Compare commits

...

115 Commits

Author SHA1 Message Date
Javier Villar
83219270ae Copying requirements.txt to python 0.4.2 folder 2016-10-07 16:47:28 +02:00
Javier Villar
215e61396a Creating requirements.txt file for python 2016-10-07 13:45:09 +02:00
Javier Goizueta
ecb4bd9606 Merge pull request #140 from CartoDB/138-fix-travis-tests
Reorder package installation
2016-09-30 11:40:44 +02:00
Javier Goizueta
ecc9814a88 Reorder package installation
Fixes #138
It seems that package postgresql-9.5-postgis-2.2 is now
indirectly depending on postgresql-9.5-postgis-2.3-scripts which
is not compatible with the packages in cartodb launchpad repos
2016-09-30 11:31:57 +02:00
Carla
c7bb9698a9 Merge pull request #135 from CartoDB/master
Merge back releases 0.4.1 and 0.4.2 to develop
2016-09-22 12:38:11 +02:00
Carla Iriberri
b68f1c53b6 Release 0.4.2 2016-09-22 11:11:58 +02:00
Carla
a665e41a83 Merge pull request #134 from CartoDB/develop
Release bugfix version 0.4.2
2016-09-22 11:02:19 +02:00
Carla
d0e967d22c Merge pull request #133 from CartoDB/moran-global-fix
Moran global fix
2016-09-22 10:49:52 +02:00
Carla
bcb73dee11 Merge pull request #132 from CartoDB/iriberri-patch-1
Typos in function names in Moran [docs]
2016-09-22 10:44:38 +02:00
Andy Eschbacher
c52eb507ea revert to old query styles even though it breaks pep8 2016-09-21 16:43:30 -04:00
Andy Eschbacher
375f765531 more pep8 updates 2016-09-21 15:57:49 -04:00
Andy Eschbacher
e924abbacc formatted for pep8 2016-09-21 13:09:42 -04:00
Andy Eschbacher
dc150e6936 add test for moran global 2016-09-21 12:55:58 -04:00
Andy Eschbacher
24b9cda5aa import correct function from python lib 2016-09-21 12:55:21 -04:00
Carla
2ed9479e8f Typos in function names 2016-09-21 18:23:27 +02:00
Carla Iriberri
84896e0634 Release 0.4.1 and update NEWS.md 2016-09-21 17:47:55 +02:00
Carla
ff0363894f Merge pull request #131 from CartoDB/develop
Release 0.4.1
2016-09-21 17:37:32 +02:00
Carla
d216b02928 Merge pull request #123 from CartoDB/error-reporting-moran-queries
Error reporting moran and markov queries
2016-09-21 17:19:58 +02:00
Carla
eee612b12d Merge pull request #129 from CartoDB/add-interpolation
[interpolation] Add NN(s) method
2016-09-21 17:19:29 +02:00
Carla
4a65c88300 Merge pull request #120 from CartoDB/add-contour
Let the user set the resolution [19]
2016-09-21 17:14:05 +02:00
abelvm
754e66c02c leftovers and docs 2016-09-21 14:24:35 +02:00
abelvm
37e4fc7cad add NN(s) support 2016-09-20 13:57:58 +02:00
abelvm
4902f6a9d4 add NN(s) support 2016-09-20 13:37:50 +02:00
abelvm
5f1cf951ea Merge branch 'develop' of github.com:CartoDB/crankshaft into add-interpolation 2016-09-20 12:57:51 +02:00
abelvm
2ff20e596e add NN(s) support 2016-09-20 12:57:41 +02:00
Andy Eschbacher
c229a85491 adding better reporting to markov 2016-09-02 18:02:56 -04:00
Andy Eschbacher
6d6d7ef2ba removing notices 2016-09-02 17:58:19 -04:00
Andy Eschbacher
feab6f177e clearer error message 2016-09-02 17:52:41 -04:00
Andy Eschbacher
a6440f2ef7 reports error string 2016-09-02 16:39:35 -04:00
abelvm
a530de80f1 back to the original signature 2016-09-02 14:57:21 +02:00
abelvm
139e86d414 back to the original signature 2016-09-02 14:43:48 +02:00
abelvm
b8ce37eb60 back to the original signature 2016-09-02 14:37:52 +02:00
abelvm
036a33aced drop 2016-09-02 12:58:13 +02:00
abelvm
90f36b4058 drop 2016-09-02 12:35:54 +02:00
abelvm
df68d2454e smart guessing optional 2016-09-02 12:24:31 +02:00
abelvm
bbdd4de6ee smart guessing optional 2016-09-02 12:23:47 +02:00
Carla
2261d11de0 Reordering NEWS.md update step
so that if somebody needs to go to a specific tag, the NEWS.md file is updated according to the version and not afterwards.
2016-08-30 14:25:24 +02:00
Carla
2a665a60db Fix typo 2016-08-30 13:44:58 +02:00
Carla
22cdc53c49 Fix typos 2016-08-30 13:38:09 +02:00
Carla Iriberri
6ed9901103 Update NEWS.md for version 0.4.0 2016-08-30 12:51:57 +02:00
Carla Iriberri
02c98443be Merge branch 'master' of https://github.com/CartoDB/crankshaft 2016-08-30 12:30:57 +02:00
Carla Iriberri
a42eb400d8 Release crankshaft 0.4.0 2016-08-30 12:30:39 +02:00
Carla
457f54007e crankshaft typo 2016-08-30 12:27:10 +02:00
Carla
e071d323d4 Merge pull request #84 from CartoDB/add-PIA
Add Pole of Inaccessibility [13]
2016-08-30 12:12:53 +02:00
Carla
23a576939b Merge pull request #90 from CartoDB/add-densify-tinmaps
Add densify / tinmaps functions [14] [15]
2016-08-30 12:12:26 +02:00
abelvm
2b75da1db2 fix test 2016-08-30 06:02:42 -04:00
abelvm
37eb85350d fix projection 2016-08-30 05:55:34 -04:00
abelvm
72ee1a6d48 missed files 2016-08-30 05:50:20 -04:00
abelvm
605e6e88ae remove redundant function 2016-08-30 05:47:20 -04:00
abelvm
7e88ca6c47 merge develop 2016-08-30 05:43:55 -04:00
Carla
c3e12036e7 Merge pull request #103 from CartoDB/add-contour
Add contour [19]
2016-08-30 11:35:15 +02:00
abelvm
ef436546b4 add cdb_utils 2016-08-29 11:26:02 -04:00
abelvm
fa14b8d9bb SRG test 2016-08-18 16:33:38 -04:00
abelvm
43d00a9976 Merge branch 'develop' of github.com:CartoDB/crankshaft into add-contour 2016-08-18 16:14:07 -04:00
abelvm
0f47659cf9 smart resolution guessing 2016-08-18 16:13:56 -04:00
Carla
5423684e46 Add 0.3.1 to NEWS.md 2016-08-18 18:03:31 +02:00
Carla
eeb3a01c62 Add instruction to update NEWS.md 2016-08-18 18:01:59 +02:00
Carla Iriberri
f127d4a18e Update 0.3.1 version with voronoi fix 2016-08-18 17:38:24 +02:00
Carla Iriberri
9016e5f35e Merge branch 'develop' 2016-08-18 17:35:36 +02:00
Carla
66a0c80aee Merge pull request #114 from CartoDB/add-voronoi
[FIX] Voronoi spurious segments [09]
2016-08-18 17:30:01 +02:00
abelvm
1061c85405 doc example fixed 2016-08-18 11:16:12 -04:00
abelvm
6fc460f6db removed spikes 2016-08-18 10:16:26 -04:00
abelvm
ce86c4c5b4 removed spikes 2016-08-18 10:12:15 -04:00
abelvm
4352d3ded7 removed spurious segments 2016-08-18 09:36:15 -04:00
abelvm
cd0a802aff Merge branch 'develop' of github.com:CartoDB/crankshaft into add-voronoi 2016-08-18 09:31:14 -04:00
abelvm
6fe467366a removed spurious segments 2016-08-18 09:31:08 -04:00
Carla
2963afd711 Rename crankshaft--0.3.0-0.3.1.sql to crankshaft--0.3.0--0.3.1.sql 2016-08-18 10:43:43 +02:00
Carla
dd6e116da9 Rebranding 2016-08-18 10:35:54 +02:00
Carla Iriberri
aa745f67db Release 0.3.1 2016-08-18 10:34:52 +02:00
Carla
c668a82fcf Merge pull request #112 from CartoDB/add-voronoi
[Hot Fix] Voronoi projection issue [09]
2016-08-18 10:13:53 +02:00
Carla
cfacda5799 Merge pull request #106 from CartoDB/add-interpolation
[Add interpolation] Tests for the three methods [08]
2016-08-18 10:13:36 +02:00
abelvm
cbc505a62b fix test out 2016-08-17 12:51:34 -04:00
abelvm
e9ce87fb99 fix test out 2016-08-17 12:43:44 -04:00
abelvm
d67f3951a7 fix test 2016-08-17 12:32:17 -04:00
abelvm
3ddcd4ed2d Merge branch 'develop' of github.com:CartoDB/crankshaft into add-voronoi 2016-08-17 12:22:30 -04:00
abelvm
94497cd791 fix projection issues 2016-08-17 12:22:22 -04:00
Rafa de la Torre
cf38cb43c0 Update RELEASE.md
Add a couple of additional steps
2016-08-17 10:58:12 +02:00
abelvm
b7a412fa4d fixed spaces 2016-08-16 14:17:14 -04:00
abelvm
f6cedd7c86 fixed spaces 2016-08-16 14:05:53 -04:00
abelvm
0ea060a698 added srid to tests 2016-08-16 13:56:01 -04:00
abelvm
ed6ecd0fef added schema 2016-08-16 13:29:55 -04:00
abelvm
0afb39fb1d Merge branch 'develop' of github.com:CartoDB/crankshaft into add-contour 2016-08-16 13:15:20 -04:00
abelvm
bae3362b59 added CDB stuff 2016-08-16 13:15:13 -04:00
abelvm
edeac18389 changed test 2016-08-16 13:02:28 -04:00
abelvm
250f932915 add CDB_dependencies 2016-08-16 11:35:15 -04:00
abelvm
2c373dd9c7 add CDB_dependencies 2016-08-16 11:28:34 -04:00
abelvm
6b4b04d9a3 Merge branch 'develop' of github.com:CartoDB/crankshaft into add-PIA 2016-08-16 11:16:59 -04:00
abelvm
8a529fc956 add CDB_dependencies 2016-08-16 11:16:51 -04:00
abelvm
756db707b5 fix results 2016-08-16 11:08:17 -04:00
abelvm
5b8f7c4cd5 add schema 2016-08-16 11:01:25 -04:00
abelvm
51b8da5bf8 add full tests 2016-08-16 10:44:13 -04:00
abelvm
630965605c add full tests 2016-08-16 10:41:54 -04:00
abelvm
14e5ca4b22 add full tests 2016-08-16 10:40:32 -04:00
abelvm
cb39d1830d 2nd commit 2016-08-15 17:23:52 -04:00
abelvm
5b6d2c568b first commit 2016-08-15 17:15:36 -04:00
abelvm
66f4dfa4ea spaces again 2016-08-10 14:39:31 -04:00
abelvm
60eb316cbe spaces again 2016-08-10 14:32:59 -04:00
abelvm
592eb68d42 tests rectangle grid 2016-08-10 14:15:22 -04:00
abelvm
b80324c0d1 tests rectangle grid 2016-08-10 14:06:28 -04:00
abelvm
7c2d160da0 tests rectangle grid 2016-08-10 13:58:37 -04:00
abelvm
01b0efd82b tests spaces 2016-08-10 13:55:22 -04:00
abelvm
4986743ce9 tests spaces 2016-08-10 13:52:00 -04:00
abelvm
a31921409c Merge branch 'develop' of github.com:CartoDB/crankshaft into add-densify-tinmaps 2016-08-10 13:25:58 -04:00
abelvm
667bdb79a2 fixed tests 2016-08-10 12:16:36 -04:00
abelvm
d88c967bb7 fixed tests 2016-08-10 12:13:55 -04:00
abelvm
2d8d5e8c2e check tests 2016-08-09 14:09:45 -04:00
abelvm
358202d324 check tests 2016-08-09 13:03:24 -04:00
abelvm
3becd449c2 check tests 2016-08-09 13:02:23 -04:00
abelvm
5f339a01f7 recommit from postgresql repo 2016-08-09 12:09:19 -04:00
abelvm
132f4bbda9 Merge branch 'develop' of github.com:CartoDB/crankshaft into add-densify-tinmaps 2016-08-09 10:58:08 -04:00
Rafa de la Torre
4fdb28e2df Merge remote-tracking branch 'origin/develop' into add-PIA 2016-08-09 16:24:51 +02:00
abelvm
15aad5a695 clean 2016-07-14 15:46:09 +02:00
abelvm
0eca26d515 performance x20 2016-07-14 15:07:45 +02:00
abelvm
27971711b5 Merge branch 'add-PIA' of github.com:CartoDB/crankshaft into add-PIA 2016-07-12 15:49:15 +02:00
abelvm
cb3a49594d add PIA, first commit 2016-07-12 15:48:38 +02:00
150 changed files with 22466 additions and 94 deletions

3
.brackets.json Normal file
View File

@@ -0,0 +1,3 @@
{
"sbruchmann.staticpreview.basepath": "/home/carto/Projects/crankshaft/"
}

View File

@@ -41,8 +41,8 @@ before_install:
- sudo apt-get -y install postgresql-9.5=9.5.2-2ubuntu1
- sudo apt-get -y install postgresql-server-dev-9.5=9.5.2-2ubuntu1
- sudo apt-get -y install postgresql-plpython-9.5=9.5.2-2ubuntu1
- sudo apt-get -y install postgresql-9.5-postgis-2.2=2.2.2.0-cdb2
- sudo apt-get -y install postgresql-9.5-postgis-scripts=2.2.2.0-cdb2
- sudo apt-get -y install postgresql-9.5-postgis-2.2=2.2.2.0-cdb2
# configure it to accept local connections from postgres
- echo -e "# TYPE DATABASE USER ADDRESS METHOD \nlocal all postgres trust\nlocal all all trust\nhost all all 127.0.0.1/32 trust" \

23
NEWS.md
View File

@@ -1,3 +1,26 @@
0.4.2 (2016-09-22)
------------------
* Bugfix for cdb_areasofinterestglobal: import correct modules
0.4.1 (2016-09-21)
------------------
* Let the user set the resolution in CDB_Contour function
* Add Nearest Neighbors method to CDB_SpatialInterpolation
* Improve error reporting for moran and markov functions
0.4.0 (2016-08-30)
------------------
* Add CDB_Contour
* Add CDB_PIA
* Add CDB_Densify
* Add CDB_TINmap
0.3.1 (2016-08-18)
------------------
* Fix Voronoi projection issue
* Fix Voronoi spurious segments issue
* Add tests for interpolation
0.3.0 (2016-08-17)
------------------
* Adds Voronoi function

View File

@@ -1,6 +1,6 @@
# Crankshaft [![Build Status](https://travis-ci.org/CartoDB/crankshaft.svg?branch=develop)](https://travis-ci.org/CartoDB/crankshaft)
CartoDB Spatial Analysis extension for PostgreSQL.
CARTO Spatial Analysis extension for PostgreSQL.
## Code organization

View File

@@ -15,11 +15,12 @@ shall be performed by the designated *Release Manager*.
1. Generate an upgrade path from the previous to the next release by copying the generated release file. E.g:
```shell
cp release/cranckshaft--X.Y.Z.sql release/cranckshaft--A.B.C--X.Y.Z.sql
cp release/crankshaft--X.Y.Z.sql release/crankshaft--A.B.C--X.Y.Z.sql
```
NOTE: you can rely on this thanks to the compatibility checks.
TODO: automate this step [#94](https://github.com/CartoDB/crankshaft/issues/94)
2. Update the [NEWS.md](https://github.com/CartoDB/crankshaft/blob/master/NEWS.md) file
1. Commit and push the generated files.
1. Tag the release:
@@ -28,6 +29,8 @@ shall be performed by the designated *Release Manager*.
git push origin X.Y.Z
```
1. Deploy and test in staging
1. Deploy and test in production
1. Merge back into develop
## Some remarks

View File

@@ -37,7 +37,7 @@ SELECT
aoi.quads,
aoi.significance,
c.num_cyclists_per_total_population
FROM CDB_GetAreasOfInterestLocal('SELECT * FROM commute_data'
FROM CDB_AreasOfInterestLocal('SELECT * FROM commute_data'
'num_cyclists_per_total_population') As aoi
JOIN commute_data As c
ON c.cartodb_id = aoi.rowid;
@@ -113,7 +113,7 @@ SELECT
aoi.quads,
aoi.significance,
c.cyclists_per_total_population
FROM CDB_GetAreasOfInterestLocalRate('SELECT * FROM commute_data'
FROM CDB_AreasOfInterestLocalRate('SELECT * FROM commute_data'
'num_cyclists',
'total_population') As aoi
JOIN commute_data As c

View File

@@ -2,7 +2,7 @@
Function to interpolate a numeric attribute of a point in a scatter dataset of points, using one of three methos:
* [Nearest neighbor](https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation)
* [Nearest neighbor(s)](https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation)
* [Barycentric](https://en.wikipedia.org/wiki/Barycentric_coordinate_system)
* [IDW](https://en.wikipedia.org/wiki/Inverse_distance_weighting)
@@ -15,7 +15,7 @@ Function to interpolate a numeric attribute of a point in a scatter dataset of p
| query | text | query that returns at least `the_geom` and a numeric value as `attrib` |
| point | geometry | The target point to calc the value |
| method | integer | 0:nearest neighbor, 1: barycentric, 2: IDW|
| p1 | integer | IDW: limit the number of neighbors, 0->no limit|
| p1 | integer | limit the number of neighbors, IDW: 0->no limit, NN: 0-> closest one|
| p2 | integer | IDW: order of distance decay, 0-> order 1|
### CDB_SpatialInterpolation (geom geometry[], values numeric[], point geometry, method integer DEFAULT 1, p1 integer DEFAULT 0, ps integer DEFAULT 0)
@@ -28,7 +28,7 @@ Function to interpolate a numeric attribute of a point in a scatter dataset of p
| values | numeric[] | Array of points' values for the param under study|
| point | geometry | The target point to calc the value |
| method | integer | 0:nearest neighbor, 1: barycentric, 2: IDW|
| p1 | integer | IDW: limit the number of neighbors, 0->no limit|
| p1 | integer | limit the number of neighbors, IDW: 0->no limit, NN: 0-> closest one|
| p2 | integer | IDW: order of distance decay, 0-> order 1|
### Returns
@@ -37,6 +37,9 @@ Function to interpolate a numeric attribute of a point in a scatter dataset of p
|-------------|------|-------------|
| value | numeric | Interpolated value at the given point, `-888.888` if the given point is out of the boundaries of the source points set |
Default values:
* -888.888: when using Barycentric, the target point is out of the realm of the input points
* -777.777: asking for a method not available
#### Example Usage

View File

@@ -27,9 +27,12 @@ PostGIS wil include this in future versions ([doc for dev branch](http://postgis
```sql
WITH a AS (
SELECT
ARRAY[ST_GeomFromText('POINT(2.1744 41.403)'),ST_GeomFromText('POINT(2.1228 41.380)'),ST_GeomFromText('POINT(2.1511 41.374)'),ST_GeomFromText('POINT(2.1528 41.413)'),ST_GeomFromText('POINT(2.165 41.391)'),ST_GeomFromText('POINT(2.1498 41.371)'),ST_GeomFromText('POINT(2.1533 41.368)'),ST_GeomFromText('POINT(2.131386 41.41399)')] AS geomin
ARRAY[ST_GeomFromText('POINT(2.1744 41.403)', 4326),ST_GeomFromText('POINT(2.1228 41.380)', 4326),ST_GeomFromText('POINT(2.1511 41.374)', 4326),ST_GeomFromText('POINT(2.1528 41.413)', 4326),ST_GeomFromText('POINT(2.165 41.391)', 4326),ST_GeomFromText('POINT(2.1498 41.371)', 4326),ST_GeomFromText('POINT(2.1533 41.368)', 4326),ST_GeomFromText('POINT(2.131386 41.41399)', 4326)] AS geomin
)
SELECT
CDB_voronoi(geomin, 0.2, 1e-9) as result
st_transform(
(st_dump(CDB_voronoi(geomin, 0.2, 1e-9)
)).geom
, 3857) as the_geom_webmercator
FROM a;
```

33
doc/13_PIA.md Normal file
View File

@@ -0,0 +1,33 @@
## Pole of inaccessibility (PIA)
Function to find the [PIA](https://en.wikipedia.org/wiki/Pole_of_inaccessibility) from a given polygon and tolerance, following the quadtree approach by [Vladimir Agafonkin](https://github.com/mourner) described [here](https://github.com/mapbox/polylabel)
### CDB_PIA (polygon geometry, tolerance numeric DEFAULT 1.0)
#### Arguments
| Name | Type | Description |
|------|------|-------------|
| polygon | geometry | Target polygon |
| tolerance | numeric | Threshold to decide to take a cell into account |
### Returns
| Column Name | Type | Description |
|-------------|------|-------------|
| point | geometry| Pole of inaccessibility |
#### Example Usage
```sql
with a as(
select st_geomfromtext('POLYGON((-432540.453078056 4949775.20452642,-432329.947920966 4951361.232584,-431245.028163694 4952223.31516671,-429131.071033529 4951768.00415574,-424622.07505895 4952843.13503987,-423688.327170174 4953499.20752423,-424086.294349759 4954968.38274191,-423068.388925945 4954378.63345336,-423387.653225542 4953355.67417084,-420594.869840519 4953781.00230592,-416026.095299382 4951484.06849063,-412483.018546414 4951024.5410983,-410490.399661215 4954502.24032205,-408186.197521284 4956398.91417441,-407627.262358013 4959300.94633864,-406948.770061627 4959874.85407739,-404949.583326472 4959047.74518163,-402570.908447199 4953743.46829807,-400971.358683991 4952193.11680804,-403533.488084088 4949649.89857885,-406335.177028373 4950193.19571096,-407790.456731515 4952391.46015616,-412060.672398345 4950381.2389307,-410716.93482498 4949156.7509561,-408464.162289794 4943912.8940387,-409350.599394983 4942819.84896006,-408087.791091424 4942451.6711778,-407274.045613725 4940572.4807777,-404446.196589102 4939976.71501489,-402422.964843936 4940450.3670813,-401010.654464241 4939054.8061663,-397647.247369412 4940679.80737878,-395658.413346901 4940528.84765185,-395536.852462953 4938829.79565997,-394268.923462818 4938003.7277717,-393388.720249116 4934757.80596815,-392393.301362444 4934326.71675815,-392573.527618037 4932323.40974412,-393464.640141837 4931903.10653605,-393085.597275686 4931094.7353605,-398426.261165985 4929156.87541607,-398261.174361137 4926238.00816416,-394045.059966834 4925765.18668498,-392982.960705174 4926391.81893628,-393090.272694301 4927176.84692181,-391648.240010564 4924626.06386961,-391889.914625075 4923086.14787613,-394345.177314013 4923235.086036,-395550.878718795 4917812.79243978,-399009.463978251 4912927.7157945,-398948.794855767 4911941.91010796,-398092.636652078 4911806.57392519,-401991.601817112 4911722.9204501,-406225.972607907 4914505.47286319,-411104.994569885 4912569.26941163,-412925.513522316 4913030.3608866,-414630.148884835 4914436.69169949,-414207.691417276 4919205.78028405,-418306.141109809 4917994.9580478,-424184.700779621 4918938.12432889,-426816.961458921 4923664.37379373,-420956.324227126 4923381.98014807,-420186.661267781 4924286.48693378,-420943.411166194 4926812.76394433,-419779.45457046 4928527.43466337,-419768.767899344 4930681.94459216,-421911.668097113 4930432.40620397,-423482.386112205 4933451.28047252,-427272.814773717 4934151.56473242,-427144.908678797 4939731.77191996,-428982.125554848 4940522.84445172,-428986.133056516 4942437.17281266,-431237.792396792 4947309.68284815,-432476.889648814 4947791.74800037,-432540.453078056 4949775.20452642))', 3857) as g
),
b as (
select ST_Transform(g, 4326) as g from a
)
SELECT st_astext(CDB_PIA(g)) from b;
```

35
doc/14_densify.md Normal file
View File

@@ -0,0 +1,35 @@
## Densify function
Iterative densification of a set of scattered points using Delaunay triangulation. The new points are located at the centroids of the grid cells and have as assigned value the barycentric average value of the cell's vertex.
### CDB_Densify(geomin geometry[], colin numeric[], iterations integer)
#### Arguments
| Name | Type | Description |
|------|------|-------------|
| geomin | geometry[] | Array of points geometries |
| colin | numeric[] | Array of points' values |
| iterations | integer | Number of iterations |
### Returns
Returns a table object
| Name | Type | Description |
|------|------|-------------|
| geomout | geometry | Geometries of new dataset of points|
| colout | numeric | Values of points|
#### Example Usage
```sql
with data as (
select
ARRAY[7.0,8.0,1.0,2.0,3.0,5.0,6.0,4.0] as colin,
ARRAY[ST_GeomFromText('POINT(2.1744 41.4036)'),ST_GeomFromText('POINT(2.1228 41.3809)'),ST_GeomFromText('POINT(2.1511 41.3742)'),ST_GeomFromText('POINT(2.1528 41.4136)'),ST_GeomFromText('POINT(2.165 41.3917)'),ST_GeomFromText('POINT(2.1498 41.3713)'),ST_GeomFromText('POINT(2.1533 41.3683)'),ST_GeomFromText('POINT(2.131386 41.413998)')] as geomin
)
select CDB_Densify(geomin, colin, 2) from data;
```

36
doc/15_tinmap.md Normal file
View File

@@ -0,0 +1,36 @@
## TINMAP function
Generates a fake contour map, in the form of a TIN map, from a set of scattered points.Depends on **CDB_Densify**.
Its iterative nature lets the user smooth the final result as much as desired, but with a exponential time cost increase.
### CDB_TINmap(geomin geometry[], colin numeric[], iterations integer)
#### Arguments
| Name | Type | Description |
|------|------|-------------|
| geomin | geometry[] | Array of points geometries |
| colin | numeric[] | Array of points' values |
| iterations | integer | Number of iterations |
### Returns
Returns a table object
| Name | Type | Description |
|------|------|-------------|
| geomout | geometry | Geometries of new dataset of polygons|
| colout | numeric | Values of each cell|
#### Example Usage
```sql
with data as (
select
ARRAY[7.0,8.0,1.0,2.0,3.0,5.0,6.0,4.0] as colin,
ARRAY[ST_GeomFromText('POINT(2.1744 41.4036)'),ST_GeomFromText('POINT(2.1228 41.3809)'),ST_GeomFromText('POINT(2.1511 41.3742)'),ST_GeomFromText('POINT(2.1528 41.4136)'),ST_GeomFromText('POINT(2.165 41.3917)'),ST_GeomFromText('POINT(2.1498 41.3713)'),ST_GeomFromText('POINT(2.1533 41.3683)'),ST_GeomFromText('POINT(2.131386 41.413998)')] as geomin
)
select CDB_TINmap(geomin, colin, 2) from data;
```

50
doc/19_contour.md Normal file
View File

@@ -0,0 +1,50 @@
## Contour maps
Function to generate a contour map from an scatter dataset of points, using one of these three methods:
* [Nearest neighbor](https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation)
* [Barycentric](https://en.wikipedia.org/wiki/Barycentric_coordinate_system)
* [IDW](https://en.wikipedia.org/wiki/Inverse_distance_weighting)
### CDB_Contour (geom geometry[], values numeric[], resolution integer, buffer numeric, method, classmethod integer, steps integer)
#### Arguments
| Name | Type | Description |
|------|------|-------------|
| geom | geometry[] | Array of points's geometries |
| values | numeric[] | Array of points' values for the param under study|
| buffer | numeric | Value between 0 and 1 for spatial buffer of the set of points
| method | integer | 0:nearest neighbor, 1: barycentric, 2: IDW|
| classmethod | integer | 0:equals, 1: heads&tails, 2:jenks, 3:quantiles |
| steps | integer | Number of steps in the classification|
| max_time | integer | if <= 0: max processing time in seconds (smart resolution) , if >0: resolution in meters
### Returns
Returns a table object
| Name | Type | Description |
|------|------|-------------|
| the_geom | geometry | Geometries of the classified contour map|
| avg_value | numeric | Avg value of the area|
| min_value | numeric | Min value of the area|
| max_value | numeric | Max value of the areal|
| bin | integer | Index of the class of the area|
#### Example Usage
```sql
WITH a AS (
SELECT
ARRAY[800, 700, 600, 500, 400, 300, 200, 100]::numeric[] AS vals,
ARRAY[ST_GeomFromText('POINT(2.1744 41.403)',4326),ST_GeomFromText('POINT(2.1228 41.380)',4326),ST_GeomFromText('POINT(2.1511 41.374)',4326),ST_GeomFromText('POINT(2.1528 41.413)',4326),ST_GeomFromText('POINT(2.165 41.391)',4326),ST_GeomFromText('POINT(2.1498 41.371)',4326),ST_GeomFromText('POINT(2.1533 41.368)',4326),ST_GeomFromText('POINT(2.131386 41.41399)',4326)] AS g
),
b as(
SELECT
foo.*
FROM
a,
cdb_crankshaft.CDB_contour(a.g, a.vals, 0.0, 1, 3, 5, 60) foo
)
SELECT bin, avg_value from b order by bin;
```

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +1,5 @@
comment = 'CartoDB Spatial Analysis extension'
default_version = '0.3.0'
default_version = '0.4.2'
requires = 'plpythonu, postgis'
superuser = true
schema = cdb_crankshaft

View File

@@ -0,0 +1,5 @@
"""Import all modules"""
import crankshaft.random_seeds
import crankshaft.clustering
import crankshaft.space_time_dynamics
import crankshaft.segmentation

View File

@@ -0,0 +1,3 @@
"""Import all functions from for clustering"""
from moran import *
from kmeans import *

View File

@@ -0,0 +1,18 @@
from sklearn.cluster import KMeans
import plpy
def kmeans(query, no_clusters, no_init=20):
data = plpy.execute('''select array_agg(cartodb_id order by cartodb_id) as ids,
array_agg(ST_X(the_geom) order by cartodb_id) xs,
array_agg(ST_Y(the_geom) order by cartodb_id) ys from ({query}) a
where the_geom is not null
'''.format(query=query))
xs = data[0]['xs']
ys = data[0]['ys']
ids = data[0]['ids']
km = KMeans(n_clusters= no_clusters, n_init=no_init)
labels = km.fit_predict(zip(xs,ys))
return zip(ids,labels)

View File

@@ -0,0 +1,262 @@
"""
Moran's I geostatistics (global clustering & outliers presence)
"""
# TODO: Fill in local neighbors which have null/NoneType values with the
# average of the their neighborhood
import pysal as ps
import plpy
from collections import OrderedDict
# crankshaft module
import crankshaft.pysal_utils as pu
# High level interface ---------------------------------------
def moran(subquery, attr_name,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I (global)
Implementation building neighbors with a PostGIS database and Moran's I
core clusters with PySAL.
Andy Eschbacher
"""
qvals = OrderedDict([("id_col", id_col),
("attr1", attr_name),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
plpy.notice('** Query: %s' % query)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(2)
plpy.notice('** Query returned with %d rows' % len(result))
except plpy.SPIError:
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError)
return pu.empty_zipped_array(2)
## collect attributes
attr_vals = pu.get_attributes(result)
## calculate weights
weight = pu.get_weight(result, w_type, num_ngbrs)
## calculate moran global
moran_global = ps.esda.moran.Moran(attr_vals, weight,
permutations=permutations)
return zip([moran_global.I], [moran_global.EI])
def moran_local(subquery, attr,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I implementation for PL/Python
Andy Eschbacher
"""
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors
qvals = OrderedDict([("id_col", id_col),
("attr1", attr),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(5)
except plpy.SPIError:
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
return pu.empty_zipped_array(5)
attr_vals = pu.get_attributes(result)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
permutations=permutations)
# find quadrants for each geometry
quads = quad_position(lisa.q)
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
def moran_rate(subquery, numerator, denominator,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I Rate (global)
Andy Eschbacher
"""
qvals = OrderedDict([("id_col", id_col),
("attr1", numerator),
("attr2", denominator)
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
plpy.notice('** Query: %s' % query)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(2)
plpy.notice('** Query returned with %d rows' % len(result))
except plpy.SPIError:
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError)
return pu.empty_zipped_array(2)
## collect attributes
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
weight = pu.get_weight(result, w_type, num_ngbrs)
## calculate moran global rate
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
permutations=permutations)
return zip([lisa_rate.I], [lisa_rate.EI])
def moran_local_rate(subquery, numerator, denominator,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I Local Rate
Andy Eschbacher
"""
# geometries with values that are null are ignored
# resulting in a collection of not as near neighbors
qvals = OrderedDict([("id_col", id_col),
("numerator", numerator),
("denominator", denominator),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(5)
except plpy.SPIError:
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError)
return pu.empty_zipped_array(5)
## collect attributes
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
permutations=permutations)
# find quadrants for each geometry
quads = quad_position(lisa.q)
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
def moran_local_bv(subquery, attr1, attr2,
permutations, geom_col, id_col, w_type, num_ngbrs):
"""
Moran's I (local) Bivariate (untested)
"""
plpy.notice('** Constructing query')
qvals = OrderedDict([("id_col", id_col),
("attr1", attr1),
("attr2", attr2),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(4)
except plpy.SPIError:
plpy.error("Error: areas of interest query failed, " \
"check input parameters")
plpy.notice('** Query failed: "%s"' % query)
return pu.empty_zipped_array(4)
## collect attributes
attr1_vals = pu.get_attributes(result, 1)
attr2_vals = pu.get_attributes(result, 2)
# create weights
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
permutations=permutations)
plpy.notice("len of Is: %d" % len(lisa.Is))
# find clustering of significance
lisa_sig = quad_position(lisa.q)
plpy.notice('** Finished calculations')
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
# Low level functions ----------------------------------------
def map_quads(coord):
"""
Map a quadrant number to Moran's I designation
HH=1, LH=2, LL=3, HL=4
Input:
@param coord (int): quadrant of a specific measurement
Output:
classification (one of 'HH', 'LH', 'LL', or 'HL')
"""
if coord == 1:
return 'HH'
elif coord == 2:
return 'LH'
elif coord == 3:
return 'LL'
elif coord == 4:
return 'HL'
else:
return None
def quad_position(quads):
"""
Produce Moran's I classification based of n
Input:
@param quads ndarray: an array of quads classified by
1-4 (PySAL default)
Output:
@param list: an array of quads classied by 'HH', 'LL', etc.
"""
return [map_quads(q) for q in quads]

View File

@@ -0,0 +1,2 @@
"""Import all functions for pysal_utils"""
from crankshaft.pysal_utils.pysal_utils import *

View File

@@ -0,0 +1,188 @@
"""
Utilities module for generic PySAL functionality, mainly centered on
translating queries into numpy arrays or PySAL weights objects
"""
import numpy as np
import pysal as ps
def construct_neighbor_query(w_type, query_vals):
"""Return query (a string) used for finding neighbors
@param w_type text: type of neighbors to calculate ('knn' or 'queen')
@param query_vals dict: values used to construct the query
"""
if w_type.lower() == 'knn':
return knn(query_vals)
else:
return queen(query_vals)
## Build weight object
def get_weight(query_res, w_type='knn', num_ngbrs=5):
"""
Construct PySAL weight from return value of query
@param query_res dict-like: query results with attributes and neighbors
"""
# if w_type.lower() == 'knn':
# row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
# weights = {x['id']: row_normed_weights for x in query_res}
# else:
# weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
# if len(x['neighbors']) > 0
# else [] for x in query_res}
neighbors = {x['id']: x['neighbors'] for x in query_res}
print 'len of neighbors: %d' % len(neighbors)
built_weight = ps.W(neighbors)
built_weight.transform = 'r'
return built_weight
def query_attr_select(params):
"""
Create portion of SELECT statement for attributes inolved in query.
@param params: dict of information used in query (column names,
table name, etc.)
"""
attr_string = ""
template = "i.\"%(col)s\"::numeric As attr%(alias_num)s, "
if 'time_cols' in params:
## if markov analysis
attrs = params['time_cols']
for idx, val in enumerate(attrs):
attr_string += template % {"col": val, "alias_num": idx + 1}
else:
## if moran's analysis
attrs = [k for k in params
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs', 'subquery')]
for idx, val in enumerate(sorted(attrs)):
attr_string += template % {"col": params[val], "alias_num": idx + 1}
return attr_string
def query_attr_where(params):
"""
Construct where conditions when building neighbors query
Create portion of WHERE clauses for weeding out NULL-valued geometries
Input: dict of params:
{'subquery': ...,
'numerator': 'data1',
'denominator': 'data2',
'': ...}
Output: 'idx_replace."data1" IS NOT NULL AND idx_replace."data2" IS NOT NULL'
Input:
{'subquery': ...,
'time_cols': ['time1', 'time2', 'time3'],
'etc': ...}
Output: 'idx_replace."time1" IS NOT NULL AND idx_replace."time2" IS NOT
NULL AND idx_replace."time3" IS NOT NULL'
"""
attr_string = []
template = "idx_replace.\"%s\" IS NOT NULL"
if 'time_cols' in params:
## markov where clauses
attrs = params['time_cols']
# add values to template
for attr in attrs:
attr_string.append(template % attr)
else:
## moran where clauses
# get keys
attrs = sorted([k for k in params
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs', 'subquery')])
# add values to template
for attr in attrs:
attr_string.append(template % params[attr])
if len(attrs) == 2:
attr_string.append("idx_replace.\"%s\" <> 0" % params[attrs[1]])
out = " AND ".join(attr_string)
return out
def knn(params):
"""SQL query for k-nearest neighbors.
@param vars: dict of values to fill template
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM ({subquery}) As j " \
"WHERE " \
"i.\"{id_col}\" <> j.\"{id_col}\" AND " \
"%(attr_where_j)s " \
"ORDER BY " \
"j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
"LIMIT {num_ngbrs})" \
") As neighbors " \
"FROM ({subquery}) As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## SQL query for finding queens neighbors (all contiguous polygons)
def queen(params):
"""SQL query for queen neighbors.
@param params dict: information to fill query
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM ({subquery}) As j " \
"WHERE i.\"{id_col}\" <> j.\"{id_col}\" AND " \
"ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
"%(attr_where_j)s)" \
") As neighbors " \
"FROM ({subquery}) As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## to add more weight methods open a ticket or pull request
def get_attributes(query_res, attr_num=1):
"""
@param query_res: query results with attributes and neighbors
@param attr_num: attribute number (1, 2, ...)
"""
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
def empty_zipped_array(num_nones):
"""
prepare return values for cases of empty weights objects (no neighbors)
Input:
@param num_nones int: number of columns (e.g., 4)
Output:
[(None, None, None, None)]
"""
return [tuple([None] * num_nones)]

View File

@@ -0,0 +1,11 @@
"""Random seed generator used for non-deterministic functions in crankshaft"""
import random
import numpy
def set_random_seeds(value):
"""
Set the seeds of the RNGs (Random Number Generators)
used internally.
"""
random.seed(value)
numpy.random.seed(value)

View File

@@ -0,0 +1 @@
from segmentation import *

View File

@@ -0,0 +1,176 @@
"""
Segmentation creation and prediction
"""
import sklearn
import numpy as np
import plpy
from sklearn.ensemble import GradientBoostingRegressor
from sklearn import metrics
from sklearn.cross_validation import train_test_split
# Lower level functions
#----------------------
def replace_nan_with_mean(array):
"""
Input:
@param array: an array of floats which may have null-valued entries
Output:
array with nans filled in with the mean of the dataset
"""
# returns an array of rows and column indices
indices = np.where(np.isnan(array))
# iterate through entries which have nan values
for row, col in zip(*indices):
array[row, col] = np.mean(array[~np.isnan(array[:, col]), col])
return array
def get_data(variable, feature_columns, query):
"""
Fetch data from the database, clean, and package into
numpy arrays
Input:
@param variable: name of the target variable
@param feature_columns: list of column names
@param query: subquery that data is pulled from for the packaging
Output:
prepared data, packaged into NumPy arrays
"""
columns = ','.join(['array_agg("{col}") As "{col}"'.format(col=col) for col in feature_columns])
try:
data = plpy.execute('''SELECT array_agg("{variable}") As target, {columns} FROM ({query}) As a'''.format(
variable=variable,
columns=columns,
query=query))
except Exception, e:
plpy.error('Failed to access data to build segmentation model: %s' % e)
# extract target data from plpy object
target = np.array(data[0]['target'])
# put n feature data arrays into an n x m array of arrays
features = np.column_stack([np.array(data[0][col], dtype=float) for col in feature_columns])
return replace_nan_with_mean(target), replace_nan_with_mean(features)
# High level interface
# --------------------
def create_and_predict_segment_agg(target, features, target_features, target_ids, model_parameters):
"""
Version of create_and_predict_segment that works on arrays that come stright form the SQL calling
the function.
Input:
@param target: The 1D array of lenth NSamples containing the target variable we want the model to predict
@param features: Thw 2D array of size NSamples * NFeatures that form the imput to the model
@param target_ids: A 1D array of target_ids that will be used to associate the results of the prediction with the rows which they come from
@param model_parameters: A dictionary containing parameters for the model.
"""
clean_target = replace_nan_with_mean(target)
clean_features = replace_nan_with_mean(features)
target_features = replace_nan_with_mean(target_features)
model, accuracy = train_model(clean_target, clean_features, model_parameters, 0.2)
prediction = model.predict(target_features)
accuracy_array = [accuracy]*prediction.shape[0]
return zip(target_ids, prediction, np.full(prediction.shape, accuracy_array))
def create_and_predict_segment(query, variable, target_query, model_params):
"""
generate a segment with machine learning
Stuart Lynn
"""
## fetch column names
try:
columns = plpy.execute('SELECT * FROM ({query}) As a LIMIT 1 '.format(query=query))[0].keys()
except Exception, e:
plpy.error('Failed to build segmentation model: %s' % e)
## extract column names to be used in building the segmentation model
feature_columns = set(columns) - set([variable, 'cartodb_id', 'the_geom', 'the_geom_webmercator'])
## get data from database
target, features = get_data(variable, feature_columns, query)
model, accuracy = train_model(target, features, model_params, 0.2)
cartodb_ids, result = predict_segment(model, feature_columns, target_query)
accuracy_array = [accuracy]*result.shape[0]
return zip(cartodb_ids, result, accuracy_array)
def train_model(target, features, model_params, test_split):
"""
Train the Gradient Boosting model on the provided data and calculate the accuracy of the model
Input:
@param target: 1D Array of the variable that the model is to be trianed to predict
@param features: 2D Array NSamples * NFeatures to use in trining the model
@param model_params: A dictionary of model parameters, the full specification can be found on the
scikit learn page for [GradientBoostingRegressor](http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html)
@parma test_split: The fraction of the data to be withheld for testing the model / calculating the accuray
"""
features_train, features_test, target_train, target_test = train_test_split(features, target, test_size=test_split)
model = GradientBoostingRegressor(**model_params)
model.fit(features_train, target_train)
accuracy = calculate_model_accuracy(model, features, target)
return model, accuracy
def calculate_model_accuracy(model, features, target):
"""
Calculate the mean squared error of the model prediction
Input:
@param model: model trained from input features
@param features: features to make a prediction from
@param target: target to compare prediction to
Output:
mean squared error of the model prection compared to the target
"""
prediction = model.predict(features)
return metrics.mean_squared_error(prediction, target)
def predict_segment(model, features, target_query):
"""
Use the provided model to predict the values for the new feature set
Input:
@param model: The pretrained model
@features: A list of features to use in the model prediction (list of column names)
@target_query: The query to run to obtain the data to predict on and the cartdb_ids associated with it.
"""
batch_size = 1000
joined_features = ','.join(['"{0}"::numeric'.format(a) for a in features])
try:
cursor = plpy.cursor('SELECT Array[{joined_features}] As features FROM ({target_query}) As a'.format(
joined_features=joined_features,
target_query=target_query))
except Exception, e:
plpy.error('Failed to build segmentation model: %s' % e)
results = []
while True:
rows = cursor.fetch(batch_size)
if not rows:
break
batch = np.row_stack([np.array(row['features'], dtype=float) for row in rows])
#Need to fix this. Should be global mean. This will cause weird effects
batch = replace_nan_with_mean(batch)
prediction = model.predict(batch)
results.append(prediction)
try:
cartodb_ids = plpy.execute('''SELECT array_agg(cartodb_id ORDER BY cartodb_id) As cartodb_ids FROM ({0}) As a'''.format(target_query))[0]['cartodb_ids']
except Exception, e:
plpy.error('Failed to build segmentation model: %s' % e)
return cartodb_ids, np.concatenate(results)

View File

@@ -0,0 +1,2 @@
"""Import all functions from clustering libraries."""
from markov import *

View File

@@ -0,0 +1,189 @@
"""
Spatial dynamics measurements using Spatial Markov
"""
import numpy as np
import pysal as ps
import plpy
import crankshaft.pysal_utils as pu
def spatial_markov_trend(subquery, time_cols, num_classes=7,
w_type='knn', num_ngbrs=5, permutations=0,
geom_col='the_geom', id_col='cartodb_id'):
"""
Predict the trends of a unit based on:
1. history of its transitions to different classes (e.g., 1st quantile -> 2nd quantile)
2. average class of its neighbors
Inputs:
@param subquery string: e.g., SELECT the_geom, cartodb_id,
interesting_time_column FROM table_name
@param time_cols list of strings: list of strings of column names
@param num_classes (optional): number of classes to break distribution
of values into. Currently uses quantile bins.
@param w_type string (optional): weight type ('knn' or 'queen')
@param num_ngbrs int (optional): number of neighbors (if knn type)
@param permutations int (optional): number of permutations for test
stats
@param geom_col string (optional): name of column which contains the
geometries
@param id_col string (optional): name of column which has the ids of
the table
Outputs:
@param trend_up float: probablity that a geom will move to a higher
class
@param trend_down float: probablity that a geom will move to a lower
class
@param trend float: (trend_up - trend_down) / trend_static
@param volatility float: a measure of the volatility based on
probability stddev(prob array)
"""
if len(time_cols) < 2:
plpy.error('More than one time column needs to be passed')
qvals = {"id_col": id_col,
"time_cols": time_cols,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs}
try:
query_result = plpy.execute(
pu.construct_neighbor_query(w_type, qvals)
)
if len(query_result) == 0:
return zip([None], [None], [None], [None], [None])
except plpy.SPIError, err:
plpy.debug('Query failed with exception %s: %s' % (err, pu.construct_neighbor_query(w_type, qvals)))
plpy.error('Query failed, check the input parameters')
return zip([None], [None], [None], [None], [None])
## build weight
weights = pu.get_weight(query_result, w_type)
weights.transform = 'r'
## prep time data
t_data = get_time_data(query_result, time_cols)
plpy.debug('shape of t_data %d, %d' % t_data.shape)
plpy.debug('number of weight objects: %d, %d' % (weights.sparse).shape)
plpy.debug('first num elements: %f' % t_data[0, 0])
sp_markov_result = ps.Spatial_Markov(t_data,
weights,
k=num_classes,
fixed=False,
permutations=permutations)
## get lag classes
lag_classes = ps.Quantiles(
ps.lag_spatial(weights, t_data[:, -1]),
k=num_classes).yb
## look up probablity distribution for each unit according to class and lag class
prob_dist = get_prob_dist(sp_markov_result.P,
lag_classes,
sp_markov_result.classes[:, -1])
## find the ups and down and overall distribution of each cell
trend_up, trend_down, trend, volatility = get_prob_stats(prob_dist,
sp_markov_result.classes[:, -1])
## output the results
return zip(trend, trend_up, trend_down, volatility, weights.id_order)
def get_time_data(markov_data, time_cols):
"""
Extract the time columns and bin appropriately
"""
num_attrs = len(time_cols)
return np.array([[x['attr' + str(i)] for x in markov_data]
for i in range(1, num_attrs+1)], dtype=float).transpose()
## not currently used
def rebin_data(time_data, num_time_per_bin):
"""
Convert an n x l matrix into an (n/m) x l matrix where the values are
reduced (averaged) for the intervening states:
1 2 3 4 1.5 3.5
5 6 7 8 -> 5.5 7.5
9 8 7 6 8.5 6.5
5 4 3 2 4.5 2.5
if m = 2, the 4 x 4 matrix is transformed to a 2 x 4 matrix.
This process effectively resamples the data at a longer time span n
units longer than the input data.
For cases when there is a remainder (remainder(5/3) = 2), the remaining
two columns are binned together as the last time period, while the
first three are binned together for the first period.
Input:
@param time_data n x l ndarray: measurements of an attribute at
different time intervals
@param num_time_per_bin int: number of columns to average into a new
column
Output:
ceil(n / m) x l ndarray of resampled time series
"""
if time_data.shape[1] % num_time_per_bin == 0:
## if fit is perfect, then use it
n_max = time_data.shape[1] / num_time_per_bin
else:
## fit remainders into an additional column
n_max = time_data.shape[1] / num_time_per_bin + 1
return np.array([time_data[:, num_time_per_bin * i:num_time_per_bin * (i+1)].mean(axis=1)
for i in range(n_max)]).T
def get_prob_dist(transition_matrix, lag_indices, unit_indices):
"""
Given an array of transition matrices, look up the probability
associated with the arrangements passed
Input:
@param transition_matrix ndarray[k,k,k]:
@param lag_indices ndarray:
@param unit_indices ndarray:
Output:
Array of probability distributions
"""
return np.array([transition_matrix[(lag_indices[i], unit_indices[i])]
for i in range(len(lag_indices))])
def get_prob_stats(prob_dist, unit_indices):
"""
get the statistics of the probability distributions
Outputs:
@param trend_up ndarray(float): sum of probabilities for upward
movement (relative to the unit index of that prob)
@param trend_down ndarray(float): sum of probabilities for downward
movement (relative to the unit index of that prob)
@param trend ndarray(float): difference of upward and downward
movements
"""
num_elements = len(unit_indices)
trend_up = np.empty(num_elements, dtype=float)
trend_down = np.empty(num_elements, dtype=float)
trend = np.empty(num_elements, dtype=float)
for i in range(num_elements):
trend_up[i] = prob_dist[i, (unit_indices[i]+1):].sum()
trend_down[i] = prob_dist[i, :unit_indices[i]].sum()
if prob_dist[i, unit_indices[i]] > 0.0:
trend[i] = (trend_up[i] - trend_down[i]) / prob_dist[i, unit_indices[i]]
else:
trend[i] = None
## calculate volatility of distribution
volatility = prob_dist.std(axis=1)
return trend_up, trend_down, trend, volatility

View File

@@ -0,0 +1,49 @@
"""
CartoDB Spatial Analysis Python Library
See:
https://github.com/CartoDB/crankshaft
"""
from setuptools import setup, find_packages
setup(
name='crankshaft',
version='0.0.0',
description='CartoDB Spatial Analysis Python Library',
url='https://github.com/CartoDB/crankshaft',
author='Data Services Team - CartoDB',
author_email='dataservices@cartodb.com',
license='MIT',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Mapping comunity',
'Topic :: Maps :: Mapping Tools',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2.7',
],
keywords='maps mapping tools spatial analysis geostatistics',
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
extras_require={
'dev': ['unittest'],
'test': ['unittest', 'nose', 'mock'],
},
# The choice of component versions is dictated by what's
# provisioned in the production servers.
# IMPORTANT NOTE: please don't change this line. Instead issue a ticket to systems for evaluation.
install_requires=['joblib==0.8.3', 'numpy==1.6.1', 'scipy==0.14.0', 'pysal==1.11.2', 'scikit-learn==0.14.1'],
requires=['pysal', 'numpy', 'sklearn'],
test_suite='test'
)

View File

@@ -0,0 +1,49 @@
"""
CartoDB Spatial Analysis Python Library
See:
https://github.com/CartoDB/crankshaft
"""
from setuptools import setup, find_packages
setup(
name='crankshaft',
version='0.0.0',
description='CartoDB Spatial Analysis Python Library',
url='https://github.com/CartoDB/crankshaft',
author='Data Services Team - CartoDB',
author_email='dataservices@cartodb.com',
license='MIT',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Mapping comunity',
'Topic :: Maps :: Mapping Tools',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2.7',
],
keywords='maps mapping tools spatial analysis geostatistics',
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
extras_require={
'dev': ['unittest'],
'test': ['unittest', 'nose', 'mock'],
},
# The choice of component versions is dictated by what's
# provisioned in the production servers.
# IMPORTANT NOTE: please don't change this line. Instead issue a ticket to systems for evaluation.
install_requires=['joblib==0.8.3', 'numpy==1.6.1', 'scipy==0.14.0', 'pysal==1.11.2', 'scikit-learn==0.14.1'],
requires=['pysal', 'numpy', 'sklearn'],
test_suite='test'
)

View File

@@ -0,0 +1 @@
[{"xs": [9.917239463463458, 9.042767302696836, 10.798929825304187, 8.763751051762995, 11.383882954810852, 11.018206993460897, 8.939526075734316, 9.636159342565252, 10.136336896960058, 11.480610059427342, 12.115011910725082, 9.173267848893428, 10.239300931201738, 8.00012512174072, 8.979962292282131, 9.318376124429575, 10.82259513754284, 10.391747171927115, 10.04904588886165, 9.96007160443463, -0.78825626804569, -0.3511819898577426, -1.2796410003764271, -0.3977049391203402, 2.4792311265774667, 1.3670311632092624, 1.2963504112955613, 2.0404844103073025, -1.6439708506073223, 0.39122885445645805, 1.026031821452462, -0.04044477160482201, -0.7442346929085072, -0.34687120826243034, -0.23420359971379054, -0.5919629143336708, -0.202903054395391, -0.1893399644841902, 1.9331834251176807, -0.12321054392851609], "ys": [8.735627063679981, 9.857615954045011, 10.81439096759407, 10.586727233537191, 9.232919976568622, 11.54281262696508, 8.392787912674466, 9.355119689665944, 9.22380703532752, 10.542142541823122, 10.111980619367035, 10.760836265570738, 8.819773453269804, 10.25325722424816, 9.802077905695608, 8.955420161552611, 9.833801181904477, 10.491684241001613, 12.076108669877556, 11.74289693140474, -0.5685725015474191, -0.5715728344759778, -0.20180907868635137, 0.38431336480089595, -0.3402202083684184, -2.4652736827783586, 0.08295159401756182, 0.8503818775816505, 0.6488691600321166, 0.5794762568230527, -0.6770063922144103, -0.6557616416449478, -1.2834289177624947, 0.1096318195532717, -0.38986922166834853, -1.6224497706950238, 0.09429787743230483, 0.4005097316394031, -0.508002811195673, -1.2473463371366507], "ids": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]}]

View File

@@ -0,0 +1 @@
[[0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 0], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 1], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 2], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 3], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 4], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 5], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 6], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 7], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 8], [0.19047619047619049, 0.16, 0.0, 0.32594478059941379, 9], [-0.23529411764705882, 0.0, 0.19047619047619047, 0.31356338348865387, 10], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 11], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 12], [0.027777777777777783, 0.11111111111111112, 0.088888888888888892, 0.30339641183779581, 13], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 14], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 15], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 16], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 17], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 18], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 19], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 20], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 21], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 22], [-0.16666666666666663, 0.18181818181818182, 0.27272727272727271, 0.20246415864836445, 23], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 24], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 25], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 26], [-0.043478260869565216, 0.0, 0.041666666666666664, 0.37950991789118999, 27], [0.22222222222222221, 0.18181818181818182, 0.0, 0.31701083225750354, 28], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 29], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 30], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 31], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 32], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 33], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 34], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 35], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 36], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 37], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 38], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 39], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 40], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 41], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 42], [0.0, 0.0, 0.0, 0.40000000000000002, 43], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 44], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 45], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 46], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 47]]

View File

@@ -0,0 +1,52 @@
[[0.9319096128346788, "HH"],
[-1.135787401862846, "HL"],
[0.11732030672508517, "LL"],
[0.6152779669180425, "LL"],
[-0.14657336660125297, "LH"],
[0.6967858120189607, "LL"],
[0.07949310115714454, "HH"],
[0.4703198759258987, "HH"],
[0.4421125200498064, "HH"],
[0.5724288737143592, "LL"],
[0.8970743435692062, "LL"],
[0.18327334401918674, "LL"],
[-0.01466729201304962, "HL"],
[0.3481559372544409, "LL"],
[0.06547094736902978, "LL"],
[0.15482141569329988, "HH"],
[0.4373841193538136, "HH"],
[0.15971286468915544, "LL"],
[1.0543588860308968, "HH"],
[1.7372866900020818, "HH"],
[1.091998586053999, "LL"],
[0.1171572584252222, "HH"],
[0.08438455015300014, "LL"],
[0.06547094736902978, "LL"],
[0.15482141569329985, "HH"],
[1.1627044812890683, "HH"],
[0.06547094736902978, "LL"],
[0.795275137550483, "HH"],
[0.18562939195219, "LL"],
[0.3010757406693439, "LL"],
[2.8205795942839376, "HH"],
[0.11259190602909264, "LL"],
[-0.07116352791516614, "HL"],
[-0.09945240794119009, "LH"],
[0.18562939195219, "LL"],
[0.1832733440191868, "LL"],
[-0.39054253768447705, "HL"],
[-0.1672071289487642, "HL"],
[0.3337669247916343, "HH"],
[0.2584386102554792, "HH"],
[-0.19733845476322634, "HL"],
[-0.9379282899805409, "LH"],
[-0.028770969951095866, "LH"],
[0.051367269430983485, "LL"],
[-0.2172548045913472, "LH"],
[0.05136726943098351, "LL"],
[0.04191046803899837, "LL"],
[0.7482357030403517, "HH"],
[-0.014585767863118111, "LH"],
[0.5410013139159929, "HH"],
[1.0223932668429925, "LL"],
[1.4179402898927476, "LL"]]

View File

@@ -0,0 +1,54 @@
[
{"neighbors": [48, 26, 20, 9, 31], "id": 1, "value": 0.5},
{"neighbors": [30, 16, 46, 3, 4], "id": 2, "value": 0.7},
{"neighbors": [46, 30, 2, 12, 16], "id": 3, "value": 0.2},
{"neighbors": [18, 30, 23, 2, 52], "id": 4, "value": 0.1},
{"neighbors": [47, 40, 45, 37, 28], "id": 5, "value": 0.3},
{"neighbors": [10, 21, 41, 14, 37], "id": 6, "value": 0.05},
{"neighbors": [8, 17, 43, 25, 12], "id": 7, "value": 0.4},
{"neighbors": [17, 25, 43, 22, 7], "id": 8, "value": 0.7},
{"neighbors": [39, 34, 1, 26, 48], "id": 9, "value": 0.5},
{"neighbors": [6, 37, 5, 45, 49], "id": 10, "value": 0.04},
{"neighbors": [51, 41, 29, 21, 14], "id": 11, "value": 0.08},
{"neighbors": [44, 46, 43, 50, 3], "id": 12, "value": 0.2},
{"neighbors": [45, 23, 14, 28, 18], "id": 13, "value": 0.4},
{"neighbors": [41, 29, 13, 23, 6], "id": 14, "value": 0.2},
{"neighbors": [36, 27, 32, 33, 24], "id": 15, "value": 0.3},
{"neighbors": [19, 2, 46, 44, 28], "id": 16, "value": 0.4},
{"neighbors": [8, 25, 43, 7, 22], "id": 17, "value": 0.6},
{"neighbors": [23, 4, 29, 14, 13], "id": 18, "value": 0.3},
{"neighbors": [42, 16, 28, 26, 40], "id": 19, "value": 0.7},
{"neighbors": [1, 48, 31, 26, 42], "id": 20, "value": 0.8},
{"neighbors": [41, 6, 11, 14, 10], "id": 21, "value": 0.1},
{"neighbors": [25, 50, 43, 31, 44], "id": 22, "value": 0.4},
{"neighbors": [18, 13, 14, 4, 2], "id": 23, "value": 0.1},
{"neighbors": [33, 49, 34, 47, 27], "id": 24, "value": 0.3},
{"neighbors": [43, 8, 22, 17, 50], "id": 25, "value": 0.4},
{"neighbors": [1, 42, 20, 31, 48], "id": 26, "value": 0.6},
{"neighbors": [32, 15, 36, 33, 24], "id": 27, "value": 0.3},
{"neighbors": [40, 45, 19, 5, 13], "id": 28, "value": 0.8},
{"neighbors": [11, 51, 41, 14, 18], "id": 29, "value": 0.3},
{"neighbors": [2, 3, 4, 46, 18], "id": 30, "value": 0.1},
{"neighbors": [20, 26, 1, 50, 48], "id": 31, "value": 0.9},
{"neighbors": [27, 36, 15, 49, 24], "id": 32, "value": 0.3},
{"neighbors": [24, 27, 49, 34, 32], "id": 33, "value": 0.4},
{"neighbors": [47, 9, 39, 40, 24], "id": 34, "value": 0.3},
{"neighbors": [38, 51, 11, 21, 41], "id": 35, "value": 0.3},
{"neighbors": [15, 32, 27, 49, 33], "id": 36, "value": 0.2},
{"neighbors": [49, 10, 5, 47, 24], "id": 37, "value": 0.5},
{"neighbors": [35, 21, 51, 11, 41], "id": 38, "value": 0.4},
{"neighbors": [9, 34, 48, 1, 47], "id": 39, "value": 0.6},
{"neighbors": [28, 47, 5, 9, 34], "id": 40, "value": 0.5},
{"neighbors": [11, 14, 29, 21, 6], "id": 41, "value": 0.4},
{"neighbors": [26, 19, 1, 9, 31], "id": 42, "value": 0.2},
{"neighbors": [25, 12, 8, 22, 44], "id": 43, "value": 0.3},
{"neighbors": [12, 50, 46, 16, 43], "id": 44, "value": 0.2},
{"neighbors": [28, 13, 5, 40, 19], "id": 45, "value": 0.3},
{"neighbors": [3, 12, 44, 2, 16], "id": 46, "value": 0.2},
{"neighbors": [34, 40, 5, 49, 24], "id": 47, "value": 0.3},
{"neighbors": [1, 20, 26, 9, 39], "id": 48, "value": 0.5},
{"neighbors": [24, 37, 47, 5, 33], "id": 49, "value": 0.2},
{"neighbors": [44, 22, 31, 42, 26], "id": 50, "value": 0.6},
{"neighbors": [11, 29, 41, 14, 21], "id": 51, "value": 0.01},
{"neighbors": [4, 18, 29, 51, 23], "id": 52, "value": 0.01}
]

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,13 @@
import unittest
from mock_plpy import MockPlPy
plpy = MockPlPy()
import sys
sys.modules['plpy'] = plpy
import os
def fixture_file(name):
dir = os.path.dirname(os.path.realpath(__file__))
return os.path.join(dir, 'fixtures', name)

View File

@@ -0,0 +1,52 @@
import re
class MockCursor:
def __init__(self, data):
self.cursor_pos = 0
self.data = data
def fetch(self, batch_size):
batch = self.data[self.cursor_pos : self.cursor_pos + batch_size]
self.cursor_pos += batch_size
return batch
class MockPlPy:
def __init__(self):
self._reset()
def _reset(self):
self.infos = []
self.notices = []
self.debugs = []
self.logs = []
self.warnings = []
self.errors = []
self.fatals = []
self.executes = []
self.results = []
self.prepares = []
self.results = []
def _define_result(self, query, result):
pattern = re.compile(query, re.IGNORECASE | re.MULTILINE)
self.results.append([pattern, result])
def notice(self, msg):
self.notices.append(msg)
def debug(self, msg):
self.notices.append(msg)
def info(self, msg):
self.infos.append(msg)
def cursor(self, query):
data = self.execute(query)
return MockCursor(data)
def execute(self, query): # TODO: additional arguments
for result in self.results:
if result[0].match(query):
return result[1]
return []

View File

@@ -0,0 +1,38 @@
import unittest
import numpy as np
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
#
# import sys
# sys.modules['plpy'] = plpy
from helper import plpy, fixture_file
import numpy as np
import crankshaft.clustering as cc
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
import json
class KMeansTest(unittest.TestCase):
"""Testing class for Moran's I functions"""
def setUp(self):
plpy._reset()
self.cluster_data = json.loads(open(fixture_file('kmeans.json')).read())
self.params = {"subquery": "select * from table",
"no_clusters": "10"
}
def test_kmeans(self):
data = self.cluster_data
plpy._define_result('select' ,data)
clusters = cc.kmeans('subquery', 2)
labels = [a[1] for a in clusters]
c1 = [a for a in clusters if a[1]==0]
c2 = [a for a in clusters if a[1]==1]
self.assertEqual(len(np.unique(labels)),2)
self.assertEqual(len(c1),20)
self.assertEqual(len(c2),20)

View File

@@ -0,0 +1,88 @@
import unittest
import numpy as np
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
#
# import sys
# sys.modules['plpy'] = plpy
from helper import plpy, fixture_file
import crankshaft.clustering as cc
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
import json
class MoranTest(unittest.TestCase):
"""Testing class for Moran's I functions"""
def setUp(self):
plpy._reset()
self.params = {"id_col": "cartodb_id",
"attr1": "andy",
"attr2": "jay_z",
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.params_markov = {"id_col": "cartodb_id",
"time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"],
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.neighbors_data = json.loads(open(fixture_file('neighbors.json')).read())
self.moran_data = json.loads(open(fixture_file('moran.json')).read())
def test_map_quads(self):
"""Test map_quads"""
self.assertEqual(cc.map_quads(1), 'HH')
self.assertEqual(cc.map_quads(2), 'LH')
self.assertEqual(cc.map_quads(3), 'LL')
self.assertEqual(cc.map_quads(4), 'HL')
self.assertEqual(cc.map_quads(33), None)
self.assertEqual(cc.map_quads('andy'), None)
def test_quad_position(self):
"""Test lisa_sig_vals"""
quads = np.array([1, 2, 3, 4], np.int)
ans = np.array(['HH', 'LH', 'LL', 'HL'])
test_ans = cc.quad_position(quads)
self.assertTrue((test_ans == ans).all())
def test_moran_local(self):
"""Test Moran's I local"""
data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local('subquery', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id')
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
self.assertAlmostEqual(res_val, exp_val)
self.assertEqual(res_quad, exp_quad)
def test_moran_local_rate(self):
"""Test Moran's I rate"""
data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local_rate('subquery', 'numerator', 'denominator', 'knn', 5, 99, 'the_geom', 'cartodb_id')
print 'result == None? ', result == None
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
self.assertAlmostEqual(res_val, exp_val)
def test_moran(self):
"""Test Moran's I global"""
data = [{ 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1235)
result = cc.moran('table', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id')
print 'result == None?', result == None
result_moran = result[0][0]
expected_moran = np.array([row[0] for row in self.moran_data]).mean()
self.assertAlmostEqual(expected_moran, result_moran, delta=10e-2)

View File

@@ -0,0 +1,142 @@
import unittest
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
class PysalUtilsTest(unittest.TestCase):
"""Testing class for utility functions related to PySAL integrations"""
def setUp(self):
self.params = {"id_col": "cartodb_id",
"attr1": "andy",
"attr2": "jay_z",
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.params_array = {"id_col": "cartodb_id",
"time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"],
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
def test_query_attr_select(self):
"""Test query_attr_select"""
ans = "i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, "
ans_array = "i.\"_2013_dec\"::numeric As attr1, " \
"i.\"_2014_jan\"::numeric As attr2, " \
"i.\"_2014_feb\"::numeric As attr3, "
self.assertEqual(pu.query_attr_select(self.params), ans)
self.assertEqual(pu.query_attr_select(self.params_array), ans_array)
def test_query_attr_where(self):
"""Test pu.query_attr_where"""
ans = "idx_replace.\"andy\" IS NOT NULL AND " \
"idx_replace.\"jay_z\" IS NOT NULL AND " \
"idx_replace.\"jay_z\" <> 0"
ans_array = "idx_replace.\"_2013_dec\" IS NOT NULL AND " \
"idx_replace.\"_2014_jan\" IS NOT NULL AND " \
"idx_replace.\"_2014_feb\" IS NOT NULL"
self.assertEqual(pu.query_attr_where(self.params), ans)
self.assertEqual(pu.query_attr_where(self.params_array), ans_array)
def test_knn(self):
"""Test knn neighbors constructor"""
ans = "SELECT i.\"cartodb_id\" As id, " \
"i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE " \
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND " \
"j.\"jay_z\" <> 0 " \
"ORDER BY " \
"j.\"the_geom\" <-> i.\"the_geom\" ASC " \
"LIMIT 321)) As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"andy\" IS NOT NULL AND " \
"i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 " \
"ORDER BY i.\"cartodb_id\" ASC;"
ans_array = "SELECT i.\"cartodb_id\" As id, " \
"i.\"_2013_dec\"::numeric As attr1, " \
"i.\"_2014_jan\"::numeric As attr2, " \
"i.\"_2014_feb\"::numeric As attr3, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"j.\"_2013_dec\" IS NOT NULL AND " \
"j.\"_2014_jan\" IS NOT NULL AND " \
"j.\"_2014_feb\" IS NOT NULL " \
"ORDER BY j.\"the_geom\" <-> i.\"the_geom\" ASC " \
"LIMIT 321)) As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"_2013_dec\" IS NOT NULL AND " \
"i.\"_2014_jan\" IS NOT NULL AND " \
"i.\"_2014_feb\" IS NOT NULL "\
"ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(pu.knn(self.params), ans)
self.assertEqual(pu.knn(self.params_array), ans_array)
def test_queen(self):
"""Test queen neighbors constructor"""
ans = "SELECT i.\"cartodb_id\" As id, " \
"i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE " \
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"ST_Touches(i.\"the_geom\", " \
"j.\"the_geom\") AND " \
"j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND " \
"j.\"jay_z\" <> 0)" \
") As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"andy\" IS NOT NULL AND " \
"i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 " \
"ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(pu.queen(self.params), ans)
def test_construct_neighbor_query(self):
"""Test construct_neighbor_query"""
# Compare to raw knn query
self.assertEqual(pu.construct_neighbor_query('knn', self.params),
pu.knn(self.params))
def test_get_attributes(self):
"""Test get_attributes"""
## need to add tests
self.assertEqual(True, True)
def test_get_weight(self):
"""Test get_weight"""
self.assertEqual(True, True)
def test_empty_zipped_array(self):
"""Test empty_zipped_array"""
ans2 = [(None, None)]
ans4 = [(None, None, None, None)]
self.assertEqual(pu.empty_zipped_array(2), ans2)
self.assertEqual(pu.empty_zipped_array(4), ans4)

View File

@@ -0,0 +1,64 @@
import unittest
import numpy as np
from helper import plpy, fixture_file
import crankshaft.segmentation as segmentation
import json
class SegmentationTest(unittest.TestCase):
"""Testing class for Moran's I functions"""
def setUp(self):
plpy._reset()
def generate_random_data(self,n_samples,random_state, row_type=False):
x1 = random_state.uniform(size=n_samples)
x2 = random_state.uniform(size=n_samples)
x3 = random_state.randint(0, 4, size=n_samples)
y = x1+x2*x2+x3
cartodb_id = range(len(x1))
if row_type:
return [ {'features': vals} for vals in zip(x1,x2,x3)], y
else:
return [dict( zip(['x1','x2','x3','target', 'cartodb_id'],[x1,x2,x3,y,cartodb_id]))]
def test_replace_nan_with_mean(self):
test_array = np.array([1.2, np.nan, 3.2, np.nan, np.nan])
def test_create_and_predict_segment(self):
n_samples = 1000
random_state_train = np.random.RandomState(13)
random_state_test = np.random.RandomState(134)
training_data = self.generate_random_data(n_samples, random_state_train)
test_data, test_y = self.generate_random_data(n_samples, random_state_test, row_type=True)
ids = [{'cartodb_ids': range(len(test_data))}]
rows = [{'x1': 0,'x2':0,'x3':0,'y':0,'cartodb_id':0}]
plpy._define_result('select \* from \(select \* from training\) a limit 1',rows)
plpy._define_result('.*from \(select \* from training\) as a' ,training_data)
plpy._define_result('select array_agg\(cartodb\_id order by cartodb\_id\) as cartodb_ids from \(.*\) a',ids)
plpy._define_result('.*select \* from test.*' ,test_data)
model_parameters = {'n_estimators': 1200,
'max_depth': 3,
'subsample' : 0.5,
'learning_rate': 0.01,
'min_samples_leaf': 1}
result = segmentation.create_and_predict_segment(
'select * from training',
'target',
'select * from test',
model_parameters)
prediction = [r[1] for r in result]
accuracy =np.sqrt(np.mean( np.square( np.array(prediction) - np.array(test_y))))
self.assertEqual(len(result),len(test_data))
self.assertTrue( result[0][2] < 0.01)
self.assertTrue( accuracy < 0.5*np.mean(test_y) )

View File

@@ -0,0 +1,324 @@
import unittest
import numpy as np
import unittest
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
#
# import sys
# sys.modules['plpy'] = plpy
from helper import plpy, fixture_file
import crankshaft.space_time_dynamics as std
from crankshaft import random_seeds
import json
class SpaceTimeTests(unittest.TestCase):
"""Testing class for Markov Functions."""
def setUp(self):
plpy._reset()
self.params = {"id_col": "cartodb_id",
"time_cols": ['dec_2013', 'jan_2014', 'feb_2014'],
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.neighbors_data = json.loads(open(fixture_file('neighbors_markov.json')).read())
self.markov_data = json.loads(open(fixture_file('markov.json')).read())
self.time_data = np.array([i * np.ones(10, dtype=float) for i in range(10)]).T
self.transition_matrix = np.array([
[[ 0.96341463, 0.0304878 , 0.00609756, 0. , 0. ],
[ 0.06040268, 0.83221477, 0.10738255, 0. , 0. ],
[ 0. , 0.14 , 0.74 , 0.12 , 0. ],
[ 0. , 0.03571429, 0.32142857, 0.57142857, 0.07142857],
[ 0. , 0. , 0. , 0.16666667, 0.83333333]],
[[ 0.79831933, 0.16806723, 0.03361345, 0. , 0. ],
[ 0.0754717 , 0.88207547, 0.04245283, 0. , 0. ],
[ 0.00537634, 0.06989247, 0.8655914 , 0.05913978, 0. ],
[ 0. , 0. , 0.06372549, 0.90196078, 0.03431373],
[ 0. , 0. , 0. , 0.19444444, 0.80555556]],
[[ 0.84693878, 0.15306122, 0. , 0. , 0. ],
[ 0.08133971, 0.78947368, 0.1291866 , 0. , 0. ],
[ 0.00518135, 0.0984456 , 0.79274611, 0.0984456 , 0.00518135],
[ 0. , 0. , 0.09411765, 0.87058824, 0.03529412],
[ 0. , 0. , 0. , 0.10204082, 0.89795918]],
[[ 0.8852459 , 0.09836066, 0. , 0.01639344, 0. ],
[ 0.03875969, 0.81395349, 0.13953488, 0. , 0.00775194],
[ 0.0049505 , 0.09405941, 0.77722772, 0.11881188, 0.0049505 ],
[ 0. , 0.02339181, 0.12865497, 0.75438596, 0.09356725],
[ 0. , 0. , 0. , 0.09661836, 0.90338164]],
[[ 0.33333333, 0.66666667, 0. , 0. , 0. ],
[ 0.0483871 , 0.77419355, 0.16129032, 0.01612903, 0. ],
[ 0.01149425, 0.16091954, 0.74712644, 0.08045977, 0. ],
[ 0. , 0.01036269, 0.06217617, 0.89637306, 0.03108808],
[ 0. , 0. , 0. , 0.02352941, 0.97647059]]]
)
def test_spatial_markov(self):
"""Test Spatial Markov."""
data = [ { 'id': d['id'],
'attr1': d['y1995'],
'attr2': d['y1996'],
'attr3': d['y1997'],
'attr4': d['y1998'],
'attr5': d['y1999'],
'attr6': d['y2000'],
'attr7': d['y2001'],
'attr8': d['y2002'],
'attr9': d['y2003'],
'attr10': d['y2004'],
'attr11': d['y2005'],
'attr12': d['y2006'],
'attr13': d['y2007'],
'attr14': d['y2008'],
'attr15': d['y2009'],
'neighbors': d['neighbors'] } for d in self.neighbors_data]
print(str(data[0]))
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = std.spatial_markov_trend('subquery', ['y1995', 'y1996', 'y1997', 'y1998', 'y1999', 'y2000', 'y2001', 'y2002', 'y2003', 'y2004', 'y2005', 'y2006', 'y2007', 'y2008', 'y2009'], 5, 'knn', 5, 0, 'the_geom', 'cartodb_id')
self.assertTrue(result != None)
result = [(row[0], row[1], row[2], row[3], row[4]) for row in result]
print result[0]
expected = self.markov_data
for ([res_trend, res_up, res_down, res_vol, res_id],
[exp_trend, exp_up, exp_down, exp_vol, exp_id]
) in zip(result, expected):
self.assertAlmostEqual(res_trend, exp_trend)
def test_get_time_data(self):
"""Test get_time_data"""
data = [ { 'attr1': d['y1995'],
'attr2': d['y1996'],
'attr3': d['y1997'],
'attr4': d['y1998'],
'attr5': d['y1999'],
'attr6': d['y2000'],
'attr7': d['y2001'],
'attr8': d['y2002'],
'attr9': d['y2003'],
'attr10': d['y2004'],
'attr11': d['y2005'],
'attr12': d['y2006'],
'attr13': d['y2007'],
'attr14': d['y2008'],
'attr15': d['y2009'] } for d in self.neighbors_data]
result = std.get_time_data(data, ['y1995', 'y1996', 'y1997', 'y1998', 'y1999', 'y2000', 'y2001', 'y2002', 'y2003', 'y2004', 'y2005', 'y2006', 'y2007', 'y2008', 'y2009'])
## expected was prepared from PySAL example:
### f = ps.open(ps.examples.get_path("usjoin.csv"))
### pci = np.array([f.by_col[str(y)] for y in range(1995, 2010)]).transpose()
### rpci = pci / (pci.mean(axis = 0))
expected = np.array([[ 0.87654416, 0.863147, 0.85637567, 0.84811668, 0.8446154, 0.83271652
, 0.83786314, 0.85012593, 0.85509656, 0.86416612, 0.87119375, 0.86302631
, 0.86148267, 0.86252252, 0.86746356],
[ 0.9188951, 0.91757931, 0.92333258, 0.92517289, 0.92552388, 0.90746978
, 0.89830489, 0.89431991, 0.88924794, 0.89815176, 0.91832091, 0.91706054
, 0.90139505, 0.87897455, 0.86216858],
[ 0.82591007, 0.82548596, 0.81989793, 0.81503235, 0.81731522, 0.78964559
, 0.80584442, 0.8084998, 0.82258551, 0.82668196, 0.82373724, 0.81814804
, 0.83675961, 0.83574199, 0.84647177],
[ 1.09088176, 1.08537689, 1.08456418, 1.08415404, 1.09898841, 1.14506948
, 1.12151133, 1.11160697, 1.10888621, 1.11399806, 1.12168029, 1.13164797
, 1.12958508, 1.11371818, 1.09936775],
[ 1.10731446, 1.11373944, 1.13283638, 1.14472559, 1.15910025, 1.16898201
, 1.17212488, 1.14752303, 1.11843284, 1.11024964, 1.11943471, 1.11736468
, 1.10863242, 1.09642516, 1.07762337],
[ 1.42269757, 1.42118434, 1.44273502, 1.43577571, 1.44400684, 1.44184737
, 1.44782832, 1.41978227, 1.39092208, 1.4059372, 1.40788646, 1.44052766
, 1.45241216, 1.43306098, 1.4174431 ],
[ 1.13073885, 1.13110513, 1.11074708, 1.13364636, 1.13088149, 1.10888138
, 1.11856629, 1.13062931, 1.11944984, 1.12446239, 1.11671008, 1.10880034
, 1.08401709, 1.06959206, 1.07875225],
[ 1.04706124, 1.04516831, 1.04253372, 1.03239987, 1.02072545, 0.99854316
, 0.9880258, 0.99669587, 0.99327676, 1.01400905, 1.03176742, 1.040511
, 1.01749645, 0.9936394, 0.98279746],
[ 0.98996986, 1.00143564, 0.99491, 1.00188408, 1.00455845, 0.99127006
, 0.97925917, 0.9683482, 0.95335147, 0.93694787, 0.94308213, 0.92232874
, 0.91284091, 0.89689833, 0.88928858],
[ 0.87418391, 0.86416601, 0.84425695, 0.8404494, 0.83903044, 0.8578708
, 0.86036185, 0.86107306, 0.8500772, 0.86981998, 0.86837929, 0.87204141
, 0.86633032, 0.84946077, 0.83287146],
[ 1.14196118, 1.14660262, 1.14892712, 1.14909594, 1.14436624, 1.14450183
, 1.12349752, 1.12596664, 1.12213996, 1.1119989, 1.10257792, 1.10491258
, 1.11059842, 1.10509795, 1.10020097],
[ 0.97282463, 0.96700147, 0.96252588, 0.9653878, 0.96057687, 0.95831051
, 0.94480909, 0.94804195, 0.95430286, 0.94103989, 0.92122519, 0.91010201
, 0.89280392, 0.89298243, 0.89165385],
[ 0.94325468, 0.96436902, 0.96455242, 0.95243009, 0.94117647, 0.9480927
, 0.93539182, 0.95388718, 0.94597005, 0.96918424, 0.94781281, 0.93466815
, 0.94281559, 0.96520315, 0.96715441],
[ 0.97478408, 0.98169225, 0.98712809, 0.98474769, 0.98559897, 0.98687073
, 0.99237486, 0.98209969, 0.9877653, 0.97399471, 0.96910087, 0.98416665
, 0.98423613, 0.99823861, 0.99545704],
[ 0.85570269, 0.85575915, 0.85986132, 0.85693406, 0.8538012, 0.86191535
, 0.84981451, 0.85472102, 0.84564835, 0.83998883, 0.83478547, 0.82803648
, 0.8198736, 0.82265395, 0.8399404 ],
[ 0.87022047, 0.85996258, 0.85961813, 0.85689572, 0.83947136, 0.82785597
, 0.86008789, 0.86776298, 0.86720209, 0.8676334, 0.89179317, 0.94202108
, 0.9422231, 0.93902708, 0.94479184],
[ 0.90134907, 0.90407738, 0.90403991, 0.90201769, 0.90399238, 0.90906632
, 0.92693339, 0.93695966, 0.94242697, 0.94338265, 0.91981796, 0.91108804
, 0.90543476, 0.91737138, 0.94793657],
[ 1.1977611, 1.18222564, 1.18439158, 1.18267865, 1.19286723, 1.20172869
, 1.21328691, 1.22624778, 1.22397075, 1.23857042, 1.24419893, 1.23929384
, 1.23418676, 1.23626739, 1.26754398],
[ 1.24919678, 1.25754773, 1.26991161, 1.28020651, 1.30625667, 1.34790023
, 1.34399863, 1.32575181, 1.30795492, 1.30544841, 1.30303302, 1.32107766
, 1.32936244, 1.33001241, 1.33288462],
[ 1.06768004, 1.03799276, 1.03637303, 1.02768449, 1.03296093, 1.05059016
, 1.03405057, 1.02747623, 1.03162734, 0.9961416, 0.97356208, 0.94241549
, 0.92754547, 0.92549227, 0.92138102],
[ 1.09475614, 1.11526796, 1.11654299, 1.13103948, 1.13143264, 1.13889622
, 1.12442212, 1.13367018, 1.13982256, 1.14029944, 1.11979401, 1.10905389
, 1.10577769, 1.11166825, 1.09985155],
[ 0.76530058, 0.76612841, 0.76542451, 0.76722683, 0.76014284, 0.74480073
, 0.76098396, 0.76156903, 0.76651952, 0.76533288, 0.78205934, 0.76842416
, 0.77487118, 0.77768683, 0.78801192],
[ 0.98391336, 0.98075816, 0.98295341, 0.97386015, 0.96913803, 0.97370819
, 0.96419154, 0.97209861, 0.97441313, 0.96356162, 0.94745352, 0.93965462
, 0.93069645, 0.94020973, 0.94358232],
[ 0.83561828, 0.82298088, 0.81738502, 0.81748588, 0.80904801, 0.80071489
, 0.83358256, 0.83451613, 0.85175032, 0.85954307, 0.86790024, 0.87170334
, 0.87863799, 0.87497981, 0.87888675],
[ 0.98845573, 1.02092428, 0.99665283, 0.99141823, 0.99386619, 0.98733195
, 0.99644997, 0.99669587, 1.02559097, 1.01116651, 0.99988024, 0.97906749
, 0.99323123, 1.00204939, 0.99602148],
[ 1.14930913, 1.15241949, 1.14300962, 1.14265542, 1.13984683, 1.08312397
, 1.05192626, 1.04230892, 1.05577278, 1.08569751, 1.12443486, 1.08891079
, 1.08603695, 1.05997314, 1.02160943],
[ 1.11368269, 1.1057147, 1.11893431, 1.13778669, 1.1432272, 1.18257029
, 1.16226243, 1.16009196, 1.14467789, 1.14820235, 1.12386598, 1.12680236
, 1.12357937, 1.1159258, 1.12570828],
[ 1.30379431, 1.30752186, 1.31206366, 1.31532267, 1.30625667, 1.31210239
, 1.29989156, 1.29203193, 1.27183516, 1.26830786, 1.2617743, 1.28656675
, 1.29734097, 1.29390205, 1.29345446],
[ 0.83953719, 0.82701448, 0.82006005, 0.81188876, 0.80294864, 0.78772975
, 0.82848011, 0.8259679, 0.82435705, 0.83108634, 0.84373784, 0.83891093
, 0.84349247, 0.85637272, 0.86539395],
[ 1.23450087, 1.2426022, 1.23537935, 1.23581293, 1.24522626, 1.2256767
, 1.21126648, 1.19377804, 1.18355337, 1.19674434, 1.21536573, 1.23653297
, 1.27962009, 1.27968392, 1.25907738],
[ 0.9769662, 0.97400719, 0.98035944, 0.97581531, 0.95543282, 0.96480308
, 0.94686376, 0.93679073, 0.92540049, 0.92988835, 0.93442917, 0.92100464
, 0.91475304, 0.90249622, 0.9021363 ],
[ 0.84986886, 0.8986851, 0.84295997, 0.87280534, 0.85659368, 0.88937573
, 0.894401, 0.90448993, 0.95495898, 0.92698333, 0.94745352, 0.92562488
, 0.96635366, 1.02520312, 1.0394296 ],
[ 1.01922808, 1.00258203, 1.00974428, 1.00303417, 0.99765073, 1.00759019
, 0.99192968, 0.99747298, 0.99550759, 0.97583768, 0.9610168, 0.94779638
, 0.93759089, 0.93353431, 0.94121705],
[ 0.86367411, 0.85558932, 0.85544346, 0.85103025, 0.84336613, 0.83434854
, 0.85813595, 0.84667961, 0.84374558, 0.85951183, 0.87194227, 0.89455097
, 0.88283929, 0.90349491, 0.90600675],
[ 1.00947534, 1.00411055, 1.00698819, 0.99513687, 0.99291086, 1.00581626
, 0.98850522, 0.99291168, 0.98983209, 0.97511924, 0.96134615, 0.96382634
, 0.95011401, 0.9434686, 0.94637765],
[ 1.05712571, 1.05459419, 1.05753012, 1.04880786, 1.05103857, 1.04800023
, 1.03024941, 1.04200483, 1.0402554, 1.03296979, 1.02191682, 1.02476275
, 1.02347523, 1.02517684, 1.04359571],
[ 1.07084189, 1.06669497, 1.07937623, 1.07387988, 1.0794043, 1.0531801
, 1.07452771, 1.09383478, 1.1052447, 1.10322136, 1.09167939, 1.08772756
, 1.08859544, 1.09177338, 1.1096083 ],
[ 0.86719222, 0.86628896, 0.86675156, 0.86425632, 0.86511809, 0.86287327
, 0.85169796, 0.85411285, 0.84886336, 0.84517414, 0.84843858, 0.84488343
, 0.83374329, 0.82812044, 0.82878599],
[ 0.88389211, 0.92288667, 0.90282398, 0.91229186, 0.92023286, 0.92652175
, 0.94278865, 0.93682452, 0.98655146, 0.992237, 0.9798497, 0.93869677
, 0.96947771, 1.00362626, 0.98102351],
[ 0.97082064, 0.95320233, 0.94534081, 0.94215593, 0.93967, 0.93092109
, 0.92662519, 0.93412152, 0.93501274, 0.92879506, 0.92110542, 0.91035556
, 0.90430364, 0.89994694, 0.90073864],
[ 0.95861858, 0.95774543, 0.98254811, 0.98919472, 0.98684824, 0.98882205
, 0.97662234, 0.95601578, 0.94905385, 0.94934888, 0.97152609, 0.97163004
, 0.9700702, 0.97158948, 0.95884908],
[ 0.83980439, 0.84726737, 0.85747, 0.85467221, 0.8556751, 0.84818516
, 0.85265681, 0.84502402, 0.82645665, 0.81743586, 0.83550406, 0.83338919
, 0.83511679, 0.82136617, 0.80921874],
[ 0.95118156, 0.9466212, 0.94688098, 0.9508583, 0.9512441, 0.95440787
, 0.96364363, 0.96804412, 0.97136214, 0.97583768, 0.95571724, 0.96895368
, 0.97001634, 0.97082733, 0.98782366],
[ 1.08910044, 1.08248968, 1.08492895, 1.08656923, 1.09454249, 1.10558188
, 1.1214086, 1.12292577, 1.13021031, 1.13342735, 1.14686068, 1.14502975
, 1.14474747, 1.14084037, 1.16142926],
[ 1.06336033, 1.07365823, 1.08691496, 1.09764846, 1.11669863, 1.11856702
, 1.09764283, 1.08815849, 1.08044313, 1.09278827, 1.07003204, 1.08398066
, 1.09831768, 1.09298232, 1.09176125],
[ 0.79772065, 0.78829196, 0.78581151, 0.77615922, 0.77035744, 0.77751194
, 0.79902974, 0.81437881, 0.80788828, 0.79603865, 0.78966436, 0.79949807
, 0.80172182, 0.82168155, 0.85587911],
[ 1.0052447, 1.00007696, 1.00475899, 1.00613942, 1.00639561, 1.00162979
, 0.99860739, 1.00814981, 1.00574316, 0.99030032, 0.97682565, 0.97292596
, 0.96519561, 0.96173403, 0.95890284],
[ 0.95808419, 0.9382568, 0.9654441, 0.95561201, 0.96987289, 0.96608031
, 0.99727185, 1.00781194, 1.03484236, 1.05333619, 1.0983263, 1.1704974
, 1.17025154, 1.18730553, 1.14242645]])
self.assertTrue(np.allclose(result, expected))
self.assertTrue(type(result) == type(expected))
self.assertTrue(result.shape == expected.shape)
def test_rebin_data(self):
"""Test rebin_data"""
## sample in double the time (even case since 10 % 2 = 0):
## (0+1)/2, (2+3)/2, (4+5)/2, (6+7)/2, (8+9)/2
## = 0.5, 2.5, 4.5, 6.5, 8.5
ans_even = np.array([(i + 0.5) * np.ones(10, dtype=float)
for i in range(0, 10, 2)]).T
self.assertTrue(np.array_equal(std.rebin_data(self.time_data, 2), ans_even))
## sample in triple the time (uneven since 10 % 3 = 1):
## (0+1+2)/3, (3+4+5)/3, (6+7+8)/3, (9)/1
## = 1, 4, 7, 9
ans_odd = np.array([i * np.ones(10, dtype=float)
for i in (1, 4, 7, 9)]).T
self.assertTrue(np.array_equal(std.rebin_data(self.time_data, 3), ans_odd))
def test_get_prob_dist(self):
"""Test get_prob_dist"""
lag_indices = np.array([1, 2, 3, 4])
unit_indices = np.array([1, 3, 2, 4])
answer = np.array([
[ 0.0754717 , 0.88207547, 0.04245283, 0. , 0. ],
[ 0. , 0. , 0.09411765, 0.87058824, 0.03529412],
[ 0.0049505 , 0.09405941, 0.77722772, 0.11881188, 0.0049505 ],
[ 0. , 0. , 0. , 0.02352941, 0.97647059]
])
result = std.get_prob_dist(self.transition_matrix, lag_indices, unit_indices)
self.assertTrue(np.array_equal(result, answer))
def test_get_prob_stats(self):
"""Test get_prob_stats"""
probs = np.array([
[ 0.0754717 , 0.88207547, 0.04245283, 0. , 0. ],
[ 0. , 0. , 0.09411765, 0.87058824, 0.03529412],
[ 0.0049505 , 0.09405941, 0.77722772, 0.11881188, 0.0049505 ],
[ 0. , 0. , 0. , 0.02352941, 0.97647059]
])
unit_indices = np.array([1, 3, 2, 4])
answer_up = np.array([0.04245283, 0.03529412, 0.12376238, 0.])
answer_down = np.array([0.0754717, 0.09411765, 0.0990099, 0.02352941])
answer_trend = np.array([-0.03301887 / 0.88207547, -0.05882353 / 0.87058824, 0.02475248 / 0.77722772, -0.02352941 / 0.97647059])
answer_volatility = np.array([ 0.34221495, 0.33705421, 0.29226542, 0.38834223])
result = std.get_prob_stats(probs, unit_indices)
result_up = result[0]
result_down = result[1]
result_trend = result[2]
result_volatility = result[3]
self.assertTrue(np.allclose(result_up, answer_up))
self.assertTrue(np.allclose(result_down, answer_down))
self.assertTrue(np.allclose(result_trend, answer_trend))
self.assertTrue(np.allclose(result_volatility, answer_volatility))

View File

@@ -0,0 +1,5 @@
"""Import all modules"""
import crankshaft.random_seeds
import crankshaft.clustering
import crankshaft.space_time_dynamics
import crankshaft.segmentation

View File

@@ -0,0 +1,3 @@
"""Import all functions from for clustering"""
from moran import *
from kmeans import *

View File

@@ -0,0 +1,18 @@
from sklearn.cluster import KMeans
import plpy
def kmeans(query, no_clusters, no_init=20):
data = plpy.execute('''select array_agg(cartodb_id order by cartodb_id) as ids,
array_agg(ST_X(the_geom) order by cartodb_id) xs,
array_agg(ST_Y(the_geom) order by cartodb_id) ys from ({query}) a
where the_geom is not null
'''.format(query=query))
xs = data[0]['xs']
ys = data[0]['ys']
ids = data[0]['ids']
km = KMeans(n_clusters= no_clusters, n_init=no_init)
labels = km.fit_predict(zip(xs,ys))
return zip(ids,labels)

View File

@@ -0,0 +1,262 @@
"""
Moran's I geostatistics (global clustering & outliers presence)
"""
# TODO: Fill in local neighbors which have null/NoneType values with the
# average of the their neighborhood
import pysal as ps
import plpy
from collections import OrderedDict
# crankshaft module
import crankshaft.pysal_utils as pu
# High level interface ---------------------------------------
def moran(subquery, attr_name,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I (global)
Implementation building neighbors with a PostGIS database and Moran's I
core clusters with PySAL.
Andy Eschbacher
"""
qvals = OrderedDict([("id_col", id_col),
("attr1", attr_name),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
plpy.notice('** Query: %s' % query)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(2)
plpy.notice('** Query returned with %d rows' % len(result))
except plpy.SPIError:
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError)
return pu.empty_zipped_array(2)
## collect attributes
attr_vals = pu.get_attributes(result)
## calculate weights
weight = pu.get_weight(result, w_type, num_ngbrs)
## calculate moran global
moran_global = ps.esda.moran.Moran(attr_vals, weight,
permutations=permutations)
return zip([moran_global.I], [moran_global.EI])
def moran_local(subquery, attr,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I implementation for PL/Python
Andy Eschbacher
"""
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors
qvals = OrderedDict([("id_col", id_col),
("attr1", attr),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(5)
except plpy.SPIError:
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
return pu.empty_zipped_array(5)
attr_vals = pu.get_attributes(result)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
permutations=permutations)
# find quadrants for each geometry
quads = quad_position(lisa.q)
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
def moran_rate(subquery, numerator, denominator,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I Rate (global)
Andy Eschbacher
"""
qvals = OrderedDict([("id_col", id_col),
("attr1", numerator),
("attr2", denominator)
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
plpy.notice('** Query: %s' % query)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(2)
plpy.notice('** Query returned with %d rows' % len(result))
except plpy.SPIError:
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError)
return pu.empty_zipped_array(2)
## collect attributes
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
weight = pu.get_weight(result, w_type, num_ngbrs)
## calculate moran global rate
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
permutations=permutations)
return zip([lisa_rate.I], [lisa_rate.EI])
def moran_local_rate(subquery, numerator, denominator,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I Local Rate
Andy Eschbacher
"""
# geometries with values that are null are ignored
# resulting in a collection of not as near neighbors
qvals = OrderedDict([("id_col", id_col),
("numerator", numerator),
("denominator", denominator),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(5)
except plpy.SPIError:
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError)
return pu.empty_zipped_array(5)
## collect attributes
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
permutations=permutations)
# find quadrants for each geometry
quads = quad_position(lisa.q)
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
def moran_local_bv(subquery, attr1, attr2,
permutations, geom_col, id_col, w_type, num_ngbrs):
"""
Moran's I (local) Bivariate (untested)
"""
plpy.notice('** Constructing query')
qvals = OrderedDict([("id_col", id_col),
("attr1", attr1),
("attr2", attr2),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(4)
except plpy.SPIError:
plpy.error("Error: areas of interest query failed, " \
"check input parameters")
plpy.notice('** Query failed: "%s"' % query)
return pu.empty_zipped_array(4)
## collect attributes
attr1_vals = pu.get_attributes(result, 1)
attr2_vals = pu.get_attributes(result, 2)
# create weights
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
permutations=permutations)
plpy.notice("len of Is: %d" % len(lisa.Is))
# find clustering of significance
lisa_sig = quad_position(lisa.q)
plpy.notice('** Finished calculations')
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
# Low level functions ----------------------------------------
def map_quads(coord):
"""
Map a quadrant number to Moran's I designation
HH=1, LH=2, LL=3, HL=4
Input:
@param coord (int): quadrant of a specific measurement
Output:
classification (one of 'HH', 'LH', 'LL', or 'HL')
"""
if coord == 1:
return 'HH'
elif coord == 2:
return 'LH'
elif coord == 3:
return 'LL'
elif coord == 4:
return 'HL'
else:
return None
def quad_position(quads):
"""
Produce Moran's I classification based of n
Input:
@param quads ndarray: an array of quads classified by
1-4 (PySAL default)
Output:
@param list: an array of quads classied by 'HH', 'LL', etc.
"""
return [map_quads(q) for q in quads]

View File

@@ -0,0 +1,2 @@
"""Import all functions for pysal_utils"""
from crankshaft.pysal_utils.pysal_utils import *

View File

@@ -0,0 +1,188 @@
"""
Utilities module for generic PySAL functionality, mainly centered on
translating queries into numpy arrays or PySAL weights objects
"""
import numpy as np
import pysal as ps
def construct_neighbor_query(w_type, query_vals):
"""Return query (a string) used for finding neighbors
@param w_type text: type of neighbors to calculate ('knn' or 'queen')
@param query_vals dict: values used to construct the query
"""
if w_type.lower() == 'knn':
return knn(query_vals)
else:
return queen(query_vals)
## Build weight object
def get_weight(query_res, w_type='knn', num_ngbrs=5):
"""
Construct PySAL weight from return value of query
@param query_res dict-like: query results with attributes and neighbors
"""
# if w_type.lower() == 'knn':
# row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
# weights = {x['id']: row_normed_weights for x in query_res}
# else:
# weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
# if len(x['neighbors']) > 0
# else [] for x in query_res}
neighbors = {x['id']: x['neighbors'] for x in query_res}
print 'len of neighbors: %d' % len(neighbors)
built_weight = ps.W(neighbors)
built_weight.transform = 'r'
return built_weight
def query_attr_select(params):
"""
Create portion of SELECT statement for attributes inolved in query.
@param params: dict of information used in query (column names,
table name, etc.)
"""
attr_string = ""
template = "i.\"%(col)s\"::numeric As attr%(alias_num)s, "
if 'time_cols' in params:
## if markov analysis
attrs = params['time_cols']
for idx, val in enumerate(attrs):
attr_string += template % {"col": val, "alias_num": idx + 1}
else:
## if moran's analysis
attrs = [k for k in params
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs', 'subquery')]
for idx, val in enumerate(sorted(attrs)):
attr_string += template % {"col": params[val], "alias_num": idx + 1}
return attr_string
def query_attr_where(params):
"""
Construct where conditions when building neighbors query
Create portion of WHERE clauses for weeding out NULL-valued geometries
Input: dict of params:
{'subquery': ...,
'numerator': 'data1',
'denominator': 'data2',
'': ...}
Output: 'idx_replace."data1" IS NOT NULL AND idx_replace."data2" IS NOT NULL'
Input:
{'subquery': ...,
'time_cols': ['time1', 'time2', 'time3'],
'etc': ...}
Output: 'idx_replace."time1" IS NOT NULL AND idx_replace."time2" IS NOT
NULL AND idx_replace."time3" IS NOT NULL'
"""
attr_string = []
template = "idx_replace.\"%s\" IS NOT NULL"
if 'time_cols' in params:
## markov where clauses
attrs = params['time_cols']
# add values to template
for attr in attrs:
attr_string.append(template % attr)
else:
## moran where clauses
# get keys
attrs = sorted([k for k in params
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs', 'subquery')])
# add values to template
for attr in attrs:
attr_string.append(template % params[attr])
if len(attrs) == 2:
attr_string.append("idx_replace.\"%s\" <> 0" % params[attrs[1]])
out = " AND ".join(attr_string)
return out
def knn(params):
"""SQL query for k-nearest neighbors.
@param vars: dict of values to fill template
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM ({subquery}) As j " \
"WHERE " \
"i.\"{id_col}\" <> j.\"{id_col}\" AND " \
"%(attr_where_j)s " \
"ORDER BY " \
"j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
"LIMIT {num_ngbrs})" \
") As neighbors " \
"FROM ({subquery}) As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## SQL query for finding queens neighbors (all contiguous polygons)
def queen(params):
"""SQL query for queen neighbors.
@param params dict: information to fill query
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM ({subquery}) As j " \
"WHERE i.\"{id_col}\" <> j.\"{id_col}\" AND " \
"ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
"%(attr_where_j)s)" \
") As neighbors " \
"FROM ({subquery}) As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## to add more weight methods open a ticket or pull request
def get_attributes(query_res, attr_num=1):
"""
@param query_res: query results with attributes and neighbors
@param attr_num: attribute number (1, 2, ...)
"""
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
def empty_zipped_array(num_nones):
"""
prepare return values for cases of empty weights objects (no neighbors)
Input:
@param num_nones int: number of columns (e.g., 4)
Output:
[(None, None, None, None)]
"""
return [tuple([None] * num_nones)]

View File

@@ -0,0 +1,11 @@
"""Random seed generator used for non-deterministic functions in crankshaft"""
import random
import numpy
def set_random_seeds(value):
"""
Set the seeds of the RNGs (Random Number Generators)
used internally.
"""
random.seed(value)
numpy.random.seed(value)

View File

@@ -0,0 +1 @@
from segmentation import *

View File

@@ -0,0 +1,176 @@
"""
Segmentation creation and prediction
"""
import sklearn
import numpy as np
import plpy
from sklearn.ensemble import GradientBoostingRegressor
from sklearn import metrics
from sklearn.cross_validation import train_test_split
# Lower level functions
#----------------------
def replace_nan_with_mean(array):
"""
Input:
@param array: an array of floats which may have null-valued entries
Output:
array with nans filled in with the mean of the dataset
"""
# returns an array of rows and column indices
indices = np.where(np.isnan(array))
# iterate through entries which have nan values
for row, col in zip(*indices):
array[row, col] = np.mean(array[~np.isnan(array[:, col]), col])
return array
def get_data(variable, feature_columns, query):
"""
Fetch data from the database, clean, and package into
numpy arrays
Input:
@param variable: name of the target variable
@param feature_columns: list of column names
@param query: subquery that data is pulled from for the packaging
Output:
prepared data, packaged into NumPy arrays
"""
columns = ','.join(['array_agg("{col}") As "{col}"'.format(col=col) for col in feature_columns])
try:
data = plpy.execute('''SELECT array_agg("{variable}") As target, {columns} FROM ({query}) As a'''.format(
variable=variable,
columns=columns,
query=query))
except Exception, e:
plpy.error('Failed to access data to build segmentation model: %s' % e)
# extract target data from plpy object
target = np.array(data[0]['target'])
# put n feature data arrays into an n x m array of arrays
features = np.column_stack([np.array(data[0][col], dtype=float) for col in feature_columns])
return replace_nan_with_mean(target), replace_nan_with_mean(features)
# High level interface
# --------------------
def create_and_predict_segment_agg(target, features, target_features, target_ids, model_parameters):
"""
Version of create_and_predict_segment that works on arrays that come stright form the SQL calling
the function.
Input:
@param target: The 1D array of lenth NSamples containing the target variable we want the model to predict
@param features: Thw 2D array of size NSamples * NFeatures that form the imput to the model
@param target_ids: A 1D array of target_ids that will be used to associate the results of the prediction with the rows which they come from
@param model_parameters: A dictionary containing parameters for the model.
"""
clean_target = replace_nan_with_mean(target)
clean_features = replace_nan_with_mean(features)
target_features = replace_nan_with_mean(target_features)
model, accuracy = train_model(clean_target, clean_features, model_parameters, 0.2)
prediction = model.predict(target_features)
accuracy_array = [accuracy]*prediction.shape[0]
return zip(target_ids, prediction, np.full(prediction.shape, accuracy_array))
def create_and_predict_segment(query, variable, target_query, model_params):
"""
generate a segment with machine learning
Stuart Lynn
"""
## fetch column names
try:
columns = plpy.execute('SELECT * FROM ({query}) As a LIMIT 1 '.format(query=query))[0].keys()
except Exception, e:
plpy.error('Failed to build segmentation model: %s' % e)
## extract column names to be used in building the segmentation model
feature_columns = set(columns) - set([variable, 'cartodb_id', 'the_geom', 'the_geom_webmercator'])
## get data from database
target, features = get_data(variable, feature_columns, query)
model, accuracy = train_model(target, features, model_params, 0.2)
cartodb_ids, result = predict_segment(model, feature_columns, target_query)
accuracy_array = [accuracy]*result.shape[0]
return zip(cartodb_ids, result, accuracy_array)
def train_model(target, features, model_params, test_split):
"""
Train the Gradient Boosting model on the provided data and calculate the accuracy of the model
Input:
@param target: 1D Array of the variable that the model is to be trianed to predict
@param features: 2D Array NSamples * NFeatures to use in trining the model
@param model_params: A dictionary of model parameters, the full specification can be found on the
scikit learn page for [GradientBoostingRegressor](http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html)
@parma test_split: The fraction of the data to be withheld for testing the model / calculating the accuray
"""
features_train, features_test, target_train, target_test = train_test_split(features, target, test_size=test_split)
model = GradientBoostingRegressor(**model_params)
model.fit(features_train, target_train)
accuracy = calculate_model_accuracy(model, features, target)
return model, accuracy
def calculate_model_accuracy(model, features, target):
"""
Calculate the mean squared error of the model prediction
Input:
@param model: model trained from input features
@param features: features to make a prediction from
@param target: target to compare prediction to
Output:
mean squared error of the model prection compared to the target
"""
prediction = model.predict(features)
return metrics.mean_squared_error(prediction, target)
def predict_segment(model, features, target_query):
"""
Use the provided model to predict the values for the new feature set
Input:
@param model: The pretrained model
@features: A list of features to use in the model prediction (list of column names)
@target_query: The query to run to obtain the data to predict on and the cartdb_ids associated with it.
"""
batch_size = 1000
joined_features = ','.join(['"{0}"::numeric'.format(a) for a in features])
try:
cursor = plpy.cursor('SELECT Array[{joined_features}] As features FROM ({target_query}) As a'.format(
joined_features=joined_features,
target_query=target_query))
except Exception, e:
plpy.error('Failed to build segmentation model: %s' % e)
results = []
while True:
rows = cursor.fetch(batch_size)
if not rows:
break
batch = np.row_stack([np.array(row['features'], dtype=float) for row in rows])
#Need to fix this. Should be global mean. This will cause weird effects
batch = replace_nan_with_mean(batch)
prediction = model.predict(batch)
results.append(prediction)
try:
cartodb_ids = plpy.execute('''SELECT array_agg(cartodb_id ORDER BY cartodb_id) As cartodb_ids FROM ({0}) As a'''.format(target_query))[0]['cartodb_ids']
except Exception, e:
plpy.error('Failed to build segmentation model: %s' % e)
return cartodb_ids, np.concatenate(results)

View File

@@ -0,0 +1,2 @@
"""Import all functions from clustering libraries."""
from markov import *

View File

@@ -0,0 +1,189 @@
"""
Spatial dynamics measurements using Spatial Markov
"""
import numpy as np
import pysal as ps
import plpy
import crankshaft.pysal_utils as pu
def spatial_markov_trend(subquery, time_cols, num_classes=7,
w_type='knn', num_ngbrs=5, permutations=0,
geom_col='the_geom', id_col='cartodb_id'):
"""
Predict the trends of a unit based on:
1. history of its transitions to different classes (e.g., 1st quantile -> 2nd quantile)
2. average class of its neighbors
Inputs:
@param subquery string: e.g., SELECT the_geom, cartodb_id,
interesting_time_column FROM table_name
@param time_cols list of strings: list of strings of column names
@param num_classes (optional): number of classes to break distribution
of values into. Currently uses quantile bins.
@param w_type string (optional): weight type ('knn' or 'queen')
@param num_ngbrs int (optional): number of neighbors (if knn type)
@param permutations int (optional): number of permutations for test
stats
@param geom_col string (optional): name of column which contains the
geometries
@param id_col string (optional): name of column which has the ids of
the table
Outputs:
@param trend_up float: probablity that a geom will move to a higher
class
@param trend_down float: probablity that a geom will move to a lower
class
@param trend float: (trend_up - trend_down) / trend_static
@param volatility float: a measure of the volatility based on
probability stddev(prob array)
"""
if len(time_cols) < 2:
plpy.error('More than one time column needs to be passed')
qvals = {"id_col": id_col,
"time_cols": time_cols,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs}
try:
query_result = plpy.execute(
pu.construct_neighbor_query(w_type, qvals)
)
if len(query_result) == 0:
return zip([None], [None], [None], [None], [None])
except plpy.SPIError, err:
plpy.debug('Query failed with exception %s: %s' % (err, pu.construct_neighbor_query(w_type, qvals)))
plpy.error('Query failed, check the input parameters')
return zip([None], [None], [None], [None], [None])
## build weight
weights = pu.get_weight(query_result, w_type)
weights.transform = 'r'
## prep time data
t_data = get_time_data(query_result, time_cols)
plpy.debug('shape of t_data %d, %d' % t_data.shape)
plpy.debug('number of weight objects: %d, %d' % (weights.sparse).shape)
plpy.debug('first num elements: %f' % t_data[0, 0])
sp_markov_result = ps.Spatial_Markov(t_data,
weights,
k=num_classes,
fixed=False,
permutations=permutations)
## get lag classes
lag_classes = ps.Quantiles(
ps.lag_spatial(weights, t_data[:, -1]),
k=num_classes).yb
## look up probablity distribution for each unit according to class and lag class
prob_dist = get_prob_dist(sp_markov_result.P,
lag_classes,
sp_markov_result.classes[:, -1])
## find the ups and down and overall distribution of each cell
trend_up, trend_down, trend, volatility = get_prob_stats(prob_dist,
sp_markov_result.classes[:, -1])
## output the results
return zip(trend, trend_up, trend_down, volatility, weights.id_order)
def get_time_data(markov_data, time_cols):
"""
Extract the time columns and bin appropriately
"""
num_attrs = len(time_cols)
return np.array([[x['attr' + str(i)] for x in markov_data]
for i in range(1, num_attrs+1)], dtype=float).transpose()
## not currently used
def rebin_data(time_data, num_time_per_bin):
"""
Convert an n x l matrix into an (n/m) x l matrix where the values are
reduced (averaged) for the intervening states:
1 2 3 4 1.5 3.5
5 6 7 8 -> 5.5 7.5
9 8 7 6 8.5 6.5
5 4 3 2 4.5 2.5
if m = 2, the 4 x 4 matrix is transformed to a 2 x 4 matrix.
This process effectively resamples the data at a longer time span n
units longer than the input data.
For cases when there is a remainder (remainder(5/3) = 2), the remaining
two columns are binned together as the last time period, while the
first three are binned together for the first period.
Input:
@param time_data n x l ndarray: measurements of an attribute at
different time intervals
@param num_time_per_bin int: number of columns to average into a new
column
Output:
ceil(n / m) x l ndarray of resampled time series
"""
if time_data.shape[1] % num_time_per_bin == 0:
## if fit is perfect, then use it
n_max = time_data.shape[1] / num_time_per_bin
else:
## fit remainders into an additional column
n_max = time_data.shape[1] / num_time_per_bin + 1
return np.array([time_data[:, num_time_per_bin * i:num_time_per_bin * (i+1)].mean(axis=1)
for i in range(n_max)]).T
def get_prob_dist(transition_matrix, lag_indices, unit_indices):
"""
Given an array of transition matrices, look up the probability
associated with the arrangements passed
Input:
@param transition_matrix ndarray[k,k,k]:
@param lag_indices ndarray:
@param unit_indices ndarray:
Output:
Array of probability distributions
"""
return np.array([transition_matrix[(lag_indices[i], unit_indices[i])]
for i in range(len(lag_indices))])
def get_prob_stats(prob_dist, unit_indices):
"""
get the statistics of the probability distributions
Outputs:
@param trend_up ndarray(float): sum of probabilities for upward
movement (relative to the unit index of that prob)
@param trend_down ndarray(float): sum of probabilities for downward
movement (relative to the unit index of that prob)
@param trend ndarray(float): difference of upward and downward
movements
"""
num_elements = len(unit_indices)
trend_up = np.empty(num_elements, dtype=float)
trend_down = np.empty(num_elements, dtype=float)
trend = np.empty(num_elements, dtype=float)
for i in range(num_elements):
trend_up[i] = prob_dist[i, (unit_indices[i]+1):].sum()
trend_down[i] = prob_dist[i, :unit_indices[i]].sum()
if prob_dist[i, unit_indices[i]] > 0.0:
trend[i] = (trend_up[i] - trend_down[i]) / prob_dist[i, unit_indices[i]]
else:
trend[i] = None
## calculate volatility of distribution
volatility = prob_dist.std(axis=1)
return trend_up, trend_down, trend, volatility

View File

@@ -0,0 +1,49 @@
"""
CartoDB Spatial Analysis Python Library
See:
https://github.com/CartoDB/crankshaft
"""
from setuptools import setup, find_packages
setup(
name='crankshaft',
version='0.0.0',
description='CartoDB Spatial Analysis Python Library',
url='https://github.com/CartoDB/crankshaft',
author='Data Services Team - CartoDB',
author_email='dataservices@cartodb.com',
license='MIT',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Mapping comunity',
'Topic :: Maps :: Mapping Tools',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2.7',
],
keywords='maps mapping tools spatial analysis geostatistics',
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
extras_require={
'dev': ['unittest'],
'test': ['unittest', 'nose', 'mock'],
},
# The choice of component versions is dictated by what's
# provisioned in the production servers.
# IMPORTANT NOTE: please don't change this line. Instead issue a ticket to systems for evaluation.
install_requires=['joblib==0.8.3', 'numpy==1.6.1', 'scipy==0.14.0', 'pysal==1.11.2', 'scikit-learn==0.14.1'],
requires=['pysal', 'numpy', 'sklearn'],
test_suite='test'
)

View File

@@ -0,0 +1,49 @@
"""
CartoDB Spatial Analysis Python Library
See:
https://github.com/CartoDB/crankshaft
"""
from setuptools import setup, find_packages
setup(
name='crankshaft',
version='0.0.0',
description='CartoDB Spatial Analysis Python Library',
url='https://github.com/CartoDB/crankshaft',
author='Data Services Team - CartoDB',
author_email='dataservices@cartodb.com',
license='MIT',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Mapping comunity',
'Topic :: Maps :: Mapping Tools',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2.7',
],
keywords='maps mapping tools spatial analysis geostatistics',
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
extras_require={
'dev': ['unittest'],
'test': ['unittest', 'nose', 'mock'],
},
# The choice of component versions is dictated by what's
# provisioned in the production servers.
# IMPORTANT NOTE: please don't change this line. Instead issue a ticket to systems for evaluation.
install_requires=['joblib==0.8.3', 'numpy==1.6.1', 'scipy==0.14.0', 'pysal==1.11.2', 'scikit-learn==0.14.1'],
requires=['pysal', 'numpy', 'sklearn'],
test_suite='test'
)

View File

@@ -0,0 +1 @@
[{"xs": [9.917239463463458, 9.042767302696836, 10.798929825304187, 8.763751051762995, 11.383882954810852, 11.018206993460897, 8.939526075734316, 9.636159342565252, 10.136336896960058, 11.480610059427342, 12.115011910725082, 9.173267848893428, 10.239300931201738, 8.00012512174072, 8.979962292282131, 9.318376124429575, 10.82259513754284, 10.391747171927115, 10.04904588886165, 9.96007160443463, -0.78825626804569, -0.3511819898577426, -1.2796410003764271, -0.3977049391203402, 2.4792311265774667, 1.3670311632092624, 1.2963504112955613, 2.0404844103073025, -1.6439708506073223, 0.39122885445645805, 1.026031821452462, -0.04044477160482201, -0.7442346929085072, -0.34687120826243034, -0.23420359971379054, -0.5919629143336708, -0.202903054395391, -0.1893399644841902, 1.9331834251176807, -0.12321054392851609], "ys": [8.735627063679981, 9.857615954045011, 10.81439096759407, 10.586727233537191, 9.232919976568622, 11.54281262696508, 8.392787912674466, 9.355119689665944, 9.22380703532752, 10.542142541823122, 10.111980619367035, 10.760836265570738, 8.819773453269804, 10.25325722424816, 9.802077905695608, 8.955420161552611, 9.833801181904477, 10.491684241001613, 12.076108669877556, 11.74289693140474, -0.5685725015474191, -0.5715728344759778, -0.20180907868635137, 0.38431336480089595, -0.3402202083684184, -2.4652736827783586, 0.08295159401756182, 0.8503818775816505, 0.6488691600321166, 0.5794762568230527, -0.6770063922144103, -0.6557616416449478, -1.2834289177624947, 0.1096318195532717, -0.38986922166834853, -1.6224497706950238, 0.09429787743230483, 0.4005097316394031, -0.508002811195673, -1.2473463371366507], "ids": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]}]

View File

@@ -0,0 +1 @@
[[0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 0], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 1], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 2], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 3], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 4], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 5], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 6], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 7], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 8], [0.19047619047619049, 0.16, 0.0, 0.32594478059941379, 9], [-0.23529411764705882, 0.0, 0.19047619047619047, 0.31356338348865387, 10], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 11], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 12], [0.027777777777777783, 0.11111111111111112, 0.088888888888888892, 0.30339641183779581, 13], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 14], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 15], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 16], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 17], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 18], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 19], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 20], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 21], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 22], [-0.16666666666666663, 0.18181818181818182, 0.27272727272727271, 0.20246415864836445, 23], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 24], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 25], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 26], [-0.043478260869565216, 0.0, 0.041666666666666664, 0.37950991789118999, 27], [0.22222222222222221, 0.18181818181818182, 0.0, 0.31701083225750354, 28], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 29], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 30], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 31], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 32], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 33], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 34], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 35], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 36], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 37], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 38], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 39], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 40], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 41], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 42], [0.0, 0.0, 0.0, 0.40000000000000002, 43], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 44], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 45], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 46], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 47]]

View File

@@ -0,0 +1,52 @@
[[0.9319096128346788, "HH"],
[-1.135787401862846, "HL"],
[0.11732030672508517, "LL"],
[0.6152779669180425, "LL"],
[-0.14657336660125297, "LH"],
[0.6967858120189607, "LL"],
[0.07949310115714454, "HH"],
[0.4703198759258987, "HH"],
[0.4421125200498064, "HH"],
[0.5724288737143592, "LL"],
[0.8970743435692062, "LL"],
[0.18327334401918674, "LL"],
[-0.01466729201304962, "HL"],
[0.3481559372544409, "LL"],
[0.06547094736902978, "LL"],
[0.15482141569329988, "HH"],
[0.4373841193538136, "HH"],
[0.15971286468915544, "LL"],
[1.0543588860308968, "HH"],
[1.7372866900020818, "HH"],
[1.091998586053999, "LL"],
[0.1171572584252222, "HH"],
[0.08438455015300014, "LL"],
[0.06547094736902978, "LL"],
[0.15482141569329985, "HH"],
[1.1627044812890683, "HH"],
[0.06547094736902978, "LL"],
[0.795275137550483, "HH"],
[0.18562939195219, "LL"],
[0.3010757406693439, "LL"],
[2.8205795942839376, "HH"],
[0.11259190602909264, "LL"],
[-0.07116352791516614, "HL"],
[-0.09945240794119009, "LH"],
[0.18562939195219, "LL"],
[0.1832733440191868, "LL"],
[-0.39054253768447705, "HL"],
[-0.1672071289487642, "HL"],
[0.3337669247916343, "HH"],
[0.2584386102554792, "HH"],
[-0.19733845476322634, "HL"],
[-0.9379282899805409, "LH"],
[-0.028770969951095866, "LH"],
[0.051367269430983485, "LL"],
[-0.2172548045913472, "LH"],
[0.05136726943098351, "LL"],
[0.04191046803899837, "LL"],
[0.7482357030403517, "HH"],
[-0.014585767863118111, "LH"],
[0.5410013139159929, "HH"],
[1.0223932668429925, "LL"],
[1.4179402898927476, "LL"]]

View File

@@ -0,0 +1,54 @@
[
{"neighbors": [48, 26, 20, 9, 31], "id": 1, "value": 0.5},
{"neighbors": [30, 16, 46, 3, 4], "id": 2, "value": 0.7},
{"neighbors": [46, 30, 2, 12, 16], "id": 3, "value": 0.2},
{"neighbors": [18, 30, 23, 2, 52], "id": 4, "value": 0.1},
{"neighbors": [47, 40, 45, 37, 28], "id": 5, "value": 0.3},
{"neighbors": [10, 21, 41, 14, 37], "id": 6, "value": 0.05},
{"neighbors": [8, 17, 43, 25, 12], "id": 7, "value": 0.4},
{"neighbors": [17, 25, 43, 22, 7], "id": 8, "value": 0.7},
{"neighbors": [39, 34, 1, 26, 48], "id": 9, "value": 0.5},
{"neighbors": [6, 37, 5, 45, 49], "id": 10, "value": 0.04},
{"neighbors": [51, 41, 29, 21, 14], "id": 11, "value": 0.08},
{"neighbors": [44, 46, 43, 50, 3], "id": 12, "value": 0.2},
{"neighbors": [45, 23, 14, 28, 18], "id": 13, "value": 0.4},
{"neighbors": [41, 29, 13, 23, 6], "id": 14, "value": 0.2},
{"neighbors": [36, 27, 32, 33, 24], "id": 15, "value": 0.3},
{"neighbors": [19, 2, 46, 44, 28], "id": 16, "value": 0.4},
{"neighbors": [8, 25, 43, 7, 22], "id": 17, "value": 0.6},
{"neighbors": [23, 4, 29, 14, 13], "id": 18, "value": 0.3},
{"neighbors": [42, 16, 28, 26, 40], "id": 19, "value": 0.7},
{"neighbors": [1, 48, 31, 26, 42], "id": 20, "value": 0.8},
{"neighbors": [41, 6, 11, 14, 10], "id": 21, "value": 0.1},
{"neighbors": [25, 50, 43, 31, 44], "id": 22, "value": 0.4},
{"neighbors": [18, 13, 14, 4, 2], "id": 23, "value": 0.1},
{"neighbors": [33, 49, 34, 47, 27], "id": 24, "value": 0.3},
{"neighbors": [43, 8, 22, 17, 50], "id": 25, "value": 0.4},
{"neighbors": [1, 42, 20, 31, 48], "id": 26, "value": 0.6},
{"neighbors": [32, 15, 36, 33, 24], "id": 27, "value": 0.3},
{"neighbors": [40, 45, 19, 5, 13], "id": 28, "value": 0.8},
{"neighbors": [11, 51, 41, 14, 18], "id": 29, "value": 0.3},
{"neighbors": [2, 3, 4, 46, 18], "id": 30, "value": 0.1},
{"neighbors": [20, 26, 1, 50, 48], "id": 31, "value": 0.9},
{"neighbors": [27, 36, 15, 49, 24], "id": 32, "value": 0.3},
{"neighbors": [24, 27, 49, 34, 32], "id": 33, "value": 0.4},
{"neighbors": [47, 9, 39, 40, 24], "id": 34, "value": 0.3},
{"neighbors": [38, 51, 11, 21, 41], "id": 35, "value": 0.3},
{"neighbors": [15, 32, 27, 49, 33], "id": 36, "value": 0.2},
{"neighbors": [49, 10, 5, 47, 24], "id": 37, "value": 0.5},
{"neighbors": [35, 21, 51, 11, 41], "id": 38, "value": 0.4},
{"neighbors": [9, 34, 48, 1, 47], "id": 39, "value": 0.6},
{"neighbors": [28, 47, 5, 9, 34], "id": 40, "value": 0.5},
{"neighbors": [11, 14, 29, 21, 6], "id": 41, "value": 0.4},
{"neighbors": [26, 19, 1, 9, 31], "id": 42, "value": 0.2},
{"neighbors": [25, 12, 8, 22, 44], "id": 43, "value": 0.3},
{"neighbors": [12, 50, 46, 16, 43], "id": 44, "value": 0.2},
{"neighbors": [28, 13, 5, 40, 19], "id": 45, "value": 0.3},
{"neighbors": [3, 12, 44, 2, 16], "id": 46, "value": 0.2},
{"neighbors": [34, 40, 5, 49, 24], "id": 47, "value": 0.3},
{"neighbors": [1, 20, 26, 9, 39], "id": 48, "value": 0.5},
{"neighbors": [24, 37, 47, 5, 33], "id": 49, "value": 0.2},
{"neighbors": [44, 22, 31, 42, 26], "id": 50, "value": 0.6},
{"neighbors": [11, 29, 41, 14, 21], "id": 51, "value": 0.01},
{"neighbors": [4, 18, 29, 51, 23], "id": 52, "value": 0.01}
]

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,13 @@
import unittest
from mock_plpy import MockPlPy
plpy = MockPlPy()
import sys
sys.modules['plpy'] = plpy
import os
def fixture_file(name):
dir = os.path.dirname(os.path.realpath(__file__))
return os.path.join(dir, 'fixtures', name)

View File

@@ -0,0 +1,52 @@
import re
class MockCursor:
def __init__(self, data):
self.cursor_pos = 0
self.data = data
def fetch(self, batch_size):
batch = self.data[self.cursor_pos : self.cursor_pos + batch_size]
self.cursor_pos += batch_size
return batch
class MockPlPy:
def __init__(self):
self._reset()
def _reset(self):
self.infos = []
self.notices = []
self.debugs = []
self.logs = []
self.warnings = []
self.errors = []
self.fatals = []
self.executes = []
self.results = []
self.prepares = []
self.results = []
def _define_result(self, query, result):
pattern = re.compile(query, re.IGNORECASE | re.MULTILINE)
self.results.append([pattern, result])
def notice(self, msg):
self.notices.append(msg)
def debug(self, msg):
self.notices.append(msg)
def info(self, msg):
self.infos.append(msg)
def cursor(self, query):
data = self.execute(query)
return MockCursor(data)
def execute(self, query): # TODO: additional arguments
for result in self.results:
if result[0].match(query):
return result[1]
return []

View File

@@ -0,0 +1,38 @@
import unittest
import numpy as np
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
#
# import sys
# sys.modules['plpy'] = plpy
from helper import plpy, fixture_file
import numpy as np
import crankshaft.clustering as cc
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
import json
class KMeansTest(unittest.TestCase):
"""Testing class for Moran's I functions"""
def setUp(self):
plpy._reset()
self.cluster_data = json.loads(open(fixture_file('kmeans.json')).read())
self.params = {"subquery": "select * from table",
"no_clusters": "10"
}
def test_kmeans(self):
data = self.cluster_data
plpy._define_result('select' ,data)
clusters = cc.kmeans('subquery', 2)
labels = [a[1] for a in clusters]
c1 = [a for a in clusters if a[1]==0]
c2 = [a for a in clusters if a[1]==1]
self.assertEqual(len(np.unique(labels)),2)
self.assertEqual(len(c1),20)
self.assertEqual(len(c2),20)

View File

@@ -0,0 +1,88 @@
import unittest
import numpy as np
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
#
# import sys
# sys.modules['plpy'] = plpy
from helper import plpy, fixture_file
import crankshaft.clustering as cc
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
import json
class MoranTest(unittest.TestCase):
"""Testing class for Moran's I functions"""
def setUp(self):
plpy._reset()
self.params = {"id_col": "cartodb_id",
"attr1": "andy",
"attr2": "jay_z",
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.params_markov = {"id_col": "cartodb_id",
"time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"],
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.neighbors_data = json.loads(open(fixture_file('neighbors.json')).read())
self.moran_data = json.loads(open(fixture_file('moran.json')).read())
def test_map_quads(self):
"""Test map_quads"""
self.assertEqual(cc.map_quads(1), 'HH')
self.assertEqual(cc.map_quads(2), 'LH')
self.assertEqual(cc.map_quads(3), 'LL')
self.assertEqual(cc.map_quads(4), 'HL')
self.assertEqual(cc.map_quads(33), None)
self.assertEqual(cc.map_quads('andy'), None)
def test_quad_position(self):
"""Test lisa_sig_vals"""
quads = np.array([1, 2, 3, 4], np.int)
ans = np.array(['HH', 'LH', 'LL', 'HL'])
test_ans = cc.quad_position(quads)
self.assertTrue((test_ans == ans).all())
def test_moran_local(self):
"""Test Moran's I local"""
data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local('subquery', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id')
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
self.assertAlmostEqual(res_val, exp_val)
self.assertEqual(res_quad, exp_quad)
def test_moran_local_rate(self):
"""Test Moran's I rate"""
data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local_rate('subquery', 'numerator', 'denominator', 'knn', 5, 99, 'the_geom', 'cartodb_id')
print 'result == None? ', result == None
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
self.assertAlmostEqual(res_val, exp_val)
def test_moran(self):
"""Test Moran's I global"""
data = [{ 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1235)
result = cc.moran('table', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id')
print 'result == None?', result == None
result_moran = result[0][0]
expected_moran = np.array([row[0] for row in self.moran_data]).mean()
self.assertAlmostEqual(expected_moran, result_moran, delta=10e-2)

View File

@@ -0,0 +1,142 @@
import unittest
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
class PysalUtilsTest(unittest.TestCase):
"""Testing class for utility functions related to PySAL integrations"""
def setUp(self):
self.params = {"id_col": "cartodb_id",
"attr1": "andy",
"attr2": "jay_z",
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.params_array = {"id_col": "cartodb_id",
"time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"],
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
def test_query_attr_select(self):
"""Test query_attr_select"""
ans = "i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, "
ans_array = "i.\"_2013_dec\"::numeric As attr1, " \
"i.\"_2014_jan\"::numeric As attr2, " \
"i.\"_2014_feb\"::numeric As attr3, "
self.assertEqual(pu.query_attr_select(self.params), ans)
self.assertEqual(pu.query_attr_select(self.params_array), ans_array)
def test_query_attr_where(self):
"""Test pu.query_attr_where"""
ans = "idx_replace.\"andy\" IS NOT NULL AND " \
"idx_replace.\"jay_z\" IS NOT NULL AND " \
"idx_replace.\"jay_z\" <> 0"
ans_array = "idx_replace.\"_2013_dec\" IS NOT NULL AND " \
"idx_replace.\"_2014_jan\" IS NOT NULL AND " \
"idx_replace.\"_2014_feb\" IS NOT NULL"
self.assertEqual(pu.query_attr_where(self.params), ans)
self.assertEqual(pu.query_attr_where(self.params_array), ans_array)
def test_knn(self):
"""Test knn neighbors constructor"""
ans = "SELECT i.\"cartodb_id\" As id, " \
"i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE " \
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND " \
"j.\"jay_z\" <> 0 " \
"ORDER BY " \
"j.\"the_geom\" <-> i.\"the_geom\" ASC " \
"LIMIT 321)) As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"andy\" IS NOT NULL AND " \
"i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 " \
"ORDER BY i.\"cartodb_id\" ASC;"
ans_array = "SELECT i.\"cartodb_id\" As id, " \
"i.\"_2013_dec\"::numeric As attr1, " \
"i.\"_2014_jan\"::numeric As attr2, " \
"i.\"_2014_feb\"::numeric As attr3, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"j.\"_2013_dec\" IS NOT NULL AND " \
"j.\"_2014_jan\" IS NOT NULL AND " \
"j.\"_2014_feb\" IS NOT NULL " \
"ORDER BY j.\"the_geom\" <-> i.\"the_geom\" ASC " \
"LIMIT 321)) As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"_2013_dec\" IS NOT NULL AND " \
"i.\"_2014_jan\" IS NOT NULL AND " \
"i.\"_2014_feb\" IS NOT NULL "\
"ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(pu.knn(self.params), ans)
self.assertEqual(pu.knn(self.params_array), ans_array)
def test_queen(self):
"""Test queen neighbors constructor"""
ans = "SELECT i.\"cartodb_id\" As id, " \
"i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE " \
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"ST_Touches(i.\"the_geom\", " \
"j.\"the_geom\") AND " \
"j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND " \
"j.\"jay_z\" <> 0)" \
") As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"andy\" IS NOT NULL AND " \
"i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 " \
"ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(pu.queen(self.params), ans)
def test_construct_neighbor_query(self):
"""Test construct_neighbor_query"""
# Compare to raw knn query
self.assertEqual(pu.construct_neighbor_query('knn', self.params),
pu.knn(self.params))
def test_get_attributes(self):
"""Test get_attributes"""
## need to add tests
self.assertEqual(True, True)
def test_get_weight(self):
"""Test get_weight"""
self.assertEqual(True, True)
def test_empty_zipped_array(self):
"""Test empty_zipped_array"""
ans2 = [(None, None)]
ans4 = [(None, None, None, None)]
self.assertEqual(pu.empty_zipped_array(2), ans2)
self.assertEqual(pu.empty_zipped_array(4), ans4)

View File

@@ -0,0 +1,64 @@
import unittest
import numpy as np
from helper import plpy, fixture_file
import crankshaft.segmentation as segmentation
import json
class SegmentationTest(unittest.TestCase):
"""Testing class for Moran's I functions"""
def setUp(self):
plpy._reset()
def generate_random_data(self,n_samples,random_state, row_type=False):
x1 = random_state.uniform(size=n_samples)
x2 = random_state.uniform(size=n_samples)
x3 = random_state.randint(0, 4, size=n_samples)
y = x1+x2*x2+x3
cartodb_id = range(len(x1))
if row_type:
return [ {'features': vals} for vals in zip(x1,x2,x3)], y
else:
return [dict( zip(['x1','x2','x3','target', 'cartodb_id'],[x1,x2,x3,y,cartodb_id]))]
def test_replace_nan_with_mean(self):
test_array = np.array([1.2, np.nan, 3.2, np.nan, np.nan])
def test_create_and_predict_segment(self):
n_samples = 1000
random_state_train = np.random.RandomState(13)
random_state_test = np.random.RandomState(134)
training_data = self.generate_random_data(n_samples, random_state_train)
test_data, test_y = self.generate_random_data(n_samples, random_state_test, row_type=True)
ids = [{'cartodb_ids': range(len(test_data))}]
rows = [{'x1': 0,'x2':0,'x3':0,'y':0,'cartodb_id':0}]
plpy._define_result('select \* from \(select \* from training\) a limit 1',rows)
plpy._define_result('.*from \(select \* from training\) as a' ,training_data)
plpy._define_result('select array_agg\(cartodb\_id order by cartodb\_id\) as cartodb_ids from \(.*\) a',ids)
plpy._define_result('.*select \* from test.*' ,test_data)
model_parameters = {'n_estimators': 1200,
'max_depth': 3,
'subsample' : 0.5,
'learning_rate': 0.01,
'min_samples_leaf': 1}
result = segmentation.create_and_predict_segment(
'select * from training',
'target',
'select * from test',
model_parameters)
prediction = [r[1] for r in result]
accuracy =np.sqrt(np.mean( np.square( np.array(prediction) - np.array(test_y))))
self.assertEqual(len(result),len(test_data))
self.assertTrue( result[0][2] < 0.01)
self.assertTrue( accuracy < 0.5*np.mean(test_y) )

View File

@@ -0,0 +1,324 @@
import unittest
import numpy as np
import unittest
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
#
# import sys
# sys.modules['plpy'] = plpy
from helper import plpy, fixture_file
import crankshaft.space_time_dynamics as std
from crankshaft import random_seeds
import json
class SpaceTimeTests(unittest.TestCase):
"""Testing class for Markov Functions."""
def setUp(self):
plpy._reset()
self.params = {"id_col": "cartodb_id",
"time_cols": ['dec_2013', 'jan_2014', 'feb_2014'],
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.neighbors_data = json.loads(open(fixture_file('neighbors_markov.json')).read())
self.markov_data = json.loads(open(fixture_file('markov.json')).read())
self.time_data = np.array([i * np.ones(10, dtype=float) for i in range(10)]).T
self.transition_matrix = np.array([
[[ 0.96341463, 0.0304878 , 0.00609756, 0. , 0. ],
[ 0.06040268, 0.83221477, 0.10738255, 0. , 0. ],
[ 0. , 0.14 , 0.74 , 0.12 , 0. ],
[ 0. , 0.03571429, 0.32142857, 0.57142857, 0.07142857],
[ 0. , 0. , 0. , 0.16666667, 0.83333333]],
[[ 0.79831933, 0.16806723, 0.03361345, 0. , 0. ],
[ 0.0754717 , 0.88207547, 0.04245283, 0. , 0. ],
[ 0.00537634, 0.06989247, 0.8655914 , 0.05913978, 0. ],
[ 0. , 0. , 0.06372549, 0.90196078, 0.03431373],
[ 0. , 0. , 0. , 0.19444444, 0.80555556]],
[[ 0.84693878, 0.15306122, 0. , 0. , 0. ],
[ 0.08133971, 0.78947368, 0.1291866 , 0. , 0. ],
[ 0.00518135, 0.0984456 , 0.79274611, 0.0984456 , 0.00518135],
[ 0. , 0. , 0.09411765, 0.87058824, 0.03529412],
[ 0. , 0. , 0. , 0.10204082, 0.89795918]],
[[ 0.8852459 , 0.09836066, 0. , 0.01639344, 0. ],
[ 0.03875969, 0.81395349, 0.13953488, 0. , 0.00775194],
[ 0.0049505 , 0.09405941, 0.77722772, 0.11881188, 0.0049505 ],
[ 0. , 0.02339181, 0.12865497, 0.75438596, 0.09356725],
[ 0. , 0. , 0. , 0.09661836, 0.90338164]],
[[ 0.33333333, 0.66666667, 0. , 0. , 0. ],
[ 0.0483871 , 0.77419355, 0.16129032, 0.01612903, 0. ],
[ 0.01149425, 0.16091954, 0.74712644, 0.08045977, 0. ],
[ 0. , 0.01036269, 0.06217617, 0.89637306, 0.03108808],
[ 0. , 0. , 0. , 0.02352941, 0.97647059]]]
)
def test_spatial_markov(self):
"""Test Spatial Markov."""
data = [ { 'id': d['id'],
'attr1': d['y1995'],
'attr2': d['y1996'],
'attr3': d['y1997'],
'attr4': d['y1998'],
'attr5': d['y1999'],
'attr6': d['y2000'],
'attr7': d['y2001'],
'attr8': d['y2002'],
'attr9': d['y2003'],
'attr10': d['y2004'],
'attr11': d['y2005'],
'attr12': d['y2006'],
'attr13': d['y2007'],
'attr14': d['y2008'],
'attr15': d['y2009'],
'neighbors': d['neighbors'] } for d in self.neighbors_data]
print(str(data[0]))
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = std.spatial_markov_trend('subquery', ['y1995', 'y1996', 'y1997', 'y1998', 'y1999', 'y2000', 'y2001', 'y2002', 'y2003', 'y2004', 'y2005', 'y2006', 'y2007', 'y2008', 'y2009'], 5, 'knn', 5, 0, 'the_geom', 'cartodb_id')
self.assertTrue(result != None)
result = [(row[0], row[1], row[2], row[3], row[4]) for row in result]
print result[0]
expected = self.markov_data
for ([res_trend, res_up, res_down, res_vol, res_id],
[exp_trend, exp_up, exp_down, exp_vol, exp_id]
) in zip(result, expected):
self.assertAlmostEqual(res_trend, exp_trend)
def test_get_time_data(self):
"""Test get_time_data"""
data = [ { 'attr1': d['y1995'],
'attr2': d['y1996'],
'attr3': d['y1997'],
'attr4': d['y1998'],
'attr5': d['y1999'],
'attr6': d['y2000'],
'attr7': d['y2001'],
'attr8': d['y2002'],
'attr9': d['y2003'],
'attr10': d['y2004'],
'attr11': d['y2005'],
'attr12': d['y2006'],
'attr13': d['y2007'],
'attr14': d['y2008'],
'attr15': d['y2009'] } for d in self.neighbors_data]
result = std.get_time_data(data, ['y1995', 'y1996', 'y1997', 'y1998', 'y1999', 'y2000', 'y2001', 'y2002', 'y2003', 'y2004', 'y2005', 'y2006', 'y2007', 'y2008', 'y2009'])
## expected was prepared from PySAL example:
### f = ps.open(ps.examples.get_path("usjoin.csv"))
### pci = np.array([f.by_col[str(y)] for y in range(1995, 2010)]).transpose()
### rpci = pci / (pci.mean(axis = 0))
expected = np.array([[ 0.87654416, 0.863147, 0.85637567, 0.84811668, 0.8446154, 0.83271652
, 0.83786314, 0.85012593, 0.85509656, 0.86416612, 0.87119375, 0.86302631
, 0.86148267, 0.86252252, 0.86746356],
[ 0.9188951, 0.91757931, 0.92333258, 0.92517289, 0.92552388, 0.90746978
, 0.89830489, 0.89431991, 0.88924794, 0.89815176, 0.91832091, 0.91706054
, 0.90139505, 0.87897455, 0.86216858],
[ 0.82591007, 0.82548596, 0.81989793, 0.81503235, 0.81731522, 0.78964559
, 0.80584442, 0.8084998, 0.82258551, 0.82668196, 0.82373724, 0.81814804
, 0.83675961, 0.83574199, 0.84647177],
[ 1.09088176, 1.08537689, 1.08456418, 1.08415404, 1.09898841, 1.14506948
, 1.12151133, 1.11160697, 1.10888621, 1.11399806, 1.12168029, 1.13164797
, 1.12958508, 1.11371818, 1.09936775],
[ 1.10731446, 1.11373944, 1.13283638, 1.14472559, 1.15910025, 1.16898201
, 1.17212488, 1.14752303, 1.11843284, 1.11024964, 1.11943471, 1.11736468
, 1.10863242, 1.09642516, 1.07762337],
[ 1.42269757, 1.42118434, 1.44273502, 1.43577571, 1.44400684, 1.44184737
, 1.44782832, 1.41978227, 1.39092208, 1.4059372, 1.40788646, 1.44052766
, 1.45241216, 1.43306098, 1.4174431 ],
[ 1.13073885, 1.13110513, 1.11074708, 1.13364636, 1.13088149, 1.10888138
, 1.11856629, 1.13062931, 1.11944984, 1.12446239, 1.11671008, 1.10880034
, 1.08401709, 1.06959206, 1.07875225],
[ 1.04706124, 1.04516831, 1.04253372, 1.03239987, 1.02072545, 0.99854316
, 0.9880258, 0.99669587, 0.99327676, 1.01400905, 1.03176742, 1.040511
, 1.01749645, 0.9936394, 0.98279746],
[ 0.98996986, 1.00143564, 0.99491, 1.00188408, 1.00455845, 0.99127006
, 0.97925917, 0.9683482, 0.95335147, 0.93694787, 0.94308213, 0.92232874
, 0.91284091, 0.89689833, 0.88928858],
[ 0.87418391, 0.86416601, 0.84425695, 0.8404494, 0.83903044, 0.8578708
, 0.86036185, 0.86107306, 0.8500772, 0.86981998, 0.86837929, 0.87204141
, 0.86633032, 0.84946077, 0.83287146],
[ 1.14196118, 1.14660262, 1.14892712, 1.14909594, 1.14436624, 1.14450183
, 1.12349752, 1.12596664, 1.12213996, 1.1119989, 1.10257792, 1.10491258
, 1.11059842, 1.10509795, 1.10020097],
[ 0.97282463, 0.96700147, 0.96252588, 0.9653878, 0.96057687, 0.95831051
, 0.94480909, 0.94804195, 0.95430286, 0.94103989, 0.92122519, 0.91010201
, 0.89280392, 0.89298243, 0.89165385],
[ 0.94325468, 0.96436902, 0.96455242, 0.95243009, 0.94117647, 0.9480927
, 0.93539182, 0.95388718, 0.94597005, 0.96918424, 0.94781281, 0.93466815
, 0.94281559, 0.96520315, 0.96715441],
[ 0.97478408, 0.98169225, 0.98712809, 0.98474769, 0.98559897, 0.98687073
, 0.99237486, 0.98209969, 0.9877653, 0.97399471, 0.96910087, 0.98416665
, 0.98423613, 0.99823861, 0.99545704],
[ 0.85570269, 0.85575915, 0.85986132, 0.85693406, 0.8538012, 0.86191535
, 0.84981451, 0.85472102, 0.84564835, 0.83998883, 0.83478547, 0.82803648
, 0.8198736, 0.82265395, 0.8399404 ],
[ 0.87022047, 0.85996258, 0.85961813, 0.85689572, 0.83947136, 0.82785597
, 0.86008789, 0.86776298, 0.86720209, 0.8676334, 0.89179317, 0.94202108
, 0.9422231, 0.93902708, 0.94479184],
[ 0.90134907, 0.90407738, 0.90403991, 0.90201769, 0.90399238, 0.90906632
, 0.92693339, 0.93695966, 0.94242697, 0.94338265, 0.91981796, 0.91108804
, 0.90543476, 0.91737138, 0.94793657],
[ 1.1977611, 1.18222564, 1.18439158, 1.18267865, 1.19286723, 1.20172869
, 1.21328691, 1.22624778, 1.22397075, 1.23857042, 1.24419893, 1.23929384
, 1.23418676, 1.23626739, 1.26754398],
[ 1.24919678, 1.25754773, 1.26991161, 1.28020651, 1.30625667, 1.34790023
, 1.34399863, 1.32575181, 1.30795492, 1.30544841, 1.30303302, 1.32107766
, 1.32936244, 1.33001241, 1.33288462],
[ 1.06768004, 1.03799276, 1.03637303, 1.02768449, 1.03296093, 1.05059016
, 1.03405057, 1.02747623, 1.03162734, 0.9961416, 0.97356208, 0.94241549
, 0.92754547, 0.92549227, 0.92138102],
[ 1.09475614, 1.11526796, 1.11654299, 1.13103948, 1.13143264, 1.13889622
, 1.12442212, 1.13367018, 1.13982256, 1.14029944, 1.11979401, 1.10905389
, 1.10577769, 1.11166825, 1.09985155],
[ 0.76530058, 0.76612841, 0.76542451, 0.76722683, 0.76014284, 0.74480073
, 0.76098396, 0.76156903, 0.76651952, 0.76533288, 0.78205934, 0.76842416
, 0.77487118, 0.77768683, 0.78801192],
[ 0.98391336, 0.98075816, 0.98295341, 0.97386015, 0.96913803, 0.97370819
, 0.96419154, 0.97209861, 0.97441313, 0.96356162, 0.94745352, 0.93965462
, 0.93069645, 0.94020973, 0.94358232],
[ 0.83561828, 0.82298088, 0.81738502, 0.81748588, 0.80904801, 0.80071489
, 0.83358256, 0.83451613, 0.85175032, 0.85954307, 0.86790024, 0.87170334
, 0.87863799, 0.87497981, 0.87888675],
[ 0.98845573, 1.02092428, 0.99665283, 0.99141823, 0.99386619, 0.98733195
, 0.99644997, 0.99669587, 1.02559097, 1.01116651, 0.99988024, 0.97906749
, 0.99323123, 1.00204939, 0.99602148],
[ 1.14930913, 1.15241949, 1.14300962, 1.14265542, 1.13984683, 1.08312397
, 1.05192626, 1.04230892, 1.05577278, 1.08569751, 1.12443486, 1.08891079
, 1.08603695, 1.05997314, 1.02160943],
[ 1.11368269, 1.1057147, 1.11893431, 1.13778669, 1.1432272, 1.18257029
, 1.16226243, 1.16009196, 1.14467789, 1.14820235, 1.12386598, 1.12680236
, 1.12357937, 1.1159258, 1.12570828],
[ 1.30379431, 1.30752186, 1.31206366, 1.31532267, 1.30625667, 1.31210239
, 1.29989156, 1.29203193, 1.27183516, 1.26830786, 1.2617743, 1.28656675
, 1.29734097, 1.29390205, 1.29345446],
[ 0.83953719, 0.82701448, 0.82006005, 0.81188876, 0.80294864, 0.78772975
, 0.82848011, 0.8259679, 0.82435705, 0.83108634, 0.84373784, 0.83891093
, 0.84349247, 0.85637272, 0.86539395],
[ 1.23450087, 1.2426022, 1.23537935, 1.23581293, 1.24522626, 1.2256767
, 1.21126648, 1.19377804, 1.18355337, 1.19674434, 1.21536573, 1.23653297
, 1.27962009, 1.27968392, 1.25907738],
[ 0.9769662, 0.97400719, 0.98035944, 0.97581531, 0.95543282, 0.96480308
, 0.94686376, 0.93679073, 0.92540049, 0.92988835, 0.93442917, 0.92100464
, 0.91475304, 0.90249622, 0.9021363 ],
[ 0.84986886, 0.8986851, 0.84295997, 0.87280534, 0.85659368, 0.88937573
, 0.894401, 0.90448993, 0.95495898, 0.92698333, 0.94745352, 0.92562488
, 0.96635366, 1.02520312, 1.0394296 ],
[ 1.01922808, 1.00258203, 1.00974428, 1.00303417, 0.99765073, 1.00759019
, 0.99192968, 0.99747298, 0.99550759, 0.97583768, 0.9610168, 0.94779638
, 0.93759089, 0.93353431, 0.94121705],
[ 0.86367411, 0.85558932, 0.85544346, 0.85103025, 0.84336613, 0.83434854
, 0.85813595, 0.84667961, 0.84374558, 0.85951183, 0.87194227, 0.89455097
, 0.88283929, 0.90349491, 0.90600675],
[ 1.00947534, 1.00411055, 1.00698819, 0.99513687, 0.99291086, 1.00581626
, 0.98850522, 0.99291168, 0.98983209, 0.97511924, 0.96134615, 0.96382634
, 0.95011401, 0.9434686, 0.94637765],
[ 1.05712571, 1.05459419, 1.05753012, 1.04880786, 1.05103857, 1.04800023
, 1.03024941, 1.04200483, 1.0402554, 1.03296979, 1.02191682, 1.02476275
, 1.02347523, 1.02517684, 1.04359571],
[ 1.07084189, 1.06669497, 1.07937623, 1.07387988, 1.0794043, 1.0531801
, 1.07452771, 1.09383478, 1.1052447, 1.10322136, 1.09167939, 1.08772756
, 1.08859544, 1.09177338, 1.1096083 ],
[ 0.86719222, 0.86628896, 0.86675156, 0.86425632, 0.86511809, 0.86287327
, 0.85169796, 0.85411285, 0.84886336, 0.84517414, 0.84843858, 0.84488343
, 0.83374329, 0.82812044, 0.82878599],
[ 0.88389211, 0.92288667, 0.90282398, 0.91229186, 0.92023286, 0.92652175
, 0.94278865, 0.93682452, 0.98655146, 0.992237, 0.9798497, 0.93869677
, 0.96947771, 1.00362626, 0.98102351],
[ 0.97082064, 0.95320233, 0.94534081, 0.94215593, 0.93967, 0.93092109
, 0.92662519, 0.93412152, 0.93501274, 0.92879506, 0.92110542, 0.91035556
, 0.90430364, 0.89994694, 0.90073864],
[ 0.95861858, 0.95774543, 0.98254811, 0.98919472, 0.98684824, 0.98882205
, 0.97662234, 0.95601578, 0.94905385, 0.94934888, 0.97152609, 0.97163004
, 0.9700702, 0.97158948, 0.95884908],
[ 0.83980439, 0.84726737, 0.85747, 0.85467221, 0.8556751, 0.84818516
, 0.85265681, 0.84502402, 0.82645665, 0.81743586, 0.83550406, 0.83338919
, 0.83511679, 0.82136617, 0.80921874],
[ 0.95118156, 0.9466212, 0.94688098, 0.9508583, 0.9512441, 0.95440787
, 0.96364363, 0.96804412, 0.97136214, 0.97583768, 0.95571724, 0.96895368
, 0.97001634, 0.97082733, 0.98782366],
[ 1.08910044, 1.08248968, 1.08492895, 1.08656923, 1.09454249, 1.10558188
, 1.1214086, 1.12292577, 1.13021031, 1.13342735, 1.14686068, 1.14502975
, 1.14474747, 1.14084037, 1.16142926],
[ 1.06336033, 1.07365823, 1.08691496, 1.09764846, 1.11669863, 1.11856702
, 1.09764283, 1.08815849, 1.08044313, 1.09278827, 1.07003204, 1.08398066
, 1.09831768, 1.09298232, 1.09176125],
[ 0.79772065, 0.78829196, 0.78581151, 0.77615922, 0.77035744, 0.77751194
, 0.79902974, 0.81437881, 0.80788828, 0.79603865, 0.78966436, 0.79949807
, 0.80172182, 0.82168155, 0.85587911],
[ 1.0052447, 1.00007696, 1.00475899, 1.00613942, 1.00639561, 1.00162979
, 0.99860739, 1.00814981, 1.00574316, 0.99030032, 0.97682565, 0.97292596
, 0.96519561, 0.96173403, 0.95890284],
[ 0.95808419, 0.9382568, 0.9654441, 0.95561201, 0.96987289, 0.96608031
, 0.99727185, 1.00781194, 1.03484236, 1.05333619, 1.0983263, 1.1704974
, 1.17025154, 1.18730553, 1.14242645]])
self.assertTrue(np.allclose(result, expected))
self.assertTrue(type(result) == type(expected))
self.assertTrue(result.shape == expected.shape)
def test_rebin_data(self):
"""Test rebin_data"""
## sample in double the time (even case since 10 % 2 = 0):
## (0+1)/2, (2+3)/2, (4+5)/2, (6+7)/2, (8+9)/2
## = 0.5, 2.5, 4.5, 6.5, 8.5
ans_even = np.array([(i + 0.5) * np.ones(10, dtype=float)
for i in range(0, 10, 2)]).T
self.assertTrue(np.array_equal(std.rebin_data(self.time_data, 2), ans_even))
## sample in triple the time (uneven since 10 % 3 = 1):
## (0+1+2)/3, (3+4+5)/3, (6+7+8)/3, (9)/1
## = 1, 4, 7, 9
ans_odd = np.array([i * np.ones(10, dtype=float)
for i in (1, 4, 7, 9)]).T
self.assertTrue(np.array_equal(std.rebin_data(self.time_data, 3), ans_odd))
def test_get_prob_dist(self):
"""Test get_prob_dist"""
lag_indices = np.array([1, 2, 3, 4])
unit_indices = np.array([1, 3, 2, 4])
answer = np.array([
[ 0.0754717 , 0.88207547, 0.04245283, 0. , 0. ],
[ 0. , 0. , 0.09411765, 0.87058824, 0.03529412],
[ 0.0049505 , 0.09405941, 0.77722772, 0.11881188, 0.0049505 ],
[ 0. , 0. , 0. , 0.02352941, 0.97647059]
])
result = std.get_prob_dist(self.transition_matrix, lag_indices, unit_indices)
self.assertTrue(np.array_equal(result, answer))
def test_get_prob_stats(self):
"""Test get_prob_stats"""
probs = np.array([
[ 0.0754717 , 0.88207547, 0.04245283, 0. , 0. ],
[ 0. , 0. , 0.09411765, 0.87058824, 0.03529412],
[ 0.0049505 , 0.09405941, 0.77722772, 0.11881188, 0.0049505 ],
[ 0. , 0. , 0. , 0.02352941, 0.97647059]
])
unit_indices = np.array([1, 3, 2, 4])
answer_up = np.array([0.04245283, 0.03529412, 0.12376238, 0.])
answer_down = np.array([0.0754717, 0.09411765, 0.0990099, 0.02352941])
answer_trend = np.array([-0.03301887 / 0.88207547, -0.05882353 / 0.87058824, 0.02475248 / 0.77722772, -0.02352941 / 0.97647059])
answer_volatility = np.array([ 0.34221495, 0.33705421, 0.29226542, 0.38834223])
result = std.get_prob_stats(probs, unit_indices)
result_up = result[0]
result_down = result[1]
result_trend = result[2]
result_volatility = result[3]
self.assertTrue(np.allclose(result_up, answer_up))
self.assertTrue(np.allclose(result_down, answer_down))
self.assertTrue(np.allclose(result_trend, answer_trend))
self.assertTrue(np.allclose(result_volatility, answer_volatility))

View File

@@ -0,0 +1,5 @@
"""Import all modules"""
import crankshaft.random_seeds
import crankshaft.clustering
import crankshaft.space_time_dynamics
import crankshaft.segmentation

View File

@@ -0,0 +1,3 @@
"""Import all functions from for clustering"""
from moran import *
from kmeans import *

View File

@@ -0,0 +1,18 @@
from sklearn.cluster import KMeans
import plpy
def kmeans(query, no_clusters, no_init=20):
data = plpy.execute('''select array_agg(cartodb_id order by cartodb_id) as ids,
array_agg(ST_X(the_geom) order by cartodb_id) xs,
array_agg(ST_Y(the_geom) order by cartodb_id) ys from ({query}) a
where the_geom is not null
'''.format(query=query))
xs = data[0]['xs']
ys = data[0]['ys']
ids = data[0]['ids']
km = KMeans(n_clusters= no_clusters, n_init=no_init)
labels = km.fit_predict(zip(xs,ys))
return zip(ids,labels)

View File

@@ -0,0 +1,243 @@
"""
Moran's I geostatistics (global clustering & outliers presence)
"""
# TODO: Fill in local neighbors which have null/NoneType values with the
# average of the their neighborhood
import pysal as ps
import plpy
from collections import OrderedDict
# crankshaft module
import crankshaft.pysal_utils as pu
# High level interface ---------------------------------------
def moran(subquery, attr_name,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I (global)
Implementation building neighbors with a PostGIS database and Moran's I
core clusters with PySAL.
Andy Eschbacher
"""
qvals = OrderedDict([("id_col", id_col),
("attr1", attr_name),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(2)
except plpy.SPIError, e:
plpy.error('Analysis failed: %s' % e)
return pu.empty_zipped_array(2)
## collect attributes
attr_vals = pu.get_attributes(result)
## calculate weights
weight = pu.get_weight(result, w_type, num_ngbrs)
## calculate moran global
moran_global = ps.esda.moran.Moran(attr_vals, weight,
permutations=permutations)
return zip([moran_global.I], [moran_global.EI])
def moran_local(subquery, attr,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I implementation for PL/Python
Andy Eschbacher
"""
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors
qvals = OrderedDict([("id_col", id_col),
("attr1", attr),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(5)
except plpy.SPIError, e:
plpy.error('Analysis failed: %s' % e)
return pu.empty_zipped_array(5)
attr_vals = pu.get_attributes(result)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
permutations=permutations)
# find quadrants for each geometry
quads = quad_position(lisa.q)
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
def moran_rate(subquery, numerator, denominator,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I Rate (global)
Andy Eschbacher
"""
qvals = OrderedDict([("id_col", id_col),
("attr1", numerator),
("attr2", denominator)
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(2)
except plpy.SPIError, e:
plpy.error('Analysis failed: %s' % e)
return pu.empty_zipped_array(2)
## collect attributes
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
weight = pu.get_weight(result, w_type, num_ngbrs)
## calculate moran global rate
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
permutations=permutations)
return zip([lisa_rate.I], [lisa_rate.EI])
def moran_local_rate(subquery, numerator, denominator,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I Local Rate
Andy Eschbacher
"""
# geometries with values that are null are ignored
# resulting in a collection of not as near neighbors
qvals = OrderedDict([("id_col", id_col),
("numerator", numerator),
("denominator", denominator),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(5)
except plpy.SPIError, e:
plpy.error('Analysis failed: %s' % e)
return pu.empty_zipped_array(5)
## collect attributes
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
permutations=permutations)
# find quadrants for each geometry
quads = quad_position(lisa.q)
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
def moran_local_bv(subquery, attr1, attr2,
permutations, geom_col, id_col, w_type, num_ngbrs):
"""
Moran's I (local) Bivariate (untested)
"""
qvals = OrderedDict([("id_col", id_col),
("attr1", attr1),
("attr2", attr2),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(4)
except plpy.SPIError:
plpy.error("Error: areas of interest query failed, " \
"check input parameters")
return pu.empty_zipped_array(4)
## collect attributes
attr1_vals = pu.get_attributes(result, 1)
attr2_vals = pu.get_attributes(result, 2)
# create weights
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
permutations=permutations)
# find clustering of significance
lisa_sig = quad_position(lisa.q)
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
# Low level functions ----------------------------------------
def map_quads(coord):
"""
Map a quadrant number to Moran's I designation
HH=1, LH=2, LL=3, HL=4
Input:
@param coord (int): quadrant of a specific measurement
Output:
classification (one of 'HH', 'LH', 'LL', or 'HL')
"""
if coord == 1:
return 'HH'
elif coord == 2:
return 'LH'
elif coord == 3:
return 'LL'
elif coord == 4:
return 'HL'
else:
return None
def quad_position(quads):
"""
Produce Moran's I classification based of n
Input:
@param quads ndarray: an array of quads classified by
1-4 (PySAL default)
Output:
@param list: an array of quads classied by 'HH', 'LL', etc.
"""
return [map_quads(q) for q in quads]

View File

@@ -0,0 +1,2 @@
"""Import all functions for pysal_utils"""
from crankshaft.pysal_utils.pysal_utils import *

View File

@@ -0,0 +1,188 @@
"""
Utilities module for generic PySAL functionality, mainly centered on
translating queries into numpy arrays or PySAL weights objects
"""
import numpy as np
import pysal as ps
def construct_neighbor_query(w_type, query_vals):
"""Return query (a string) used for finding neighbors
@param w_type text: type of neighbors to calculate ('knn' or 'queen')
@param query_vals dict: values used to construct the query
"""
if w_type.lower() == 'knn':
return knn(query_vals)
else:
return queen(query_vals)
## Build weight object
def get_weight(query_res, w_type='knn', num_ngbrs=5):
"""
Construct PySAL weight from return value of query
@param query_res dict-like: query results with attributes and neighbors
"""
# if w_type.lower() == 'knn':
# row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
# weights = {x['id']: row_normed_weights for x in query_res}
# else:
# weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
# if len(x['neighbors']) > 0
# else [] for x in query_res}
neighbors = {x['id']: x['neighbors'] for x in query_res}
print 'len of neighbors: %d' % len(neighbors)
built_weight = ps.W(neighbors)
built_weight.transform = 'r'
return built_weight
def query_attr_select(params):
"""
Create portion of SELECT statement for attributes inolved in query.
@param params: dict of information used in query (column names,
table name, etc.)
"""
attr_string = ""
template = "i.\"%(col)s\"::numeric As attr%(alias_num)s, "
if 'time_cols' in params:
## if markov analysis
attrs = params['time_cols']
for idx, val in enumerate(attrs):
attr_string += template % {"col": val, "alias_num": idx + 1}
else:
## if moran's analysis
attrs = [k for k in params
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs', 'subquery')]
for idx, val in enumerate(sorted(attrs)):
attr_string += template % {"col": params[val], "alias_num": idx + 1}
return attr_string
def query_attr_where(params):
"""
Construct where conditions when building neighbors query
Create portion of WHERE clauses for weeding out NULL-valued geometries
Input: dict of params:
{'subquery': ...,
'numerator': 'data1',
'denominator': 'data2',
'': ...}
Output: 'idx_replace."data1" IS NOT NULL AND idx_replace."data2" IS NOT NULL'
Input:
{'subquery': ...,
'time_cols': ['time1', 'time2', 'time3'],
'etc': ...}
Output: 'idx_replace."time1" IS NOT NULL AND idx_replace."time2" IS NOT
NULL AND idx_replace."time3" IS NOT NULL'
"""
attr_string = []
template = "idx_replace.\"%s\" IS NOT NULL"
if 'time_cols' in params:
## markov where clauses
attrs = params['time_cols']
# add values to template
for attr in attrs:
attr_string.append(template % attr)
else:
## moran where clauses
# get keys
attrs = sorted([k for k in params
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs', 'subquery')])
# add values to template
for attr in attrs:
attr_string.append(template % params[attr])
if len(attrs) == 2:
attr_string.append("idx_replace.\"%s\" <> 0" % params[attrs[1]])
out = " AND ".join(attr_string)
return out
def knn(params):
"""SQL query for k-nearest neighbors.
@param vars: dict of values to fill template
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM ({subquery}) As j " \
"WHERE " \
"i.\"{id_col}\" <> j.\"{id_col}\" AND " \
"%(attr_where_j)s " \
"ORDER BY " \
"j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
"LIMIT {num_ngbrs})" \
") As neighbors " \
"FROM ({subquery}) As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## SQL query for finding queens neighbors (all contiguous polygons)
def queen(params):
"""SQL query for queen neighbors.
@param params dict: information to fill query
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM ({subquery}) As j " \
"WHERE i.\"{id_col}\" <> j.\"{id_col}\" AND " \
"ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
"%(attr_where_j)s)" \
") As neighbors " \
"FROM ({subquery}) As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## to add more weight methods open a ticket or pull request
def get_attributes(query_res, attr_num=1):
"""
@param query_res: query results with attributes and neighbors
@param attr_num: attribute number (1, 2, ...)
"""
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
def empty_zipped_array(num_nones):
"""
prepare return values for cases of empty weights objects (no neighbors)
Input:
@param num_nones int: number of columns (e.g., 4)
Output:
[(None, None, None, None)]
"""
return [tuple([None] * num_nones)]

View File

@@ -0,0 +1,11 @@
"""Random seed generator used for non-deterministic functions in crankshaft"""
import random
import numpy
def set_random_seeds(value):
"""
Set the seeds of the RNGs (Random Number Generators)
used internally.
"""
random.seed(value)
numpy.random.seed(value)

View File

@@ -0,0 +1 @@
from segmentation import *

View File

@@ -0,0 +1,176 @@
"""
Segmentation creation and prediction
"""
import sklearn
import numpy as np
import plpy
from sklearn.ensemble import GradientBoostingRegressor
from sklearn import metrics
from sklearn.cross_validation import train_test_split
# Lower level functions
#----------------------
def replace_nan_with_mean(array):
"""
Input:
@param array: an array of floats which may have null-valued entries
Output:
array with nans filled in with the mean of the dataset
"""
# returns an array of rows and column indices
indices = np.where(np.isnan(array))
# iterate through entries which have nan values
for row, col in zip(*indices):
array[row, col] = np.mean(array[~np.isnan(array[:, col]), col])
return array
def get_data(variable, feature_columns, query):
"""
Fetch data from the database, clean, and package into
numpy arrays
Input:
@param variable: name of the target variable
@param feature_columns: list of column names
@param query: subquery that data is pulled from for the packaging
Output:
prepared data, packaged into NumPy arrays
"""
columns = ','.join(['array_agg("{col}") As "{col}"'.format(col=col) for col in feature_columns])
try:
data = plpy.execute('''SELECT array_agg("{variable}") As target, {columns} FROM ({query}) As a'''.format(
variable=variable,
columns=columns,
query=query))
except Exception, e:
plpy.error('Failed to access data to build segmentation model: %s' % e)
# extract target data from plpy object
target = np.array(data[0]['target'])
# put n feature data arrays into an n x m array of arrays
features = np.column_stack([np.array(data[0][col], dtype=float) for col in feature_columns])
return replace_nan_with_mean(target), replace_nan_with_mean(features)
# High level interface
# --------------------
def create_and_predict_segment_agg(target, features, target_features, target_ids, model_parameters):
"""
Version of create_and_predict_segment that works on arrays that come stright form the SQL calling
the function.
Input:
@param target: The 1D array of lenth NSamples containing the target variable we want the model to predict
@param features: Thw 2D array of size NSamples * NFeatures that form the imput to the model
@param target_ids: A 1D array of target_ids that will be used to associate the results of the prediction with the rows which they come from
@param model_parameters: A dictionary containing parameters for the model.
"""
clean_target = replace_nan_with_mean(target)
clean_features = replace_nan_with_mean(features)
target_features = replace_nan_with_mean(target_features)
model, accuracy = train_model(clean_target, clean_features, model_parameters, 0.2)
prediction = model.predict(target_features)
accuracy_array = [accuracy]*prediction.shape[0]
return zip(target_ids, prediction, np.full(prediction.shape, accuracy_array))
def create_and_predict_segment(query, variable, target_query, model_params):
"""
generate a segment with machine learning
Stuart Lynn
"""
## fetch column names
try:
columns = plpy.execute('SELECT * FROM ({query}) As a LIMIT 1 '.format(query=query))[0].keys()
except Exception, e:
plpy.error('Failed to build segmentation model: %s' % e)
## extract column names to be used in building the segmentation model
feature_columns = set(columns) - set([variable, 'cartodb_id', 'the_geom', 'the_geom_webmercator'])
## get data from database
target, features = get_data(variable, feature_columns, query)
model, accuracy = train_model(target, features, model_params, 0.2)
cartodb_ids, result = predict_segment(model, feature_columns, target_query)
accuracy_array = [accuracy]*result.shape[0]
return zip(cartodb_ids, result, accuracy_array)
def train_model(target, features, model_params, test_split):
"""
Train the Gradient Boosting model on the provided data and calculate the accuracy of the model
Input:
@param target: 1D Array of the variable that the model is to be trianed to predict
@param features: 2D Array NSamples * NFeatures to use in trining the model
@param model_params: A dictionary of model parameters, the full specification can be found on the
scikit learn page for [GradientBoostingRegressor](http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html)
@parma test_split: The fraction of the data to be withheld for testing the model / calculating the accuray
"""
features_train, features_test, target_train, target_test = train_test_split(features, target, test_size=test_split)
model = GradientBoostingRegressor(**model_params)
model.fit(features_train, target_train)
accuracy = calculate_model_accuracy(model, features, target)
return model, accuracy
def calculate_model_accuracy(model, features, target):
"""
Calculate the mean squared error of the model prediction
Input:
@param model: model trained from input features
@param features: features to make a prediction from
@param target: target to compare prediction to
Output:
mean squared error of the model prection compared to the target
"""
prediction = model.predict(features)
return metrics.mean_squared_error(prediction, target)
def predict_segment(model, features, target_query):
"""
Use the provided model to predict the values for the new feature set
Input:
@param model: The pretrained model
@features: A list of features to use in the model prediction (list of column names)
@target_query: The query to run to obtain the data to predict on and the cartdb_ids associated with it.
"""
batch_size = 1000
joined_features = ','.join(['"{0}"::numeric'.format(a) for a in features])
try:
cursor = plpy.cursor('SELECT Array[{joined_features}] As features FROM ({target_query}) As a'.format(
joined_features=joined_features,
target_query=target_query))
except Exception, e:
plpy.error('Failed to build segmentation model: %s' % e)
results = []
while True:
rows = cursor.fetch(batch_size)
if not rows:
break
batch = np.row_stack([np.array(row['features'], dtype=float) for row in rows])
#Need to fix this. Should be global mean. This will cause weird effects
batch = replace_nan_with_mean(batch)
prediction = model.predict(batch)
results.append(prediction)
try:
cartodb_ids = plpy.execute('''SELECT array_agg(cartodb_id ORDER BY cartodb_id) As cartodb_ids FROM ({0}) As a'''.format(target_query))[0]['cartodb_ids']
except Exception, e:
plpy.error('Failed to build segmentation model: %s' % e)
return cartodb_ids, np.concatenate(results)

View File

@@ -0,0 +1,2 @@
"""Import all functions from clustering libraries."""
from markov import *

View File

@@ -0,0 +1,189 @@
"""
Spatial dynamics measurements using Spatial Markov
"""
import numpy as np
import pysal as ps
import plpy
import crankshaft.pysal_utils as pu
def spatial_markov_trend(subquery, time_cols, num_classes=7,
w_type='knn', num_ngbrs=5, permutations=0,
geom_col='the_geom', id_col='cartodb_id'):
"""
Predict the trends of a unit based on:
1. history of its transitions to different classes (e.g., 1st quantile -> 2nd quantile)
2. average class of its neighbors
Inputs:
@param subquery string: e.g., SELECT the_geom, cartodb_id,
interesting_time_column FROM table_name
@param time_cols list of strings: list of strings of column names
@param num_classes (optional): number of classes to break distribution
of values into. Currently uses quantile bins.
@param w_type string (optional): weight type ('knn' or 'queen')
@param num_ngbrs int (optional): number of neighbors (if knn type)
@param permutations int (optional): number of permutations for test
stats
@param geom_col string (optional): name of column which contains the
geometries
@param id_col string (optional): name of column which has the ids of
the table
Outputs:
@param trend_up float: probablity that a geom will move to a higher
class
@param trend_down float: probablity that a geom will move to a lower
class
@param trend float: (trend_up - trend_down) / trend_static
@param volatility float: a measure of the volatility based on
probability stddev(prob array)
"""
if len(time_cols) < 2:
plpy.error('More than one time column needs to be passed')
qvals = {"id_col": id_col,
"time_cols": time_cols,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs}
try:
query_result = plpy.execute(
pu.construct_neighbor_query(w_type, qvals)
)
if len(query_result) == 0:
return zip([None], [None], [None], [None], [None])
except plpy.SPIError, e:
plpy.debug('Query failed with exception %s: %s' % (err, pu.construct_neighbor_query(w_type, qvals)))
plpy.error('Analysis failed: %s' % e)
return zip([None], [None], [None], [None], [None])
## build weight
weights = pu.get_weight(query_result, w_type)
weights.transform = 'r'
## prep time data
t_data = get_time_data(query_result, time_cols)
plpy.debug('shape of t_data %d, %d' % t_data.shape)
plpy.debug('number of weight objects: %d, %d' % (weights.sparse).shape)
plpy.debug('first num elements: %f' % t_data[0, 0])
sp_markov_result = ps.Spatial_Markov(t_data,
weights,
k=num_classes,
fixed=False,
permutations=permutations)
## get lag classes
lag_classes = ps.Quantiles(
ps.lag_spatial(weights, t_data[:, -1]),
k=num_classes).yb
## look up probablity distribution for each unit according to class and lag class
prob_dist = get_prob_dist(sp_markov_result.P,
lag_classes,
sp_markov_result.classes[:, -1])
## find the ups and down and overall distribution of each cell
trend_up, trend_down, trend, volatility = get_prob_stats(prob_dist,
sp_markov_result.classes[:, -1])
## output the results
return zip(trend, trend_up, trend_down, volatility, weights.id_order)
def get_time_data(markov_data, time_cols):
"""
Extract the time columns and bin appropriately
"""
num_attrs = len(time_cols)
return np.array([[x['attr' + str(i)] for x in markov_data]
for i in range(1, num_attrs+1)], dtype=float).transpose()
## not currently used
def rebin_data(time_data, num_time_per_bin):
"""
Convert an n x l matrix into an (n/m) x l matrix where the values are
reduced (averaged) for the intervening states:
1 2 3 4 1.5 3.5
5 6 7 8 -> 5.5 7.5
9 8 7 6 8.5 6.5
5 4 3 2 4.5 2.5
if m = 2, the 4 x 4 matrix is transformed to a 2 x 4 matrix.
This process effectively resamples the data at a longer time span n
units longer than the input data.
For cases when there is a remainder (remainder(5/3) = 2), the remaining
two columns are binned together as the last time period, while the
first three are binned together for the first period.
Input:
@param time_data n x l ndarray: measurements of an attribute at
different time intervals
@param num_time_per_bin int: number of columns to average into a new
column
Output:
ceil(n / m) x l ndarray of resampled time series
"""
if time_data.shape[1] % num_time_per_bin == 0:
## if fit is perfect, then use it
n_max = time_data.shape[1] / num_time_per_bin
else:
## fit remainders into an additional column
n_max = time_data.shape[1] / num_time_per_bin + 1
return np.array([time_data[:, num_time_per_bin * i:num_time_per_bin * (i+1)].mean(axis=1)
for i in range(n_max)]).T
def get_prob_dist(transition_matrix, lag_indices, unit_indices):
"""
Given an array of transition matrices, look up the probability
associated with the arrangements passed
Input:
@param transition_matrix ndarray[k,k,k]:
@param lag_indices ndarray:
@param unit_indices ndarray:
Output:
Array of probability distributions
"""
return np.array([transition_matrix[(lag_indices[i], unit_indices[i])]
for i in range(len(lag_indices))])
def get_prob_stats(prob_dist, unit_indices):
"""
get the statistics of the probability distributions
Outputs:
@param trend_up ndarray(float): sum of probabilities for upward
movement (relative to the unit index of that prob)
@param trend_down ndarray(float): sum of probabilities for downward
movement (relative to the unit index of that prob)
@param trend ndarray(float): difference of upward and downward
movements
"""
num_elements = len(unit_indices)
trend_up = np.empty(num_elements, dtype=float)
trend_down = np.empty(num_elements, dtype=float)
trend = np.empty(num_elements, dtype=float)
for i in range(num_elements):
trend_up[i] = prob_dist[i, (unit_indices[i]+1):].sum()
trend_down[i] = prob_dist[i, :unit_indices[i]].sum()
if prob_dist[i, unit_indices[i]] > 0.0:
trend[i] = (trend_up[i] - trend_down[i]) / prob_dist[i, unit_indices[i]]
else:
trend[i] = None
## calculate volatility of distribution
volatility = prob_dist.std(axis=1)
return trend_up, trend_down, trend, volatility

View File

@@ -0,0 +1,49 @@
"""
CartoDB Spatial Analysis Python Library
See:
https://github.com/CartoDB/crankshaft
"""
from setuptools import setup, find_packages
setup(
name='crankshaft',
version='0.0.0',
description='CartoDB Spatial Analysis Python Library',
url='https://github.com/CartoDB/crankshaft',
author='Data Services Team - CartoDB',
author_email='dataservices@cartodb.com',
license='MIT',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Mapping comunity',
'Topic :: Maps :: Mapping Tools',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2.7',
],
keywords='maps mapping tools spatial analysis geostatistics',
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
extras_require={
'dev': ['unittest'],
'test': ['unittest', 'nose', 'mock'],
},
# The choice of component versions is dictated by what's
# provisioned in the production servers.
# IMPORTANT NOTE: please don't change this line. Instead issue a ticket to systems for evaluation.
install_requires=['joblib==0.8.3', 'numpy==1.6.1', 'scipy==0.14.0', 'pysal==1.11.2', 'scikit-learn==0.14.1'],
requires=['pysal', 'numpy', 'sklearn'],
test_suite='test'
)

View File

@@ -0,0 +1,49 @@
"""
CartoDB Spatial Analysis Python Library
See:
https://github.com/CartoDB/crankshaft
"""
from setuptools import setup, find_packages
setup(
name='crankshaft',
version='0.0.0',
description='CartoDB Spatial Analysis Python Library',
url='https://github.com/CartoDB/crankshaft',
author='Data Services Team - CartoDB',
author_email='dataservices@cartodb.com',
license='MIT',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Mapping comunity',
'Topic :: Maps :: Mapping Tools',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2.7',
],
keywords='maps mapping tools spatial analysis geostatistics',
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
extras_require={
'dev': ['unittest'],
'test': ['unittest', 'nose', 'mock'],
},
# The choice of component versions is dictated by what's
# provisioned in the production servers.
# IMPORTANT NOTE: please don't change this line. Instead issue a ticket to systems for evaluation.
install_requires=['joblib==0.8.3', 'numpy==1.6.1', 'scipy==0.14.0', 'pysal==1.11.2', 'scikit-learn==0.14.1'],
requires=['pysal', 'numpy', 'sklearn'],
test_suite='test'
)

View File

@@ -0,0 +1 @@
[{"xs": [9.917239463463458, 9.042767302696836, 10.798929825304187, 8.763751051762995, 11.383882954810852, 11.018206993460897, 8.939526075734316, 9.636159342565252, 10.136336896960058, 11.480610059427342, 12.115011910725082, 9.173267848893428, 10.239300931201738, 8.00012512174072, 8.979962292282131, 9.318376124429575, 10.82259513754284, 10.391747171927115, 10.04904588886165, 9.96007160443463, -0.78825626804569, -0.3511819898577426, -1.2796410003764271, -0.3977049391203402, 2.4792311265774667, 1.3670311632092624, 1.2963504112955613, 2.0404844103073025, -1.6439708506073223, 0.39122885445645805, 1.026031821452462, -0.04044477160482201, -0.7442346929085072, -0.34687120826243034, -0.23420359971379054, -0.5919629143336708, -0.202903054395391, -0.1893399644841902, 1.9331834251176807, -0.12321054392851609], "ys": [8.735627063679981, 9.857615954045011, 10.81439096759407, 10.586727233537191, 9.232919976568622, 11.54281262696508, 8.392787912674466, 9.355119689665944, 9.22380703532752, 10.542142541823122, 10.111980619367035, 10.760836265570738, 8.819773453269804, 10.25325722424816, 9.802077905695608, 8.955420161552611, 9.833801181904477, 10.491684241001613, 12.076108669877556, 11.74289693140474, -0.5685725015474191, -0.5715728344759778, -0.20180907868635137, 0.38431336480089595, -0.3402202083684184, -2.4652736827783586, 0.08295159401756182, 0.8503818775816505, 0.6488691600321166, 0.5794762568230527, -0.6770063922144103, -0.6557616416449478, -1.2834289177624947, 0.1096318195532717, -0.38986922166834853, -1.6224497706950238, 0.09429787743230483, 0.4005097316394031, -0.508002811195673, -1.2473463371366507], "ids": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]}]

View File

@@ -0,0 +1 @@
[[0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 0], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 1], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 2], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 3], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 4], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 5], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 6], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 7], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 8], [0.19047619047619049, 0.16, 0.0, 0.32594478059941379, 9], [-0.23529411764705882, 0.0, 0.19047619047619047, 0.31356338348865387, 10], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 11], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 12], [0.027777777777777783, 0.11111111111111112, 0.088888888888888892, 0.30339641183779581, 13], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 14], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 15], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 16], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 17], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 18], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 19], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 20], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 21], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 22], [-0.16666666666666663, 0.18181818181818182, 0.27272727272727271, 0.20246415864836445, 23], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 24], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 25], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 26], [-0.043478260869565216, 0.0, 0.041666666666666664, 0.37950991789118999, 27], [0.22222222222222221, 0.18181818181818182, 0.0, 0.31701083225750354, 28], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 29], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 30], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 31], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 32], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 33], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 34], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 35], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 36], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 37], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 38], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 39], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 40], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 41], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 42], [0.0, 0.0, 0.0, 0.40000000000000002, 43], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 44], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 45], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 46], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 47]]

View File

@@ -0,0 +1,52 @@
[[0.9319096128346788, "HH"],
[-1.135787401862846, "HL"],
[0.11732030672508517, "LL"],
[0.6152779669180425, "LL"],
[-0.14657336660125297, "LH"],
[0.6967858120189607, "LL"],
[0.07949310115714454, "HH"],
[0.4703198759258987, "HH"],
[0.4421125200498064, "HH"],
[0.5724288737143592, "LL"],
[0.8970743435692062, "LL"],
[0.18327334401918674, "LL"],
[-0.01466729201304962, "HL"],
[0.3481559372544409, "LL"],
[0.06547094736902978, "LL"],
[0.15482141569329988, "HH"],
[0.4373841193538136, "HH"],
[0.15971286468915544, "LL"],
[1.0543588860308968, "HH"],
[1.7372866900020818, "HH"],
[1.091998586053999, "LL"],
[0.1171572584252222, "HH"],
[0.08438455015300014, "LL"],
[0.06547094736902978, "LL"],
[0.15482141569329985, "HH"],
[1.1627044812890683, "HH"],
[0.06547094736902978, "LL"],
[0.795275137550483, "HH"],
[0.18562939195219, "LL"],
[0.3010757406693439, "LL"],
[2.8205795942839376, "HH"],
[0.11259190602909264, "LL"],
[-0.07116352791516614, "HL"],
[-0.09945240794119009, "LH"],
[0.18562939195219, "LL"],
[0.1832733440191868, "LL"],
[-0.39054253768447705, "HL"],
[-0.1672071289487642, "HL"],
[0.3337669247916343, "HH"],
[0.2584386102554792, "HH"],
[-0.19733845476322634, "HL"],
[-0.9379282899805409, "LH"],
[-0.028770969951095866, "LH"],
[0.051367269430983485, "LL"],
[-0.2172548045913472, "LH"],
[0.05136726943098351, "LL"],
[0.04191046803899837, "LL"],
[0.7482357030403517, "HH"],
[-0.014585767863118111, "LH"],
[0.5410013139159929, "HH"],
[1.0223932668429925, "LL"],
[1.4179402898927476, "LL"]]

View File

@@ -0,0 +1,54 @@
[
{"neighbors": [48, 26, 20, 9, 31], "id": 1, "value": 0.5},
{"neighbors": [30, 16, 46, 3, 4], "id": 2, "value": 0.7},
{"neighbors": [46, 30, 2, 12, 16], "id": 3, "value": 0.2},
{"neighbors": [18, 30, 23, 2, 52], "id": 4, "value": 0.1},
{"neighbors": [47, 40, 45, 37, 28], "id": 5, "value": 0.3},
{"neighbors": [10, 21, 41, 14, 37], "id": 6, "value": 0.05},
{"neighbors": [8, 17, 43, 25, 12], "id": 7, "value": 0.4},
{"neighbors": [17, 25, 43, 22, 7], "id": 8, "value": 0.7},
{"neighbors": [39, 34, 1, 26, 48], "id": 9, "value": 0.5},
{"neighbors": [6, 37, 5, 45, 49], "id": 10, "value": 0.04},
{"neighbors": [51, 41, 29, 21, 14], "id": 11, "value": 0.08},
{"neighbors": [44, 46, 43, 50, 3], "id": 12, "value": 0.2},
{"neighbors": [45, 23, 14, 28, 18], "id": 13, "value": 0.4},
{"neighbors": [41, 29, 13, 23, 6], "id": 14, "value": 0.2},
{"neighbors": [36, 27, 32, 33, 24], "id": 15, "value": 0.3},
{"neighbors": [19, 2, 46, 44, 28], "id": 16, "value": 0.4},
{"neighbors": [8, 25, 43, 7, 22], "id": 17, "value": 0.6},
{"neighbors": [23, 4, 29, 14, 13], "id": 18, "value": 0.3},
{"neighbors": [42, 16, 28, 26, 40], "id": 19, "value": 0.7},
{"neighbors": [1, 48, 31, 26, 42], "id": 20, "value": 0.8},
{"neighbors": [41, 6, 11, 14, 10], "id": 21, "value": 0.1},
{"neighbors": [25, 50, 43, 31, 44], "id": 22, "value": 0.4},
{"neighbors": [18, 13, 14, 4, 2], "id": 23, "value": 0.1},
{"neighbors": [33, 49, 34, 47, 27], "id": 24, "value": 0.3},
{"neighbors": [43, 8, 22, 17, 50], "id": 25, "value": 0.4},
{"neighbors": [1, 42, 20, 31, 48], "id": 26, "value": 0.6},
{"neighbors": [32, 15, 36, 33, 24], "id": 27, "value": 0.3},
{"neighbors": [40, 45, 19, 5, 13], "id": 28, "value": 0.8},
{"neighbors": [11, 51, 41, 14, 18], "id": 29, "value": 0.3},
{"neighbors": [2, 3, 4, 46, 18], "id": 30, "value": 0.1},
{"neighbors": [20, 26, 1, 50, 48], "id": 31, "value": 0.9},
{"neighbors": [27, 36, 15, 49, 24], "id": 32, "value": 0.3},
{"neighbors": [24, 27, 49, 34, 32], "id": 33, "value": 0.4},
{"neighbors": [47, 9, 39, 40, 24], "id": 34, "value": 0.3},
{"neighbors": [38, 51, 11, 21, 41], "id": 35, "value": 0.3},
{"neighbors": [15, 32, 27, 49, 33], "id": 36, "value": 0.2},
{"neighbors": [49, 10, 5, 47, 24], "id": 37, "value": 0.5},
{"neighbors": [35, 21, 51, 11, 41], "id": 38, "value": 0.4},
{"neighbors": [9, 34, 48, 1, 47], "id": 39, "value": 0.6},
{"neighbors": [28, 47, 5, 9, 34], "id": 40, "value": 0.5},
{"neighbors": [11, 14, 29, 21, 6], "id": 41, "value": 0.4},
{"neighbors": [26, 19, 1, 9, 31], "id": 42, "value": 0.2},
{"neighbors": [25, 12, 8, 22, 44], "id": 43, "value": 0.3},
{"neighbors": [12, 50, 46, 16, 43], "id": 44, "value": 0.2},
{"neighbors": [28, 13, 5, 40, 19], "id": 45, "value": 0.3},
{"neighbors": [3, 12, 44, 2, 16], "id": 46, "value": 0.2},
{"neighbors": [34, 40, 5, 49, 24], "id": 47, "value": 0.3},
{"neighbors": [1, 20, 26, 9, 39], "id": 48, "value": 0.5},
{"neighbors": [24, 37, 47, 5, 33], "id": 49, "value": 0.2},
{"neighbors": [44, 22, 31, 42, 26], "id": 50, "value": 0.6},
{"neighbors": [11, 29, 41, 14, 21], "id": 51, "value": 0.01},
{"neighbors": [4, 18, 29, 51, 23], "id": 52, "value": 0.01}
]

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,13 @@
import unittest
from mock_plpy import MockPlPy
plpy = MockPlPy()
import sys
sys.modules['plpy'] = plpy
import os
def fixture_file(name):
dir = os.path.dirname(os.path.realpath(__file__))
return os.path.join(dir, 'fixtures', name)

View File

@@ -0,0 +1,52 @@
import re
class MockCursor:
def __init__(self, data):
self.cursor_pos = 0
self.data = data
def fetch(self, batch_size):
batch = self.data[self.cursor_pos : self.cursor_pos + batch_size]
self.cursor_pos += batch_size
return batch
class MockPlPy:
def __init__(self):
self._reset()
def _reset(self):
self.infos = []
self.notices = []
self.debugs = []
self.logs = []
self.warnings = []
self.errors = []
self.fatals = []
self.executes = []
self.results = []
self.prepares = []
self.results = []
def _define_result(self, query, result):
pattern = re.compile(query, re.IGNORECASE | re.MULTILINE)
self.results.append([pattern, result])
def notice(self, msg):
self.notices.append(msg)
def debug(self, msg):
self.notices.append(msg)
def info(self, msg):
self.infos.append(msg)
def cursor(self, query):
data = self.execute(query)
return MockCursor(data)
def execute(self, query): # TODO: additional arguments
for result in self.results:
if result[0].match(query):
return result[1]
return []

View File

@@ -0,0 +1,38 @@
import unittest
import numpy as np
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
#
# import sys
# sys.modules['plpy'] = plpy
from helper import plpy, fixture_file
import numpy as np
import crankshaft.clustering as cc
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
import json
class KMeansTest(unittest.TestCase):
"""Testing class for Moran's I functions"""
def setUp(self):
plpy._reset()
self.cluster_data = json.loads(open(fixture_file('kmeans.json')).read())
self.params = {"subquery": "select * from table",
"no_clusters": "10"
}
def test_kmeans(self):
data = self.cluster_data
plpy._define_result('select' ,data)
clusters = cc.kmeans('subquery', 2)
labels = [a[1] for a in clusters]
c1 = [a for a in clusters if a[1]==0]
c2 = [a for a in clusters if a[1]==1]
self.assertEqual(len(np.unique(labels)),2)
self.assertEqual(len(c1),20)
self.assertEqual(len(c2),20)

View File

@@ -0,0 +1,88 @@
import unittest
import numpy as np
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
#
# import sys
# sys.modules['plpy'] = plpy
from helper import plpy, fixture_file
import crankshaft.clustering as cc
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
import json
class MoranTest(unittest.TestCase):
"""Testing class for Moran's I functions"""
def setUp(self):
plpy._reset()
self.params = {"id_col": "cartodb_id",
"attr1": "andy",
"attr2": "jay_z",
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.params_markov = {"id_col": "cartodb_id",
"time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"],
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.neighbors_data = json.loads(open(fixture_file('neighbors.json')).read())
self.moran_data = json.loads(open(fixture_file('moran.json')).read())
def test_map_quads(self):
"""Test map_quads"""
self.assertEqual(cc.map_quads(1), 'HH')
self.assertEqual(cc.map_quads(2), 'LH')
self.assertEqual(cc.map_quads(3), 'LL')
self.assertEqual(cc.map_quads(4), 'HL')
self.assertEqual(cc.map_quads(33), None)
self.assertEqual(cc.map_quads('andy'), None)
def test_quad_position(self):
"""Test lisa_sig_vals"""
quads = np.array([1, 2, 3, 4], np.int)
ans = np.array(['HH', 'LH', 'LL', 'HL'])
test_ans = cc.quad_position(quads)
self.assertTrue((test_ans == ans).all())
def test_moran_local(self):
"""Test Moran's I local"""
data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local('subquery', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id')
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
self.assertAlmostEqual(res_val, exp_val)
self.assertEqual(res_quad, exp_quad)
def test_moran_local_rate(self):
"""Test Moran's I rate"""
data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local_rate('subquery', 'numerator', 'denominator', 'knn', 5, 99, 'the_geom', 'cartodb_id')
print 'result == None? ', result == None
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
self.assertAlmostEqual(res_val, exp_val)
def test_moran(self):
"""Test Moran's I global"""
data = [{ 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1235)
result = cc.moran('table', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id')
print 'result == None?', result == None
result_moran = result[0][0]
expected_moran = np.array([row[0] for row in self.moran_data]).mean()
self.assertAlmostEqual(expected_moran, result_moran, delta=10e-2)

View File

@@ -0,0 +1,142 @@
import unittest
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
class PysalUtilsTest(unittest.TestCase):
"""Testing class for utility functions related to PySAL integrations"""
def setUp(self):
self.params = {"id_col": "cartodb_id",
"attr1": "andy",
"attr2": "jay_z",
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.params_array = {"id_col": "cartodb_id",
"time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"],
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
def test_query_attr_select(self):
"""Test query_attr_select"""
ans = "i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, "
ans_array = "i.\"_2013_dec\"::numeric As attr1, " \
"i.\"_2014_jan\"::numeric As attr2, " \
"i.\"_2014_feb\"::numeric As attr3, "
self.assertEqual(pu.query_attr_select(self.params), ans)
self.assertEqual(pu.query_attr_select(self.params_array), ans_array)
def test_query_attr_where(self):
"""Test pu.query_attr_where"""
ans = "idx_replace.\"andy\" IS NOT NULL AND " \
"idx_replace.\"jay_z\" IS NOT NULL AND " \
"idx_replace.\"jay_z\" <> 0"
ans_array = "idx_replace.\"_2013_dec\" IS NOT NULL AND " \
"idx_replace.\"_2014_jan\" IS NOT NULL AND " \
"idx_replace.\"_2014_feb\" IS NOT NULL"
self.assertEqual(pu.query_attr_where(self.params), ans)
self.assertEqual(pu.query_attr_where(self.params_array), ans_array)
def test_knn(self):
"""Test knn neighbors constructor"""
ans = "SELECT i.\"cartodb_id\" As id, " \
"i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE " \
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND " \
"j.\"jay_z\" <> 0 " \
"ORDER BY " \
"j.\"the_geom\" <-> i.\"the_geom\" ASC " \
"LIMIT 321)) As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"andy\" IS NOT NULL AND " \
"i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 " \
"ORDER BY i.\"cartodb_id\" ASC;"
ans_array = "SELECT i.\"cartodb_id\" As id, " \
"i.\"_2013_dec\"::numeric As attr1, " \
"i.\"_2014_jan\"::numeric As attr2, " \
"i.\"_2014_feb\"::numeric As attr3, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"j.\"_2013_dec\" IS NOT NULL AND " \
"j.\"_2014_jan\" IS NOT NULL AND " \
"j.\"_2014_feb\" IS NOT NULL " \
"ORDER BY j.\"the_geom\" <-> i.\"the_geom\" ASC " \
"LIMIT 321)) As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"_2013_dec\" IS NOT NULL AND " \
"i.\"_2014_jan\" IS NOT NULL AND " \
"i.\"_2014_feb\" IS NOT NULL "\
"ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(pu.knn(self.params), ans)
self.assertEqual(pu.knn(self.params_array), ans_array)
def test_queen(self):
"""Test queen neighbors constructor"""
ans = "SELECT i.\"cartodb_id\" As id, " \
"i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE " \
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"ST_Touches(i.\"the_geom\", " \
"j.\"the_geom\") AND " \
"j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND " \
"j.\"jay_z\" <> 0)" \
") As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"andy\" IS NOT NULL AND " \
"i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 " \
"ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(pu.queen(self.params), ans)
def test_construct_neighbor_query(self):
"""Test construct_neighbor_query"""
# Compare to raw knn query
self.assertEqual(pu.construct_neighbor_query('knn', self.params),
pu.knn(self.params))
def test_get_attributes(self):
"""Test get_attributes"""
## need to add tests
self.assertEqual(True, True)
def test_get_weight(self):
"""Test get_weight"""
self.assertEqual(True, True)
def test_empty_zipped_array(self):
"""Test empty_zipped_array"""
ans2 = [(None, None)]
ans4 = [(None, None, None, None)]
self.assertEqual(pu.empty_zipped_array(2), ans2)
self.assertEqual(pu.empty_zipped_array(4), ans4)

View File

@@ -0,0 +1,64 @@
import unittest
import numpy as np
from helper import plpy, fixture_file
import crankshaft.segmentation as segmentation
import json
class SegmentationTest(unittest.TestCase):
"""Testing class for Moran's I functions"""
def setUp(self):
plpy._reset()
def generate_random_data(self,n_samples,random_state, row_type=False):
x1 = random_state.uniform(size=n_samples)
x2 = random_state.uniform(size=n_samples)
x3 = random_state.randint(0, 4, size=n_samples)
y = x1+x2*x2+x3
cartodb_id = range(len(x1))
if row_type:
return [ {'features': vals} for vals in zip(x1,x2,x3)], y
else:
return [dict( zip(['x1','x2','x3','target', 'cartodb_id'],[x1,x2,x3,y,cartodb_id]))]
def test_replace_nan_with_mean(self):
test_array = np.array([1.2, np.nan, 3.2, np.nan, np.nan])
def test_create_and_predict_segment(self):
n_samples = 1000
random_state_train = np.random.RandomState(13)
random_state_test = np.random.RandomState(134)
training_data = self.generate_random_data(n_samples, random_state_train)
test_data, test_y = self.generate_random_data(n_samples, random_state_test, row_type=True)
ids = [{'cartodb_ids': range(len(test_data))}]
rows = [{'x1': 0,'x2':0,'x3':0,'y':0,'cartodb_id':0}]
plpy._define_result('select \* from \(select \* from training\) a limit 1',rows)
plpy._define_result('.*from \(select \* from training\) as a' ,training_data)
plpy._define_result('select array_agg\(cartodb\_id order by cartodb\_id\) as cartodb_ids from \(.*\) a',ids)
plpy._define_result('.*select \* from test.*' ,test_data)
model_parameters = {'n_estimators': 1200,
'max_depth': 3,
'subsample' : 0.5,
'learning_rate': 0.01,
'min_samples_leaf': 1}
result = segmentation.create_and_predict_segment(
'select * from training',
'target',
'select * from test',
model_parameters)
prediction = [r[1] for r in result]
accuracy =np.sqrt(np.mean( np.square( np.array(prediction) - np.array(test_y))))
self.assertEqual(len(result),len(test_data))
self.assertTrue( result[0][2] < 0.01)
self.assertTrue( accuracy < 0.5*np.mean(test_y) )

View File

@@ -0,0 +1,324 @@
import unittest
import numpy as np
import unittest
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
#
# import sys
# sys.modules['plpy'] = plpy
from helper import plpy, fixture_file
import crankshaft.space_time_dynamics as std
from crankshaft import random_seeds
import json
class SpaceTimeTests(unittest.TestCase):
"""Testing class for Markov Functions."""
def setUp(self):
plpy._reset()
self.params = {"id_col": "cartodb_id",
"time_cols": ['dec_2013', 'jan_2014', 'feb_2014'],
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.neighbors_data = json.loads(open(fixture_file('neighbors_markov.json')).read())
self.markov_data = json.loads(open(fixture_file('markov.json')).read())
self.time_data = np.array([i * np.ones(10, dtype=float) for i in range(10)]).T
self.transition_matrix = np.array([
[[ 0.96341463, 0.0304878 , 0.00609756, 0. , 0. ],
[ 0.06040268, 0.83221477, 0.10738255, 0. , 0. ],
[ 0. , 0.14 , 0.74 , 0.12 , 0. ],
[ 0. , 0.03571429, 0.32142857, 0.57142857, 0.07142857],
[ 0. , 0. , 0. , 0.16666667, 0.83333333]],
[[ 0.79831933, 0.16806723, 0.03361345, 0. , 0. ],
[ 0.0754717 , 0.88207547, 0.04245283, 0. , 0. ],
[ 0.00537634, 0.06989247, 0.8655914 , 0.05913978, 0. ],
[ 0. , 0. , 0.06372549, 0.90196078, 0.03431373],
[ 0. , 0. , 0. , 0.19444444, 0.80555556]],
[[ 0.84693878, 0.15306122, 0. , 0. , 0. ],
[ 0.08133971, 0.78947368, 0.1291866 , 0. , 0. ],
[ 0.00518135, 0.0984456 , 0.79274611, 0.0984456 , 0.00518135],
[ 0. , 0. , 0.09411765, 0.87058824, 0.03529412],
[ 0. , 0. , 0. , 0.10204082, 0.89795918]],
[[ 0.8852459 , 0.09836066, 0. , 0.01639344, 0. ],
[ 0.03875969, 0.81395349, 0.13953488, 0. , 0.00775194],
[ 0.0049505 , 0.09405941, 0.77722772, 0.11881188, 0.0049505 ],
[ 0. , 0.02339181, 0.12865497, 0.75438596, 0.09356725],
[ 0. , 0. , 0. , 0.09661836, 0.90338164]],
[[ 0.33333333, 0.66666667, 0. , 0. , 0. ],
[ 0.0483871 , 0.77419355, 0.16129032, 0.01612903, 0. ],
[ 0.01149425, 0.16091954, 0.74712644, 0.08045977, 0. ],
[ 0. , 0.01036269, 0.06217617, 0.89637306, 0.03108808],
[ 0. , 0. , 0. , 0.02352941, 0.97647059]]]
)
def test_spatial_markov(self):
"""Test Spatial Markov."""
data = [ { 'id': d['id'],
'attr1': d['y1995'],
'attr2': d['y1996'],
'attr3': d['y1997'],
'attr4': d['y1998'],
'attr5': d['y1999'],
'attr6': d['y2000'],
'attr7': d['y2001'],
'attr8': d['y2002'],
'attr9': d['y2003'],
'attr10': d['y2004'],
'attr11': d['y2005'],
'attr12': d['y2006'],
'attr13': d['y2007'],
'attr14': d['y2008'],
'attr15': d['y2009'],
'neighbors': d['neighbors'] } for d in self.neighbors_data]
print(str(data[0]))
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = std.spatial_markov_trend('subquery', ['y1995', 'y1996', 'y1997', 'y1998', 'y1999', 'y2000', 'y2001', 'y2002', 'y2003', 'y2004', 'y2005', 'y2006', 'y2007', 'y2008', 'y2009'], 5, 'knn', 5, 0, 'the_geom', 'cartodb_id')
self.assertTrue(result != None)
result = [(row[0], row[1], row[2], row[3], row[4]) for row in result]
print result[0]
expected = self.markov_data
for ([res_trend, res_up, res_down, res_vol, res_id],
[exp_trend, exp_up, exp_down, exp_vol, exp_id]
) in zip(result, expected):
self.assertAlmostEqual(res_trend, exp_trend)
def test_get_time_data(self):
"""Test get_time_data"""
data = [ { 'attr1': d['y1995'],
'attr2': d['y1996'],
'attr3': d['y1997'],
'attr4': d['y1998'],
'attr5': d['y1999'],
'attr6': d['y2000'],
'attr7': d['y2001'],
'attr8': d['y2002'],
'attr9': d['y2003'],
'attr10': d['y2004'],
'attr11': d['y2005'],
'attr12': d['y2006'],
'attr13': d['y2007'],
'attr14': d['y2008'],
'attr15': d['y2009'] } for d in self.neighbors_data]
result = std.get_time_data(data, ['y1995', 'y1996', 'y1997', 'y1998', 'y1999', 'y2000', 'y2001', 'y2002', 'y2003', 'y2004', 'y2005', 'y2006', 'y2007', 'y2008', 'y2009'])
## expected was prepared from PySAL example:
### f = ps.open(ps.examples.get_path("usjoin.csv"))
### pci = np.array([f.by_col[str(y)] for y in range(1995, 2010)]).transpose()
### rpci = pci / (pci.mean(axis = 0))
expected = np.array([[ 0.87654416, 0.863147, 0.85637567, 0.84811668, 0.8446154, 0.83271652
, 0.83786314, 0.85012593, 0.85509656, 0.86416612, 0.87119375, 0.86302631
, 0.86148267, 0.86252252, 0.86746356],
[ 0.9188951, 0.91757931, 0.92333258, 0.92517289, 0.92552388, 0.90746978
, 0.89830489, 0.89431991, 0.88924794, 0.89815176, 0.91832091, 0.91706054
, 0.90139505, 0.87897455, 0.86216858],
[ 0.82591007, 0.82548596, 0.81989793, 0.81503235, 0.81731522, 0.78964559
, 0.80584442, 0.8084998, 0.82258551, 0.82668196, 0.82373724, 0.81814804
, 0.83675961, 0.83574199, 0.84647177],
[ 1.09088176, 1.08537689, 1.08456418, 1.08415404, 1.09898841, 1.14506948
, 1.12151133, 1.11160697, 1.10888621, 1.11399806, 1.12168029, 1.13164797
, 1.12958508, 1.11371818, 1.09936775],
[ 1.10731446, 1.11373944, 1.13283638, 1.14472559, 1.15910025, 1.16898201
, 1.17212488, 1.14752303, 1.11843284, 1.11024964, 1.11943471, 1.11736468
, 1.10863242, 1.09642516, 1.07762337],
[ 1.42269757, 1.42118434, 1.44273502, 1.43577571, 1.44400684, 1.44184737
, 1.44782832, 1.41978227, 1.39092208, 1.4059372, 1.40788646, 1.44052766
, 1.45241216, 1.43306098, 1.4174431 ],
[ 1.13073885, 1.13110513, 1.11074708, 1.13364636, 1.13088149, 1.10888138
, 1.11856629, 1.13062931, 1.11944984, 1.12446239, 1.11671008, 1.10880034
, 1.08401709, 1.06959206, 1.07875225],
[ 1.04706124, 1.04516831, 1.04253372, 1.03239987, 1.02072545, 0.99854316
, 0.9880258, 0.99669587, 0.99327676, 1.01400905, 1.03176742, 1.040511
, 1.01749645, 0.9936394, 0.98279746],
[ 0.98996986, 1.00143564, 0.99491, 1.00188408, 1.00455845, 0.99127006
, 0.97925917, 0.9683482, 0.95335147, 0.93694787, 0.94308213, 0.92232874
, 0.91284091, 0.89689833, 0.88928858],
[ 0.87418391, 0.86416601, 0.84425695, 0.8404494, 0.83903044, 0.8578708
, 0.86036185, 0.86107306, 0.8500772, 0.86981998, 0.86837929, 0.87204141
, 0.86633032, 0.84946077, 0.83287146],
[ 1.14196118, 1.14660262, 1.14892712, 1.14909594, 1.14436624, 1.14450183
, 1.12349752, 1.12596664, 1.12213996, 1.1119989, 1.10257792, 1.10491258
, 1.11059842, 1.10509795, 1.10020097],
[ 0.97282463, 0.96700147, 0.96252588, 0.9653878, 0.96057687, 0.95831051
, 0.94480909, 0.94804195, 0.95430286, 0.94103989, 0.92122519, 0.91010201
, 0.89280392, 0.89298243, 0.89165385],
[ 0.94325468, 0.96436902, 0.96455242, 0.95243009, 0.94117647, 0.9480927
, 0.93539182, 0.95388718, 0.94597005, 0.96918424, 0.94781281, 0.93466815
, 0.94281559, 0.96520315, 0.96715441],
[ 0.97478408, 0.98169225, 0.98712809, 0.98474769, 0.98559897, 0.98687073
, 0.99237486, 0.98209969, 0.9877653, 0.97399471, 0.96910087, 0.98416665
, 0.98423613, 0.99823861, 0.99545704],
[ 0.85570269, 0.85575915, 0.85986132, 0.85693406, 0.8538012, 0.86191535
, 0.84981451, 0.85472102, 0.84564835, 0.83998883, 0.83478547, 0.82803648
, 0.8198736, 0.82265395, 0.8399404 ],
[ 0.87022047, 0.85996258, 0.85961813, 0.85689572, 0.83947136, 0.82785597
, 0.86008789, 0.86776298, 0.86720209, 0.8676334, 0.89179317, 0.94202108
, 0.9422231, 0.93902708, 0.94479184],
[ 0.90134907, 0.90407738, 0.90403991, 0.90201769, 0.90399238, 0.90906632
, 0.92693339, 0.93695966, 0.94242697, 0.94338265, 0.91981796, 0.91108804
, 0.90543476, 0.91737138, 0.94793657],
[ 1.1977611, 1.18222564, 1.18439158, 1.18267865, 1.19286723, 1.20172869
, 1.21328691, 1.22624778, 1.22397075, 1.23857042, 1.24419893, 1.23929384
, 1.23418676, 1.23626739, 1.26754398],
[ 1.24919678, 1.25754773, 1.26991161, 1.28020651, 1.30625667, 1.34790023
, 1.34399863, 1.32575181, 1.30795492, 1.30544841, 1.30303302, 1.32107766
, 1.32936244, 1.33001241, 1.33288462],
[ 1.06768004, 1.03799276, 1.03637303, 1.02768449, 1.03296093, 1.05059016
, 1.03405057, 1.02747623, 1.03162734, 0.9961416, 0.97356208, 0.94241549
, 0.92754547, 0.92549227, 0.92138102],
[ 1.09475614, 1.11526796, 1.11654299, 1.13103948, 1.13143264, 1.13889622
, 1.12442212, 1.13367018, 1.13982256, 1.14029944, 1.11979401, 1.10905389
, 1.10577769, 1.11166825, 1.09985155],
[ 0.76530058, 0.76612841, 0.76542451, 0.76722683, 0.76014284, 0.74480073
, 0.76098396, 0.76156903, 0.76651952, 0.76533288, 0.78205934, 0.76842416
, 0.77487118, 0.77768683, 0.78801192],
[ 0.98391336, 0.98075816, 0.98295341, 0.97386015, 0.96913803, 0.97370819
, 0.96419154, 0.97209861, 0.97441313, 0.96356162, 0.94745352, 0.93965462
, 0.93069645, 0.94020973, 0.94358232],
[ 0.83561828, 0.82298088, 0.81738502, 0.81748588, 0.80904801, 0.80071489
, 0.83358256, 0.83451613, 0.85175032, 0.85954307, 0.86790024, 0.87170334
, 0.87863799, 0.87497981, 0.87888675],
[ 0.98845573, 1.02092428, 0.99665283, 0.99141823, 0.99386619, 0.98733195
, 0.99644997, 0.99669587, 1.02559097, 1.01116651, 0.99988024, 0.97906749
, 0.99323123, 1.00204939, 0.99602148],
[ 1.14930913, 1.15241949, 1.14300962, 1.14265542, 1.13984683, 1.08312397
, 1.05192626, 1.04230892, 1.05577278, 1.08569751, 1.12443486, 1.08891079
, 1.08603695, 1.05997314, 1.02160943],
[ 1.11368269, 1.1057147, 1.11893431, 1.13778669, 1.1432272, 1.18257029
, 1.16226243, 1.16009196, 1.14467789, 1.14820235, 1.12386598, 1.12680236
, 1.12357937, 1.1159258, 1.12570828],
[ 1.30379431, 1.30752186, 1.31206366, 1.31532267, 1.30625667, 1.31210239
, 1.29989156, 1.29203193, 1.27183516, 1.26830786, 1.2617743, 1.28656675
, 1.29734097, 1.29390205, 1.29345446],
[ 0.83953719, 0.82701448, 0.82006005, 0.81188876, 0.80294864, 0.78772975
, 0.82848011, 0.8259679, 0.82435705, 0.83108634, 0.84373784, 0.83891093
, 0.84349247, 0.85637272, 0.86539395],
[ 1.23450087, 1.2426022, 1.23537935, 1.23581293, 1.24522626, 1.2256767
, 1.21126648, 1.19377804, 1.18355337, 1.19674434, 1.21536573, 1.23653297
, 1.27962009, 1.27968392, 1.25907738],
[ 0.9769662, 0.97400719, 0.98035944, 0.97581531, 0.95543282, 0.96480308
, 0.94686376, 0.93679073, 0.92540049, 0.92988835, 0.93442917, 0.92100464
, 0.91475304, 0.90249622, 0.9021363 ],
[ 0.84986886, 0.8986851, 0.84295997, 0.87280534, 0.85659368, 0.88937573
, 0.894401, 0.90448993, 0.95495898, 0.92698333, 0.94745352, 0.92562488
, 0.96635366, 1.02520312, 1.0394296 ],
[ 1.01922808, 1.00258203, 1.00974428, 1.00303417, 0.99765073, 1.00759019
, 0.99192968, 0.99747298, 0.99550759, 0.97583768, 0.9610168, 0.94779638
, 0.93759089, 0.93353431, 0.94121705],
[ 0.86367411, 0.85558932, 0.85544346, 0.85103025, 0.84336613, 0.83434854
, 0.85813595, 0.84667961, 0.84374558, 0.85951183, 0.87194227, 0.89455097
, 0.88283929, 0.90349491, 0.90600675],
[ 1.00947534, 1.00411055, 1.00698819, 0.99513687, 0.99291086, 1.00581626
, 0.98850522, 0.99291168, 0.98983209, 0.97511924, 0.96134615, 0.96382634
, 0.95011401, 0.9434686, 0.94637765],
[ 1.05712571, 1.05459419, 1.05753012, 1.04880786, 1.05103857, 1.04800023
, 1.03024941, 1.04200483, 1.0402554, 1.03296979, 1.02191682, 1.02476275
, 1.02347523, 1.02517684, 1.04359571],
[ 1.07084189, 1.06669497, 1.07937623, 1.07387988, 1.0794043, 1.0531801
, 1.07452771, 1.09383478, 1.1052447, 1.10322136, 1.09167939, 1.08772756
, 1.08859544, 1.09177338, 1.1096083 ],
[ 0.86719222, 0.86628896, 0.86675156, 0.86425632, 0.86511809, 0.86287327
, 0.85169796, 0.85411285, 0.84886336, 0.84517414, 0.84843858, 0.84488343
, 0.83374329, 0.82812044, 0.82878599],
[ 0.88389211, 0.92288667, 0.90282398, 0.91229186, 0.92023286, 0.92652175
, 0.94278865, 0.93682452, 0.98655146, 0.992237, 0.9798497, 0.93869677
, 0.96947771, 1.00362626, 0.98102351],
[ 0.97082064, 0.95320233, 0.94534081, 0.94215593, 0.93967, 0.93092109
, 0.92662519, 0.93412152, 0.93501274, 0.92879506, 0.92110542, 0.91035556
, 0.90430364, 0.89994694, 0.90073864],
[ 0.95861858, 0.95774543, 0.98254811, 0.98919472, 0.98684824, 0.98882205
, 0.97662234, 0.95601578, 0.94905385, 0.94934888, 0.97152609, 0.97163004
, 0.9700702, 0.97158948, 0.95884908],
[ 0.83980439, 0.84726737, 0.85747, 0.85467221, 0.8556751, 0.84818516
, 0.85265681, 0.84502402, 0.82645665, 0.81743586, 0.83550406, 0.83338919
, 0.83511679, 0.82136617, 0.80921874],
[ 0.95118156, 0.9466212, 0.94688098, 0.9508583, 0.9512441, 0.95440787
, 0.96364363, 0.96804412, 0.97136214, 0.97583768, 0.95571724, 0.96895368
, 0.97001634, 0.97082733, 0.98782366],
[ 1.08910044, 1.08248968, 1.08492895, 1.08656923, 1.09454249, 1.10558188
, 1.1214086, 1.12292577, 1.13021031, 1.13342735, 1.14686068, 1.14502975
, 1.14474747, 1.14084037, 1.16142926],
[ 1.06336033, 1.07365823, 1.08691496, 1.09764846, 1.11669863, 1.11856702
, 1.09764283, 1.08815849, 1.08044313, 1.09278827, 1.07003204, 1.08398066
, 1.09831768, 1.09298232, 1.09176125],
[ 0.79772065, 0.78829196, 0.78581151, 0.77615922, 0.77035744, 0.77751194
, 0.79902974, 0.81437881, 0.80788828, 0.79603865, 0.78966436, 0.79949807
, 0.80172182, 0.82168155, 0.85587911],
[ 1.0052447, 1.00007696, 1.00475899, 1.00613942, 1.00639561, 1.00162979
, 0.99860739, 1.00814981, 1.00574316, 0.99030032, 0.97682565, 0.97292596
, 0.96519561, 0.96173403, 0.95890284],
[ 0.95808419, 0.9382568, 0.9654441, 0.95561201, 0.96987289, 0.96608031
, 0.99727185, 1.00781194, 1.03484236, 1.05333619, 1.0983263, 1.1704974
, 1.17025154, 1.18730553, 1.14242645]])
self.assertTrue(np.allclose(result, expected))
self.assertTrue(type(result) == type(expected))
self.assertTrue(result.shape == expected.shape)
def test_rebin_data(self):
"""Test rebin_data"""
## sample in double the time (even case since 10 % 2 = 0):
## (0+1)/2, (2+3)/2, (4+5)/2, (6+7)/2, (8+9)/2
## = 0.5, 2.5, 4.5, 6.5, 8.5
ans_even = np.array([(i + 0.5) * np.ones(10, dtype=float)
for i in range(0, 10, 2)]).T
self.assertTrue(np.array_equal(std.rebin_data(self.time_data, 2), ans_even))
## sample in triple the time (uneven since 10 % 3 = 1):
## (0+1+2)/3, (3+4+5)/3, (6+7+8)/3, (9)/1
## = 1, 4, 7, 9
ans_odd = np.array([i * np.ones(10, dtype=float)
for i in (1, 4, 7, 9)]).T
self.assertTrue(np.array_equal(std.rebin_data(self.time_data, 3), ans_odd))
def test_get_prob_dist(self):
"""Test get_prob_dist"""
lag_indices = np.array([1, 2, 3, 4])
unit_indices = np.array([1, 3, 2, 4])
answer = np.array([
[ 0.0754717 , 0.88207547, 0.04245283, 0. , 0. ],
[ 0. , 0. , 0.09411765, 0.87058824, 0.03529412],
[ 0.0049505 , 0.09405941, 0.77722772, 0.11881188, 0.0049505 ],
[ 0. , 0. , 0. , 0.02352941, 0.97647059]
])
result = std.get_prob_dist(self.transition_matrix, lag_indices, unit_indices)
self.assertTrue(np.array_equal(result, answer))
def test_get_prob_stats(self):
"""Test get_prob_stats"""
probs = np.array([
[ 0.0754717 , 0.88207547, 0.04245283, 0. , 0. ],
[ 0. , 0. , 0.09411765, 0.87058824, 0.03529412],
[ 0.0049505 , 0.09405941, 0.77722772, 0.11881188, 0.0049505 ],
[ 0. , 0. , 0. , 0.02352941, 0.97647059]
])
unit_indices = np.array([1, 3, 2, 4])
answer_up = np.array([0.04245283, 0.03529412, 0.12376238, 0.])
answer_down = np.array([0.0754717, 0.09411765, 0.0990099, 0.02352941])
answer_trend = np.array([-0.03301887 / 0.88207547, -0.05882353 / 0.87058824, 0.02475248 / 0.77722772, -0.02352941 / 0.97647059])
answer_volatility = np.array([ 0.34221495, 0.33705421, 0.29226542, 0.38834223])
result = std.get_prob_stats(probs, unit_indices)
result_up = result[0]
result_down = result[1]
result_trend = result[2]
result_volatility = result[3]
self.assertTrue(np.allclose(result_up, answer_up))
self.assertTrue(np.allclose(result_down, answer_down))
self.assertTrue(np.allclose(result_trend, answer_trend))
self.assertTrue(np.allclose(result_volatility, answer_volatility))

View File

@@ -0,0 +1,5 @@
"""Import all modules"""
import crankshaft.random_seeds
import crankshaft.clustering
import crankshaft.space_time_dynamics
import crankshaft.segmentation

View File

@@ -0,0 +1,3 @@
"""Import all functions from for clustering"""
from moran import *
from kmeans import *

View File

@@ -0,0 +1,18 @@
from sklearn.cluster import KMeans
import plpy
def kmeans(query, no_clusters, no_init=20):
data = plpy.execute('''select array_agg(cartodb_id order by cartodb_id) as ids,
array_agg(ST_X(the_geom) order by cartodb_id) xs,
array_agg(ST_Y(the_geom) order by cartodb_id) ys from ({query}) a
where the_geom is not null
'''.format(query=query))
xs = data[0]['xs']
ys = data[0]['ys']
ids = data[0]['ids']
km = KMeans(n_clusters= no_clusters, n_init=no_init)
labels = km.fit_predict(zip(xs,ys))
return zip(ids,labels)

View File

@@ -0,0 +1,250 @@
"""
Moran's I geostatistics (global clustering & outliers presence)
"""
# TODO: Fill in local neighbors which have null/NoneType values with the
# average of the their neighborhood
import pysal as ps
import plpy
from collections import OrderedDict
# crankshaft module
import crankshaft.pysal_utils as pu
# High level interface ---------------------------------------
def moran(subquery, attr_name,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I (global)
Implementation building neighbors with a PostGIS database and Moran's I
core clusters with PySAL.
Andy Eschbacher
"""
qvals = OrderedDict([("id_col", id_col),
("attr1", attr_name),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(2)
except plpy.SPIError, e:
plpy.error('Analysis failed: %s' % e)
return pu.empty_zipped_array(2)
# collect attributes
attr_vals = pu.get_attributes(result)
# calculate weights
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate moran global
moran_global = ps.esda.moran.Moran(attr_vals, weight,
permutations=permutations)
return zip([moran_global.I], [moran_global.EI])
def moran_local(subquery, attr,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I implementation for PL/Python
Andy Eschbacher
"""
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors
qvals = OrderedDict([("id_col", id_col),
("attr1", attr),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(5)
except plpy.SPIError, e:
plpy.error('Analysis failed: %s' % e)
return pu.empty_zipped_array(5)
attr_vals = pu.get_attributes(result)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
permutations=permutations)
# find quadrants for each geometry
quads = quad_position(lisa.q)
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
def moran_rate(subquery, numerator, denominator,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I Rate (global)
Andy Eschbacher
"""
qvals = OrderedDict([("id_col", id_col),
("attr1", numerator),
("attr2", denominator)
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(2)
except plpy.SPIError, e:
plpy.error('Analysis failed: %s' % e)
return pu.empty_zipped_array(2)
# collect attributes
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate moran global rate
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
permutations=permutations)
return zip([lisa_rate.I], [lisa_rate.EI])
def moran_local_rate(subquery, numerator, denominator,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I Local Rate
Andy Eschbacher
"""
# geometries with values that are null are ignored
# resulting in a collection of not as near neighbors
qvals = OrderedDict([("id_col", id_col),
("numerator", numerator),
("denominator", denominator),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(5)
except plpy.SPIError, e:
plpy.error('Analysis failed: %s' % e)
return pu.empty_zipped_array(5)
# collect attributes
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
permutations=permutations)
# find quadrants for each geometry
quads = quad_position(lisa.q)
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
def moran_local_bv(subquery, attr1, attr2,
permutations, geom_col, id_col, w_type, num_ngbrs):
"""
Moran's I (local) Bivariate (untested)
"""
qvals = OrderedDict([("id_col", id_col),
("attr1", attr1),
("attr2", attr2),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
query = pu.construct_neighbor_query(w_type, qvals)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(4)
except plpy.SPIError:
plpy.error("Error: areas of interest query failed, "
"check input parameters")
return pu.empty_zipped_array(4)
# collect attributes
attr1_vals = pu.get_attributes(result, 1)
attr2_vals = pu.get_attributes(result, 2)
# create weights
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
permutations=permutations)
# find clustering of significance
lisa_sig = quad_position(lisa.q)
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
# Low level functions ----------------------------------------
def map_quads(coord):
"""
Map a quadrant number to Moran's I designation
HH=1, LH=2, LL=3, HL=4
Input:
@param coord (int): quadrant of a specific measurement
Output:
classification (one of 'HH', 'LH', 'LL', or 'HL')
"""
if coord == 1:
return 'HH'
elif coord == 2:
return 'LH'
elif coord == 3:
return 'LL'
elif coord == 4:
return 'HL'
else:
return None
def quad_position(quads):
"""
Produce Moran's I classification based of n
Input:
@param quads ndarray: an array of quads classified by
1-4 (PySAL default)
Output:
@param list: an array of quads classied by 'HH', 'LL', etc.
"""
return [map_quads(q) for q in quads]

Some files were not shown because too many files have changed in this diff Show More