but getting there.
o First cut of osgcluster demo. Very simple beginings. Alas
I only one PC here so I can't test it in its current guise.
o New support for NodeCallbacks, via AppCallback attached to
osg::Node's, and a default osgUtil::AppVisitor which calls them on
each frame.
o Support for traversal masks in osg::NodeVisitor, osg::Node
which allows nodes to be switched on or off via a bit mask.
o Suppport for traversal number (frame number) and reference time
into osg::NodeVisitor to handle syncronization of app and cull
traversals. This also assist clustering as traversal number
master to slaves.
225 lines
8.3 KiB
Plaintext
225 lines
8.3 KiB
Plaintext
|
|
#ifndef OSG_Matrix
|
|
#define OSG_Matrix 1
|
|
|
|
#include <osg/Object>
|
|
#include <osg/Vec3>
|
|
#include <osg/Vec4>
|
|
//#include <osg/Quat>
|
|
|
|
#ifdef OSG_USE_IO_DOT_H
|
|
#include <iostream.h>
|
|
#else
|
|
#include <iostream>
|
|
using namespace std;
|
|
#endif
|
|
|
|
#define METAOBJ(name) \
|
|
virtual Object* clone() const { return new name (); } \
|
|
virtual bool isSameKindAs(const Object* obj) const { return dynamic_cast<const name *>(obj)!=NULL; } \
|
|
virtual const char* className() const { return #name; }
|
|
|
|
namespace osg {
|
|
|
|
class Quat;
|
|
|
|
class SG_EXPORT Matrix : public Object
|
|
{
|
|
// private:
|
|
public:
|
|
float _mat[4][4];
|
|
bool fully_realized;
|
|
|
|
public:
|
|
// const char* name() { return "My Matrix "; }
|
|
METAOBJ(Matrix)
|
|
|
|
Matrix();
|
|
Matrix( const Matrix& other );
|
|
explicit Matrix( float const * const def );
|
|
Matrix( float a00, float a01, float a02, float a03,
|
|
float a10, float a11, float a12, float a13,
|
|
float a20, float a21, float a22, float a23,
|
|
float a30, float a31, float a32, float a33);
|
|
|
|
virtual ~Matrix() {}
|
|
|
|
Matrix& operator = (const Matrix& );
|
|
|
|
inline float& operator()(int col, int row) { return _mat[col][row]; }
|
|
inline float operator()(int col, int row) const { return _mat[col][row]; }
|
|
|
|
void set( float const * const );
|
|
void set( float a00, float a01, float a02, float a03,
|
|
float a10, float a11, float a12, float a13,
|
|
float a20, float a21, float a22, float a23,
|
|
float a30, float a31, float a32, float a33);
|
|
const float * values() { return (const float *)_mat; }
|
|
|
|
void makeIdent();
|
|
void makeScale( const Vec3& );
|
|
void makeScale( float, float, float );
|
|
|
|
void makeTrans( const Vec3& );
|
|
void makeTrans( float, float, float );
|
|
//TODO: original preTrans was optimized (M=Tr*M)
|
|
// but also has the assumption that M (this) is an affine transformation Matrix
|
|
// can I still do something to optimize the same case now?
|
|
|
|
void makeRot( const Vec3& from, const Vec3& to );
|
|
void makeRot( float angle, const Vec3& orientation );
|
|
void makeRot( float angle, float x, float y, float z );
|
|
void makeRot( const Quat& );
|
|
void makeRot( float, float, float ); //Euler angles
|
|
|
|
bool invert( const Matrix& );
|
|
bool invertAffine( const Matrix& );
|
|
|
|
//basic utility functions to create new matrices or vectors
|
|
static Matrix scale( const Vec3& );
|
|
static Matrix scale( float, float, float );
|
|
static Matrix trans( const Vec3& );
|
|
static Matrix trans( float, float, float );
|
|
static Matrix rotate( const Vec3&, const Vec3& );
|
|
static Matrix rotate( float, float, float, float );
|
|
static Matrix rotate( const Quat& );
|
|
|
|
inline Vec3 preMult( const Vec3& v ) const;
|
|
inline Vec3 postMult( const Vec3& v ) const;
|
|
inline Vec3 operator* ( const Vec3& v ) const;
|
|
inline Vec4 preMult( const Vec4& v ) const;
|
|
inline Vec4 postMult( const Vec4& v ) const;
|
|
inline Vec4 operator* ( const Vec4& v ) const;
|
|
|
|
//start of Deprecated methods
|
|
|
|
void copy( const Matrix& );
|
|
void preScale( float sx, float sy, float sz, const Matrix& m );
|
|
void postScale( const Matrix& m, float sx, float sy, float sz );
|
|
void preScale( float sx, float sy, float sz );
|
|
void postScale( float sx, float sy, float sz );
|
|
|
|
void preTrans( float tx, float ty, float tz, const Matrix& m );
|
|
void postTrans( const Matrix& m, float tx, float ty, float tz );
|
|
void preTrans( float tx, float ty, float tz);
|
|
void postTrans( float tx, float ty, float tz );
|
|
|
|
void preRot( float deg, float x, float y, float z, const Matrix& m );
|
|
void postRot( const Matrix& m, float deg, float x, float y, float z );
|
|
void preRot( float deg, float x, float y, float z );
|
|
void postRot( float deg, float x, float y, float z );
|
|
|
|
/** apply apply an 3x3 transform of v*M[0..2,0..2] */
|
|
inline static Vec3 transform3x3(const Vec3& v,const Matrix& m);
|
|
/** apply apply an 3x3 transform of M[0..2,0..2]*v */
|
|
inline static Vec3 transform3x3(const Matrix& m,const Vec3& v);
|
|
|
|
//end of Deprecated methods
|
|
|
|
|
|
// basic matrix multiplication, our workhorse methods.
|
|
void mult( const Matrix&, const Matrix& );
|
|
void preMult( const Matrix& );
|
|
void postMult( const Matrix& );
|
|
|
|
// Helper class to optimize product expressions somewhat
|
|
class MatrixProduct {
|
|
public:
|
|
const Matrix& A;
|
|
const Matrix& B;
|
|
|
|
MatrixProduct( const Matrix& lhs, const Matrix& rhs ) : A(lhs), B(rhs) {}
|
|
};
|
|
|
|
inline MatrixProduct operator * ( const Matrix& other ) const
|
|
{ return MatrixProduct(*this, other); }
|
|
|
|
inline void operator *= ( const Matrix& other )
|
|
{ if( this == &other ) {
|
|
Matrix temp(other);
|
|
postMult( temp );
|
|
}
|
|
else postMult( other );
|
|
}
|
|
inline void operator = ( const MatrixProduct& p )
|
|
{
|
|
if( this == &(p.A)) postMult(p.B);
|
|
else if( this == &(p.B)) preMult(p.A);
|
|
else mult( p.A, p.B );
|
|
}
|
|
|
|
Matrix( const MatrixProduct& p ) //allows implicit evaluation of the product
|
|
{ mult( p.A, p.B ); }
|
|
};
|
|
|
|
inline Vec3 Matrix::postMult ( const Vec3& v ) const {
|
|
float d = 1.0f/(_mat[3][0]*v.x()+_mat[3][1]*v.y()+_mat[3][2]*v.z()+_mat[3][3]) ;
|
|
return Vec3( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3])*d,
|
|
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3])*d,
|
|
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3])*d) ;
|
|
}
|
|
|
|
inline Vec3 Matrix::preMult (const Vec3& v ) const {
|
|
float d = 1.0f/(_mat[0][3]*v.x()+_mat[1][3]*v.y()+_mat[2][3]*v.z()+_mat[3][3]) ;
|
|
return Vec3( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0])*d,
|
|
(_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1])*d,
|
|
(_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2])*d);
|
|
}
|
|
inline Vec3 Matrix::operator* (const Vec3& v) const {
|
|
return postMult(v);
|
|
}
|
|
inline Vec3 operator* (const Vec3& v, const Matrix& m ) {
|
|
return m.preMult(v);
|
|
}
|
|
inline Vec4 Matrix::postMult(const Vec4& v) const {
|
|
return Vec4( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3]*v.w()),
|
|
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3]*v.w()),
|
|
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3]*v.w()),
|
|
(_mat[3][0]*v.x() + _mat[3][1]*v.y() + _mat[3][2]*v.z() + _mat[3][3]*v.w())) ;
|
|
}
|
|
/*
|
|
inline Vec4 Matrix::preMult(const Vec4& v,const Matrix& m) {
|
|
return Vec4( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z() + m._mat[3][0]*v.w()),
|
|
(m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z() + m._mat[3][1]*v.w()),
|
|
(m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z() + m._mat[3][2]*v.w()),
|
|
(m._mat[0][3]*v.x() + m._mat[1][3]*v.y() + m._mat[2][3]*v.z() + m._mat[3][3]*v.w()));
|
|
}
|
|
*/
|
|
inline Vec4 Matrix::operator* (const Vec4& v) const {
|
|
return postMult(v);
|
|
}
|
|
inline Vec4 operator* (const Vec4& v, const Matrix& m ) {
|
|
return m.preMult(v);
|
|
}
|
|
|
|
inline Vec3 Matrix::transform3x3(const Vec3& v,const Matrix& m)
|
|
{
|
|
return Vec3( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z()),
|
|
(m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z()),
|
|
(m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z()));
|
|
}
|
|
|
|
inline Vec3 Matrix::transform3x3(const Matrix& m,const Vec3& v)
|
|
{
|
|
return Vec3( (m._mat[0][0]*v.x() + m._mat[0][1]*v.y() + m._mat[0][2]*v.z()),
|
|
(m._mat[1][0]*v.x() + m._mat[1][1]*v.y() + m._mat[1][2]*v.z()),
|
|
(m._mat[2][0]*v.x() + m._mat[2][1]*v.y() + m._mat[2][2]*v.z()) ) ;
|
|
}
|
|
|
|
inline ostream& operator<< (ostream& os, const Matrix& m ) {
|
|
os << "{";
|
|
for(int row=0; row<4; ++row) {
|
|
os << "\t";
|
|
for(int col=0; col<4; ++col)
|
|
os << m(col,row) << " ";
|
|
os << endl;
|
|
}
|
|
os << "}" << endl;
|
|
return os;
|
|
}
|
|
|
|
}; //namespace osg
|
|
|
|
|
|
#endif
|