=m[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Product of pivots, gives determinant when finished */
|
|
determinat*=pvt_val;
|
|
if (fabs(determinat)<LIB3DS_EPSILON) {
|
|
return(LIB3DS_FALSE); /* Matrix is singular (zero determinant) */
|
|
}
|
|
|
|
/* "Interchange" rows (with sign change stuff) */
|
|
i=pvt_i[k];
|
|
if (i!=k) { /* If rows are different */
|
|
for (j=0; j<4; j++) {
|
|
hold=-m[k][j];
|
|
m[k][j]=m[i][j];
|
|
m[i][j]=hold;
|
|
}
|
|
}
|
|
|
|
/* "Interchange" columns */
|
|
j=pvt_j[k];
|
|
if (j!=k) { /* If columns are different */
|
|
for (i=0; i<4; i++) {
|
|
hold=-m[i][k];
|
|
m[i][k]=m[i][j];
|
|
m[i][j]=hold;
|
|
}
|
|
}
|
|
|
|
/* Divide column by minus pivot value */
|
|
for (i=0; i<4; i++) {
|
|
if (i!=k) m[i][k]/=( -pvt_val) ;
|
|
}
|
|
|
|
/* Reduce the matrix */
|
|
for (i=0; i<4; i++) {
|
|
hold = m[i][k];
|
|
for (j=0; j<4; j++) {
|
|
if (i!=k && j!=k) m[i][j]+=hold*m[k][j];
|
|
}
|
|
}
|
|
|
|
/* Divide row by pivot */
|
|
for (j=0; j<4; j++) {
|
|
if (j!=k) m[k][j]/=pvt_val;
|
|
}
|
|
|
|
/* Replace pivot by reciprocal (at last we can touch it). */
|
|
m[k][k] = 1.0f/pvt_val;
|
|
}
|
|
|
|
/* That was most of the work, one final pass of row/column interchange */
|
|
/* to finish */
|
|
for (k=4-2; k>=0; k--) { /* Don't need to work with 1 by 1 corner*/
|
|
i=pvt_j[k]; /* Rows to swap correspond to pivot COLUMN */
|
|
if (i!=k) { /* If rows are different */
|
|
for(j=0; j<4; j++) {
|
|
hold = m[k][j];
|
|
m[k][j]=-m[i][j];
|
|
m[i][j]=hold;
|
|
}
|
|
}
|
|
|
|
j=pvt_i[k]; /* Columns to swap correspond to pivot ROW */
|
|
if (j!=k) /* If columns are different */
|
|
for (i=0; i<4; i++) {
|
|
hold=m[i][k];
|
|
m[i][k]=-m[i][j];
|
|
m[i][j]=hold;
|
|
}
|
|
}
|
|
return(LIB3DS_TRUE);
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_translate_xyz(Lib3dsMatrix m, Lib3dsFloat x, Lib3dsFloat y, Lib3dsFloat z)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<3; i++) {
|
|
m[3][i]+= m[0][i]*x + m[1][i]*y + m[2][i]*z;
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_translate(Lib3dsMatrix m, Lib3dsVector t)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<3; i++) {
|
|
m[3][i]+= m[0][i]*t[0] + m[1][i]*t[1] + m[2][i]*t[2];
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_scale_xyz(Lib3dsMatrix m, Lib3dsFloat x, Lib3dsFloat y, Lib3dsFloat z)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<4; i++) {
|
|
m[0][i]*=x;
|
|
m[1][i]*=y;
|
|
m[2][i]*=z;
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_scale(Lib3dsMatrix m, Lib3dsVector s)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<4; i++) {
|
|
m[0][i]*=s[0];
|
|
m[1][i]*=s[1];
|
|
m[2][i]*=s[2];
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_rotate_x(Lib3dsMatrix m, Lib3dsFloat phi)
|
|
{
|
|
Lib3dsFloat SinPhi,CosPhi;
|
|
Lib3dsFloat a1[4],a2[4];
|
|
|
|
SinPhi=(Lib3dsFloat)sin(phi);
|
|
CosPhi=(Lib3dsFloat)cos(phi);
|
|
memcpy(a1,m[1],4*sizeof(Lib3dsFloat));
|
|
memcpy(a2,m[2],4*sizeof(Lib3dsFloat));
|
|
m[1][0]=CosPhi*a1[0]+SinPhi*a2[0];
|
|
m[1][1]=CosPhi*a1[1]+SinPhi*a2[1];
|
|
m[1][2]=CosPhi*a1[2]+SinPhi*a2[2];
|
|
m[1][3]=CosPhi*a1[3]+SinPhi*a2[3];
|
|
m[2][0]=-SinPhi*a1[0]+CosPhi*a2[0];
|
|
m[2][1]=-SinPhi*a1[1]+CosPhi*a2[1];
|
|
m[2][2]=-SinPhi*a1[2]+CosPhi*a2[2];
|
|
m[2][3]=-SinPhi*a1[3]+CosPhi*a2[3];
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_rotate_y(Lib3dsMatrix m, Lib3dsFloat phi)
|
|
{
|
|
Lib3dsFloat SinPhi,CosPhi;
|
|
Lib3dsFloat a0[4],a2[4];
|
|
|
|
SinPhi=(Lib3dsFloat)sin(phi);
|
|
CosPhi=(Lib3dsFloat)cos(phi);
|
|
memcpy(a0,m[0],4*sizeof(Lib3dsFloat));
|
|
memcpy(a2,m[2],4*sizeof(Lib3dsFloat));
|
|
m[0][0]=CosPhi*a0[0]-SinPhi*a2[0];
|
|
m[0][1]=CosPhi*a0[1]-SinPhi*a2[1];
|
|
m[0][2]=CosPhi*a0[2]-SinPhi*a2[2];
|
|
m[0][3]=CosPhi*a0[3]-SinPhi*a2[3];
|
|
m[2][0]=SinPhi*a0[0]+CosPhi*a2[0];
|
|
m[2][1]=SinPhi*a0[1]+CosPhi*a2[1];
|
|
m[2][2]=SinPhi*a0[2]+CosPhi*a2[2];
|
|
m[2][3]=SinPhi*a0[3]+CosPhi*a2[3];
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_rotate_z(Lib3dsMatrix m, Lib3dsFloat phi)
|
|
{
|
|
Lib3dsFloat SinPhi,CosPhi;
|
|
Lib3dsFloat a0[4],a1[4];
|
|
|
|
SinPhi=(Lib3dsFloat)sin(phi);
|
|
CosPhi=(Lib3dsFloat)cos(phi);
|
|
memcpy(a0,m[0],4*sizeof(Lib3dsFloat));
|
|
memcpy(a1,m[1],4*sizeof(Lib3dsFloat));
|
|
m[0][0]=CosPhi*a0[0]+SinPhi*a1[0];
|
|
m[0][1]=CosPhi*a0[1]+SinPhi*a1[1];
|
|
m[0][2]=CosPhi*a0[2]+SinPhi*a1[2];
|
|
m[0][3]=CosPhi*a0[3]+SinPhi*a1[3];
|
|
m[1][0]=-SinPhi*a0[0]+CosPhi*a1[0];
|
|
m[1][1]=-SinPhi*a0[1]+CosPhi*a1[1];
|
|
m[1][2]=-SinPhi*a0[2]+CosPhi*a1[2];
|
|
m[1][3]=-SinPhi*a0[3]+CosPhi*a1[3];
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_rotate(Lib3dsMatrix m, Lib3dsQuat q)
|
|
{
|
|
Lib3dsFloat s,xs,ys,zs,wx,wy,wz,xx,xy,xz,yy,yz,zz,l;
|
|
Lib3dsMatrix a,b;
|
|
|
|
lib3ds_matrix_copy(a, m);
|
|
|
|
l=q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
|
|
if (fabs(l)<LIB3DS_EPSILON) {
|
|
s=1.0f;
|
|
}
|
|
else {
|
|
s=2.0f/l;
|
|
}
|
|
|
|
xs = q[0] * s; ys = q[1] * s; zs = q[2] * s;
|
|
wx = q[3] * xs; wy = q[3] * ys; wz = q[3] * zs;
|
|
xx = q[0] * xs; xy = q[0] * ys; xz = q[0] * zs;
|
|
yy = q[1] * ys; yz = q[1] * zs; zz = q[2] * zs;
|
|
|
|
b[0][0]=1.0f - (yy +zz);
|
|
b[1][0]=xy - wz;
|
|
b[2][0]=xz + wy;
|
|
b[0][1]=xy + wz;
|
|
b[1][1]=1.0f - (xx +zz);
|
|
b[2][1]=yz - wx;
|
|
b[0][2]=xz - wy;
|
|
b[1][2]=yz + wx;
|
|
b[2][2]=1.0f - (xx + yy);
|
|
b[3][0]=b[3][1]=b[3][2]=b[0][3]=b[1][3]=b[2][3]=0.0f;
|
|
b[3][3]=1.0f;
|
|
|
|
lib3ds_matrix_mul(m,a,b);
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_rotate_axis(Lib3dsMatrix m, Lib3dsVector axis, Lib3dsFloat angle)
|
|
{
|
|
Lib3dsQuat q;
|
|
|
|
lib3ds_quat_axis_angle(q,axis,angle);
|
|
lib3ds_matrix_rotate(m,q);
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_camera(Lib3dsMatrix matrix, Lib3dsVector pos,
|
|
Lib3dsVector tgt, Lib3dsFloat roll)
|
|
{
|
|
Lib3dsMatrix M,R;
|
|
Lib3dsVector x, y, z;
|
|
|
|
lib3ds_vector_sub(y, tgt, pos);
|
|
lib3ds_vector_normalize(y);
|
|
|
|
z[0] = 0;
|
|
z[1] = 0;
|
|
z[2] = 1.0;
|
|
|
|
lib3ds_vector_cross(x, y, z);
|
|
lib3ds_vector_cross(z, x, y);
|
|
lib3ds_vector_normalize(x);
|
|
lib3ds_vector_normalize(y);
|
|
|
|
lib3ds_matrix_identity(M);
|
|
M[0][0] = x[0];
|
|
M[1][0] = x[1];
|
|
M[2][0] = x[2];
|
|
M[0][1] = y[0];
|
|
M[1][1] = y[1];
|
|
M[2][1] = y[2];
|
|
M[0][2] = z[0];
|
|
M[1][2] = z[1];
|
|
M[2][2] = z[2];
|
|
|
|
lib3ds_matrix_identity(R);
|
|
lib3ds_matrix_rotate_y(R, roll);
|
|
lib3ds_matrix_mul(matrix, R,M);
|
|
lib3ds_matrix_translate_xyz(matrix, -pos[0],-pos[1],-pos[2]);
|
|
}
|
|
|
|
|
|
/*!
|
|
* \ingroup matrix
|
|
*/
|
|
void
|
|
lib3ds_matrix_dump(Lib3dsMatrix matrix)
|
|
{
|
|
int i,j;
|
|
|
|
for (i=0; i<4; ++i) {
|
|
for (j=0; j<3; ++j) {
|
|
printf("%f ", matrix[j][i]);
|
|
}
|
|
printf("%f\n", matrix[j][i]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|