diff --git a/package-lock.json b/package-lock.json index 7b3b39b7..2c92b371 100644 --- a/package-lock.json +++ b/package-lock.json @@ -2,6 +2,9 @@ "requires": true, "lockfileVersion": 1, "dependencies": { + "Leaflet.Geodesic": { + "version": "git+https://git@github.com/henrythasler/Leaflet.Geodesic.git#befbb8f6c11d0d040ef8c3ee4a0de517581c99d5" + }, "abbrev": { "version": "1.1.1", "resolved": "https://registry.npmjs.org/abbrev/-/abbrev-1.1.1.tgz", diff --git a/public/assets/system/js/vendor.js b/public/assets/system/js/vendor.js index 77a29948..b6b4a0f7 100644 --- a/public/assets/system/js/vendor.js +++ b/public/assets/system/js/vendor.js @@ -39823,3 +39823,556 @@ module.exports = (function() { } }); })(); + +"use strict"; + +// This file is part of Leaflet.Geodesic. +// Copyright (C) 2017 Henry Thasler +// based on code by Chris Veness Copyright (C) 2014 https://github.com/chrisveness/geodesy +// +// Leaflet.Geodesic is free software: you can redistribute it and/or modify +// it under the terms of the GNU General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// Leaflet.Geodesic is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU General Public License +// along with Leaflet.Geodesic. If not, see . + + + +/** Extend Number object with method to convert numeric degrees to radians */ +if (typeof Number.prototype.toRadians === "undefined") { + Number.prototype.toRadians = function() { + return this * Math.PI / 180; + }; +} + +/** Extend Number object with method to convert radians to numeric (signed) degrees */ +if (typeof Number.prototype.toDegrees === "undefined") { + Number.prototype.toDegrees = function() { + return this * 180 / Math.PI; + }; +} + +var INTERSECT_LNG = 179.999; // Lng used for intersection and wrap around on map edges + +L.Geodesic = L.Polyline.extend({ + options: { + color: "blue", + steps: 10, + dash: 1, + wrap: true + }, + + initialize: function(latlngs, options) { + this.options = this._merge_options(this.options, options); + this.datum = {}; + this.datum.ellipsoid = { + a: 6378137, + b: 6356752.3142, + f: 1 / 298.257223563 + }; // WGS-84 + this._latlngs = (this.options.dash < 1) ? this._generate_GeodesicDashed( + latlngs) : this._generate_Geodesic(latlngs); + L.Polyline.prototype.initialize.call(this, this._latlngs, this.options); + }, + + setLatLngs: function(latlngs) { + this._latlngs = (this.options.dash < 1) ? this._generate_GeodesicDashed( + latlngs) : this._generate_Geodesic(latlngs); + L.Polyline.prototype.setLatLngs.call(this, this._latlngs); + }, + + /** + * Calculates some statistic values of current geodesic multipolyline + * @returns (Object} Object with several properties (e.g. overall distance) + */ + getStats: function() { + let obj = { + distance: 0, + points: 0, + polygons: this._latlngs.length + }, poly, points; + + for (poly = 0; poly < this._latlngs.length; poly++) { + obj.points += this._latlngs[poly].length; + for (points = 0; points < (this._latlngs[poly].length - 1); points++) { + obj.distance += this._vincenty_inverse(this._latlngs[poly][points], + this._latlngs[poly][points + 1]).distance; + } + } + return obj; + }, + + + /** + * Creates geodesic lines from geoJson. Replaces all current features of this instance. + * Supports LineString, MultiLineString and Polygon + * @param {Object} geojson - geosjon as object. + */ + geoJson: function(geojson) { + + let normalized = L.GeoJSON.asFeature(geojson); + let features = normalized.type === "FeatureCollection" ? normalized.features : [ + normalized + ]; + this._latlngs = []; + for (let feature of features) { + let geometry = feature.type === "Feature" ? feature.geometry : + feature, + coords = geometry.coordinates; + + switch (geometry.type) { + case "LineString": + this._latlngs.push(this._generate_Geodesic([L.GeoJSON.coordsToLatLngs( + coords, 0)])); + break; + case "MultiLineString": + case "Polygon": + this._latlngs.push(this._generate_Geodesic(L.GeoJSON.coordsToLatLngs( + coords, 1))); + break; + case "Point": + case "MultiPoint": + console.log("Dude, points can't be drawn as geodesic lines..."); + break; + default: + console.log("Drawing " + geometry.type + + " as a geodesic is not supported. Skipping..."); + } + } + L.Polyline.prototype.setLatLngs.call(this, this._latlngs); + }, + + /** + * Creates a great circle. Replaces all current lines. + * @param {Object} center - geographic position + * @param {number} radius - radius of the circle in metres + */ + createCircle: function(center, radius) { + let polylineIndex = 0; + let prev = { + lat: 0, + lng: 0, + brg: 0 + }; + let step; + + this._latlngs = []; + this._latlngs[polylineIndex] = []; + + let direct = this._vincenty_direct(L.latLng(center), 0, radius, this.options + .wrap); + prev = L.latLng(direct.lat, direct.lng); + this._latlngs[polylineIndex].push(prev); + for (step = 1; step <= this.options.steps;) { + direct = this._vincenty_direct(L.latLng(center), 360 / this.options + .steps * step, radius, this.options.wrap); + let gp = L.latLng(direct.lat, direct.lng); + if (Math.abs(gp.lng - prev.lng) > 180) { + let inverse = this._vincenty_inverse(prev, gp); + let sec = this._intersection(prev, inverse.initialBearing, { + lat: -89, + lng: ((gp.lng - prev.lng) > 0) ? -INTERSECT_LNG : INTERSECT_LNG + }, 0); + if (sec) { + this._latlngs[polylineIndex].push(L.latLng(sec.lat, sec.lng)); + polylineIndex++; + this._latlngs[polylineIndex] = []; + prev = L.latLng(sec.lat, -sec.lng); + this._latlngs[polylineIndex].push(prev); + } else { + polylineIndex++; + this._latlngs[polylineIndex] = []; + this._latlngs[polylineIndex].push(gp); + prev = gp; + step++; + } + } else { + this._latlngs[polylineIndex].push(gp); + prev = gp; + step++; + } + } + + L.Polyline.prototype.setLatLngs.call(this, this._latlngs); + }, + + /** + * Creates a geodesic Polyline from given coordinates + * @param {Object} latlngs - One or more polylines as an array. See Leaflet doc about Polyline + * @returns (Object} An array of arrays of geographical points. + */ + _generate_Geodesic: function(latlngs) { + let _geo = [], + _geocnt = 0, + s, poly, points, pointA, pointB; + + for (poly = 0; poly < latlngs.length; poly++) { + _geo[_geocnt] = []; + for (points = 0; points < (latlngs[poly].length - 1); points++) { + pointA = L.latLng(latlngs[poly][points]); + pointB = L.latLng(latlngs[poly][points + 1]); + if (pointA.equals(pointB)) { + continue; + } + let inverse = this._vincenty_inverse(pointA, pointB); + let prev = pointA; + _geo[_geocnt].push(prev); + for (s = 1; s <= this.options.steps;) { + let direct = this._vincenty_direct(pointA, inverse.initialBearing, + inverse.distance / this.options.steps * s, this.options.wrap + ); + let gp = L.latLng(direct.lat, direct.lng); + if (Math.abs(gp.lng - prev.lng) > 180) { + let sec = this._intersection(pointA, inverse.initialBearing, { + lat: -89, + lng: ((gp.lng - prev.lng) > 0) ? -INTERSECT_LNG : INTERSECT_LNG + }, 0); + if (sec) { + _geo[_geocnt].push(L.latLng(sec.lat, sec.lng)); + _geocnt++; + _geo[_geocnt] = []; + prev = L.latLng(sec.lat, -sec.lng); + _geo[_geocnt].push(prev); + } else { + _geocnt++; + _geo[_geocnt] = []; + _geo[_geocnt].push(gp); + prev = gp; + s++; + } + } else { + _geo[_geocnt].push(gp); + prev = gp; + s++; + } + } + } + _geocnt++; + } + return _geo; + }, + + + /** + * Creates a dashed geodesic Polyline from given coordinates - under work + * @param {Object} latlngs - One or more polylines as an array. See Leaflet doc about Polyline + * @returns (Object} An array of arrays of geographical points. + */ + _generate_GeodesicDashed: function(latlngs) { + let _geo = [], + _geocnt = 0, + s, poly, points; + // _geo = latlngs; // bypass + + for (poly = 0; poly < latlngs.length; poly++) { + _geo[_geocnt] = []; + for (points = 0; points < (latlngs[poly].length - 1); points++) { + let inverse = this._vincenty_inverse(L.latLng(latlngs[poly][ + points + ]), L.latLng(latlngs[poly][points + 1])); + let prev = L.latLng(latlngs[poly][points]); + _geo[_geocnt].push(prev); + for (s = 1; s <= this.options.steps;) { + let direct = this._vincenty_direct(L.latLng(latlngs[poly][ + points + ]), inverse.initialBearing, inverse.distance / this.options + .steps * s - inverse.distance / this.options.steps * (1 - + this.options.dash), this.options.wrap); + let gp = L.latLng(direct.lat, direct.lng); + if (Math.abs(gp.lng - prev.lng) > 180) { + let sec = this._intersection(L.latLng(latlngs[poly][points]), + inverse.initialBearing, { + lat: -89, + lng: ((gp.lng - prev.lng) > 0) ? -INTERSECT_LNG : INTERSECT_LNG + }, 0); + if (sec) { + _geo[_geocnt].push(L.latLng(sec.lat, sec.lng)); + _geocnt++; + _geo[_geocnt] = []; + prev = L.latLng(sec.lat, -sec.lng); + _geo[_geocnt].push(prev); + } else { + _geocnt++; + _geo[_geocnt] = []; + _geo[_geocnt].push(gp); + prev = gp; + s++; + } + } else { + _geo[_geocnt].push(gp); + _geocnt++; + let direct2 = this._vincenty_direct(L.latLng(latlngs[poly][ + points + ]), inverse.initialBearing, inverse.distance / this.options + .steps * s, this.options.wrap); + _geo[_geocnt] = []; + _geo[_geocnt].push(L.latLng(direct2.lat, direct2.lng)); + s++; + } + } + } + _geocnt++; + } + return _geo; + }, + + + /** + * Vincenty direct calculation. + * based on the work of Chris Veness (https://github.com/chrisveness/geodesy) + * + * @private + * @param {number} initialBearing - Initial bearing in degrees from north. + * @param {number} distance - Distance along bearing in metres. + * @returns (Object} Object including point (destination point), finalBearing. + */ + + _vincenty_direct: function(p1, initialBearing, distance, wrap) { + var φ1 = p1.lat.toRadians(), + λ1 = p1.lng.toRadians(); + var α1 = initialBearing.toRadians(); + var s = distance; + + var a = this.datum.ellipsoid.a, + b = this.datum.ellipsoid.b, + f = this.datum.ellipsoid.f; + + var sinα1 = Math.sin(α1); + var cosα1 = Math.cos(α1); + + var tanU1 = (1 - f) * Math.tan(φ1), + cosU1 = 1 / Math.sqrt((1 + tanU1 * tanU1)), + sinU1 = tanU1 * cosU1; + var σ1 = Math.atan2(tanU1, cosα1); + var sinα = cosU1 * sinα1; + var cosSqα = 1 - sinα * sinα; + var uSq = cosSqα * (a * a - b * b) / (b * b); + var A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * + uSq))); + var B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq))); + + var σ = s / (b * A), + σʹ, iterations = 0; + var sinσ, cosσ; + var cos2σM; + do { + cos2σM = Math.cos(2 * σ1 + σ); + sinσ = Math.sin(σ); + cosσ = Math.cos(σ); + var Δσ = B * sinσ * (cos2σM + B / 4 * (cosσ * (-1 + 2 * cos2σM * + cos2σM) - + B / 6 * cos2σM * (-3 + 4 * sinσ * sinσ) * (-3 + 4 * cos2σM * + cos2σM))); + σʹ = σ; + σ = s / (b * A) + Δσ; + } while (Math.abs(σ - σʹ) > 1e-12 && ++iterations); + + var x = sinU1 * sinσ - cosU1 * cosσ * cosα1; + var φ2 = Math.atan2(sinU1 * cosσ + cosU1 * sinσ * cosα1, (1 - f) * + Math.sqrt(sinα * sinα + x * x)); + var λ = Math.atan2(sinσ * sinα1, cosU1 * cosσ - sinU1 * sinσ * cosα1); + var C = f / 16 * cosSqα * (4 + f * (4 - 3 * cosSqα)); + var L = λ - (1 - C) * f * sinα * + (σ + C * sinσ * (cos2σM + C * cosσ * (-1 + 2 * cos2σM * cos2σM))); + + var λ2; + if (wrap) { + λ2 = (λ1 + L + 3 * Math.PI) % (2 * Math.PI) - Math.PI; // normalise to -180...+180 + } else { + λ2 = (λ1 + L); // do not normalize + } + + var revAz = Math.atan2(sinα, -x); + + return { + lat: φ2.toDegrees(), + lng: λ2.toDegrees(), + finalBearing: revAz.toDegrees() + }; + }, + + /** + * Vincenty inverse calculation. + * based on the work of Chris Veness (https://github.com/chrisveness/geodesy) + * + * @private + * @param {LatLng} p1 - Latitude/longitude of start point. + * @param {LatLng} p2 - Latitude/longitude of destination point. + * @returns {Object} Object including distance, initialBearing, finalBearing. + * @throws {Error} If formula failed to converge. + */ + _vincenty_inverse: function(p1, p2) { + var φ1 = p1.lat.toRadians(), + λ1 = p1.lng.toRadians(); + var φ2 = p2.lat.toRadians(), + λ2 = p2.lng.toRadians(); + + var a = this.datum.ellipsoid.a, + b = this.datum.ellipsoid.b, + f = this.datum.ellipsoid.f; + + var L = λ2 - λ1; + var tanU1 = (1 - f) * Math.tan(φ1), + cosU1 = 1 / Math.sqrt((1 + tanU1 * tanU1)), + sinU1 = tanU1 * cosU1; + var tanU2 = (1 - f) * Math.tan(φ2), + cosU2 = 1 / Math.sqrt((1 + tanU2 * tanU2)), + sinU2 = tanU2 * cosU2; + + var λ = L, + λʹ, iterations = 0; + var cosSqα, sinσ, cos2σM, cosσ, σ, sinλ, cosλ; + do { + sinλ = Math.sin(λ); + cosλ = Math.cos(λ); + var sinSqσ = (cosU2 * sinλ) * (cosU2 * sinλ) + (cosU1 * sinU2 - + sinU1 * cosU2 * cosλ) * (cosU1 * sinU2 - sinU1 * cosU2 * cosλ); + sinσ = Math.sqrt(sinSqσ); + if (sinσ == 0) return 0; // co-incident points + cosσ = sinU1 * sinU2 + cosU1 * cosU2 * cosλ; + σ = Math.atan2(sinσ, cosσ); + var sinα = cosU1 * cosU2 * sinλ / sinσ; + cosSqα = 1 - sinα * sinα; + cos2σM = cosσ - 2 * sinU1 * sinU2 / cosSqα; + if (isNaN(cos2σM)) cos2σM = 0; // equatorial line: cosSqα=0 (§6) + var C = f / 16 * cosSqα * (4 + f * (4 - 3 * cosSqα)); + λʹ = λ; + λ = L + (1 - C) * f * sinα * (σ + C * sinσ * (cos2σM + C * cosσ * (- + 1 + 2 * cos2σM * cos2σM))); + } while (Math.abs(λ - λʹ) > 1e-12 && ++iterations < 100); + if (iterations >= 100) { + console.log("Formula failed to converge. Altering target position."); + return this._vincenty_inverse(p1, { + lat: p2.lat, + lng: p2.lng - 0.01 + }); + // throw new Error('Formula failed to converge'); + } + + var uSq = cosSqα * (a * a - b * b) / (b * b); + var A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * + uSq))); + var B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq))); + var Δσ = B * sinσ * (cos2σM + B / 4 * (cosσ * (-1 + 2 * cos2σM * + cos2σM) - + B / 6 * cos2σM * (-3 + 4 * sinσ * sinσ) * (-3 + 4 * cos2σM * + cos2σM))); + + var s = b * A * (σ - Δσ); + + var fwdAz = Math.atan2(cosU2 * sinλ, cosU1 * sinU2 - sinU1 * cosU2 * + cosλ); + var revAz = Math.atan2(cosU1 * sinλ, -sinU1 * cosU2 + cosU1 * sinU2 * + cosλ); + + s = Number(s.toFixed(3)); // round to 1mm precision + return { + distance: s, + initialBearing: fwdAz.toDegrees(), + finalBearing: revAz.toDegrees() + }; + }, + + + /** + * Returns the point of intersection of two paths defined by point and bearing. + * based on the work of Chris Veness (https://github.com/chrisveness/geodesy) + * + * @param {LatLon} p1 - First point. + * @param {number} brng1 - Initial bearing from first point. + * @param {LatLon} p2 - Second point. + * @param {number} brng2 - Initial bearing from second point. + * @returns {Object} containing lat/lng information of intersection. + * + * @example + * var p1 = LatLon(51.8853, 0.2545), brng1 = 108.55; + * var p2 = LatLon(49.0034, 2.5735), brng2 = 32.44; + * var pInt = LatLon.intersection(p1, brng1, p2, brng2); // pInt.toString(): 50.9078°N, 4.5084°E + */ + _intersection: function(p1, brng1, p2, brng2) { + // see http://williams.best.vwh.net/avform.htm#Intersection + + var φ1 = p1.lat.toRadians(), + λ1 = p1.lng.toRadians(); + var φ2 = p2.lat.toRadians(), + λ2 = p2.lng.toRadians(); + var θ13 = Number(brng1).toRadians(), + θ23 = Number(brng2).toRadians(); + var Δφ = φ2 - φ1, + Δλ = λ2 - λ1; + + var δ12 = 2 * Math.asin(Math.sqrt(Math.sin(Δφ / 2) * Math.sin(Δφ / 2) + + Math.cos(φ1) * Math.cos(φ2) * Math.sin(Δλ / 2) * Math.sin(Δλ / + 2))); + if (δ12 == 0) return null; + + // initial/final bearings between points + var θ1 = Math.acos((Math.sin(φ2) - Math.sin(φ1) * Math.cos(δ12)) / + (Math.sin(δ12) * Math.cos(φ1))); + if (isNaN(θ1)) θ1 = 0; // protect against rounding + var θ2 = Math.acos((Math.sin(φ1) - Math.sin(φ2) * Math.cos(δ12)) / + (Math.sin(δ12) * Math.cos(φ2))); + var θ12, θ21; + if (Math.sin(λ2 - λ1) > 0) { + θ12 = θ1; + θ21 = 2 * Math.PI - θ2; + } else { + θ12 = 2 * Math.PI - θ1; + θ21 = θ2; + } + + var α1 = (θ13 - θ12 + Math.PI) % (2 * Math.PI) - Math.PI; // angle 2-1-3 + var α2 = (θ21 - θ23 + Math.PI) % (2 * Math.PI) - Math.PI; // angle 1-2-3 + + if (Math.sin(α1) == 0 && Math.sin(α2) == 0) return null; // infinite intersections + if (Math.sin(α1) * Math.sin(α2) < 0) return null; // ambiguous intersection + + //α1 = Math.abs(α1); + //α2 = Math.abs(α2); + // ... Ed Williams takes abs of α1/α2, but seems to break calculation? + + var α3 = Math.acos(-Math.cos(α1) * Math.cos(α2) + + Math.sin(α1) * Math.sin(α2) * Math.cos(δ12)); + var δ13 = Math.atan2(Math.sin(δ12) * Math.sin(α1) * Math.sin(α2), + Math.cos(α2) + Math.cos(α1) * Math.cos(α3)); + var φ3 = Math.asin(Math.sin(φ1) * Math.cos(δ13) + + Math.cos(φ1) * Math.sin(δ13) * Math.cos(θ13)); + var Δλ13 = Math.atan2(Math.sin(θ13) * Math.sin(δ13) * Math.cos(φ1), + Math.cos(δ13) - Math.sin(φ1) * Math.sin(φ3)); + var λ3 = λ1 + Δλ13; + λ3 = (λ3 + 3 * Math.PI) % (2 * Math.PI) - Math.PI; // normalise to -180..+180º + + return { + lat: φ3.toDegrees(), + lng: λ3.toDegrees() + }; + }, + + /** + * Overwrites obj1's values with obj2's and adds obj2's if non existent in obj1 + * @param obj1 + * @param obj2 + * @returns obj3 a new object based on obj1 and obj2 + */ + _merge_options: function(obj1, obj2) { + let obj3 = {}; + for (let attrname in obj1) { + obj3[attrname] = obj1[attrname]; + } + for (let attrname in obj2) { + obj3[attrname] = obj2[attrname]; + } + return obj3; + } +}); + +L.geodesic = function(latlngs, options) { + return new L.Geodesic(latlngs, options); +}; diff --git a/public/mix-manifest.json b/public/mix-manifest.json index 08377f60..93dd9fc6 100644 --- a/public/mix-manifest.json +++ b/public/mix-manifest.json @@ -10,7 +10,7 @@ "/assets/admin/js/vendor.js": "/assets/admin/js/vendor.js?id=0f6b516f7ea80d70d407", "/assets/admin/css/blue.png": "/assets/admin/css/blue.png?id=753a3c0dec86d3a38d9c", "/assets/admin/css/blue@2x.png": "/assets/admin/css/blue@2x.png?id=97da23d47b838cbd4bef", - "/assets/system/js/vendor.js": "/assets/system/js/vendor.js?id=434db3f2c9beafd58bae", + "/assets/system/js/vendor.js": "/assets/system/js/vendor.js?id=c83cbe33451bdbd1ec0b", "/assets/system/css/vendor.css": "/assets/system/css/vendor.css?id=7bd98a28084fea99e307", "/assets/system/js/installer-vendor.js": "/assets/system/js/installer-vendor.js?id=b2bca761f222e97bf4ff" } \ No newline at end of file diff --git a/webpack.mix.js b/webpack.mix.js index b1270c0f..ac4a0017 100644 --- a/webpack.mix.js +++ b/webpack.mix.js @@ -86,8 +86,8 @@ mix.scripts([ 'node_modules/select2/dist/js/select2.js', 'node_modules/leaflet/dist/leaflet.js', 'node_modules/pjax/pjax.js', - 'node_modules/Leaflet.Geodesic/Leaflet.Geodesic.js', 'node_modules/leaflet-rotatedmarker/leaflet.rotatedMarker.js', + 'node_modules/Leaflet.Geodesic/Leaflet.Geodesic.js', /*'public/assets/frontend/js/plugins/bootstrap-switch.js', 'public/assets/frontend/js/plugins/nouislider.min.js', 'public/assets/frontend/js/plugins/bootstrap-datepicker.js',