tests
This commit is contained in:
@@ -101,7 +101,6 @@ class Segmentation(object):
|
||||
|
||||
results = []
|
||||
cursors = self.data_provider.get_segmentation_predict_data(params)
|
||||
|
||||
'''
|
||||
cursors = [{'features': [[m1[0],m2[0],m3[0]],[m1[1],m2[1],m3[1]],
|
||||
[m1[2],m2[2],m3[2]]]}]
|
||||
|
||||
@@ -3,6 +3,7 @@ import numpy as np
|
||||
from helper import plpy, fixture_file
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
from crankshaft.segmentation import Segmentation
|
||||
from mock_plpy import MockCursor
|
||||
import json
|
||||
|
||||
|
||||
@@ -105,7 +106,23 @@ class SegmentationTest(unittest.TestCase):
|
||||
data_test = [{'id_col': training_data[0]['cartodb_id']}]
|
||||
|
||||
data_predict = [{'feature_columns': test_data}]
|
||||
# print data_predict
|
||||
# batch = []
|
||||
'''
|
||||
for row in data_predict:
|
||||
max = len(data_predict[0]['feature_columns'])
|
||||
for c in range(max):
|
||||
batch = np.append(batch, np.row_stack([np.array(row
|
||||
['feature_columns']
|
||||
[c])]))
|
||||
|
||||
# batch = np.row_stack([np.array(row['features'])
|
||||
# for row in rows]).astype(float)
|
||||
li = np.array(batch.tolist())
|
||||
print len(li)
|
||||
co = len(data_predict[0]['feature_columns'][0]['features'])
|
||||
print len(data_predict[0]['feature_columns'])
|
||||
|
||||
cursors = [{'features': [[m1[0],m2[0],m3[0]],[m1[1],m2[1],m3[1]],
|
||||
[m1[2],m2[2],m3[2]]]}]
|
||||
'''
|
||||
@@ -120,6 +137,7 @@ class SegmentationTest(unittest.TestCase):
|
||||
{'feature1': [1,2,3,4]}, {'feature2' : [2,3,4,5]}
|
||||
]
|
||||
'''
|
||||
data_predict = MockCursor(data_predict)
|
||||
# Before here figure out how to set up the data provider
|
||||
# After use data prodiver to run the query and test results.
|
||||
seg = Segmentation(RawDataProvider(data_test, data_train,
|
||||
|
||||
Reference in New Issue
Block a user