Compare commits

...

31 Commits

Author SHA1 Message Date
Ubuntu
97b4949f84 performance imporvments 2016-05-27 19:31:37 +00:00
Ubuntu
df09d03de6 adding sklearn to deps 2016-05-27 14:59:24 +00:00
Ubuntu
b3c55614e3 fixing syntax 2016-05-27 14:58:43 +00:00
Ubuntu
1ddc338f3f adding missing ; 2016-05-27 14:58:05 +00:00
Stuart Lynn
d7424b02e5 adding import to crankshaft __init__ 2016-05-27 10:33:00 -04:00
Stuart Lynn
45705f3a16 adding function preflight 2016-05-27 10:29:47 -04:00
Stuart Lynn
1995721921 adding functions to drop columns which are all nan and fill nan values with the mean of those columns 2016-05-27 10:29:15 -04:00
Ubuntu
4630d6b549 debugging 2016-05-26 19:32:49 +00:00
Stuart Lynn
0fca6c3c1a inital commit of similarity functions 2016-05-26 12:31:58 -04:00
Andy Eschbacher
fe22464b75 Merge pull request #22 from CartoDB/update-docs
Update docs format
2016-05-23 09:51:44 -04:00
Javier Goizueta
cc4a35ebd9 Fix instructions to update/install the extension 2016-05-20 11:47:12 +02:00
Andy Eschbacher
633b63bccc Merge pull request #25 from CartoDB/improve-moran-queries-revisited
adding condition to avoid self-comparison in neighbor queries
2016-03-30 15:40:29 -04:00
Andy Eschbacher
ea02f36235 adding condition to avoid self-comparison in neighbor queries 2016-03-30 15:37:51 -04:00
Andy Eschbacher
22b6aed7c1 Merge pull request #16 from CartoDB/proof-read-and-gitignore-update
Proof read and gitignore update
2016-03-30 12:37:29 -04:00
Andy Eschbacher
f6e8524669 Merge pull request #19 from CartoDB/restructure-moran-redux
Restructure moran redux
2016-03-30 12:10:36 -04:00
Andy Eschbacher
02b74813ac add test for global moran 2016-03-30 12:09:49 -04:00
Andy Eschbacher
4c243bf1d3 correct func signatures 2016-03-30 11:44:44 -04:00
Andy Eschbacher
b0150d4fec adding tests for pysal_utils 2016-03-30 08:27:14 -04:00
Andy Eschbacher
6bb4f36df5 extracting util code to new submodule 2016-03-30 08:10:35 -04:00
Andy Eschbacher
5a46f65e59 update tests to remove plpy notices 2016-03-30 08:09:48 -04:00
Andy Eschbacher
e56519f599 removed unneded comments, make outputs more consistent 2016-03-29 23:39:29 -07:00
Andy Eschbacher
8dd8ab37a5 refactored from pylint 2016-03-29 22:49:31 -07:00
Andy Eschbacher
06f5cf9951 standarizing error reporting 2016-03-29 12:34:23 -07:00
Andy Eschbacher
bc67ae8f69 changed name of functions for observatory 2016-03-29 12:18:52 -07:00
Andy Eschbacher
00579cd838 adding template 2016-03-23 17:10:08 -04:00
Andy Eschbacher
3f20275d3d adopting new format (wip) 2016-03-23 17:09:52 -04:00
Andy Eschbacher
eecbe39547 updating tests 2016-03-22 10:42:44 -04:00
Andy Eschbacher
1578b17eb8 updated function flow without significance 2016-03-22 10:42:06 -04:00
Andy Eschbacher
3eda8ecd16 new signatures for moran (w/o significance) 2016-03-22 10:34:22 -04:00
Andy Eschbacher
0aa4d0a50e typo fixes, linking, etc. 2016-03-21 08:51:10 -04:00
Andy Eschbacher
3b31da783a adding mac ds_store ignore 2016-03-21 08:40:37 -04:00
21 changed files with 914 additions and 400 deletions

1
.gitignore vendored
View File

@@ -1,2 +1,3 @@
envs/
*.pyc
.DS_Store

View File

@@ -1,6 +1,6 @@
# Development process
Please read the Working Process/Quickstart Guide in README.md first.
Please read the Working Process/Quickstart Guide in [README.md](https://github.com/CartoDB/crankshaft/blob/master/README.md) first.
For any modification of crankshaft, such as adding new features,
refactoring or bug-fixing, topic branch must be created out of the `develop`
@@ -45,8 +45,8 @@ source envs/dev/bin/activate
Update extension in a working database with:
* `ALTER EXTENSION crankshaft VERSION TO 'current';`
`ALTER EXTENSION crankshaft VERSION TO 'dev';`
* `ALTER EXTENSION crankshaft UPDATE TO 'current';`
`ALTER EXTENSION crankshaft UPDATE TO 'dev';`
Note: we keep the current development version install as 'dev' always;
we update through the 'current' alias to allow changing the extension
@@ -58,7 +58,10 @@ should be dropped manually before the update.
If the extension has not previously been installed in a database,
it can be installed directly with:
* `CREATE EXTENSION crankshaft WITH VERSION 'dev';`
* `CREATE EXTENSION IF NOT EXISTS plpythonu;`
`CREATE EXTENSION IF NOT EXISTS postgis;`
`CREATE EXTENSION IF NOT EXISTS cartodb;`
`CREATE EXTENSION crankshaft WITH VERSION 'dev';`
Note: the development extension uses the development python virtual
environment automatically.

View File

@@ -14,7 +14,7 @@ CartoDB Spatial Analysis extension for PostgreSQL.
## Requirements
* pip, virtualenv, PostgreSQL
* python-scipy system package (see src/py/README.md)
* python-scipy system package (see [src/py/README.md](https://github.com/CartoDB/crankshaft/blob/master/src/py/README.md))
# Working Process -- Quickstart Guide
@@ -33,7 +33,7 @@ deployed in production.
Developers shall create a new topic branch from `develop` for any new feature
or bugfix and commit their changes to it and eventually merge back into
the `develop` branch. When a new release is required a Pull Request
will be open againt the `develop` branch.
will be open against the `develop` branch.
The `develop` pull requests will be handled by the release manage,
who will merge into master where new releases are prepared and tagged.
@@ -43,7 +43,7 @@ and developers must not commit or merge into it.
## Development Guidelines
For a detailed description of the development process please see
the CONTRIBUTING.md guide.
the [CONTRIBUTING.md](https://github.com/CartoDB/crankshaft/blob/master/CONTRIBUTING.md) guide.
Any modification to the source code (`src/pg/sql` for the SQL extension,
`src/py/crankshaft` for the Python package) shall always be done
@@ -52,7 +52,7 @@ in a topic branch created from the `develop` branch.
Tests, documentation and peer code reviewing are required for all
modifications.
The tests (both for SQL and Pyhton) are executed by running,
The tests (both for SQL and Python) are executed by running,
from the top directory:
```
@@ -67,5 +67,5 @@ branch.
## Release
The release and deployment process is described in the
RELEASE.md guide and it is the responsibility of the designated
[RELEASE.md](https://github.com/CartoDB/crankshaft/blob/master/RELEASE.md) guide and it is the responsibility of the designated
release manager.

View File

@@ -1,4 +1,102 @@
### Moran's I
## Name
CDB_AreasOfInterest -- returns a table with a cluster/outlier classification, the significance of a classification, an autocorrelation statistic (Local Moran's I), and the geometry id for each geometry in the original dataset.
## Synopsis
```sql
table(numeric moran_val, text quadrant, numeric significance, int ids, numeric column_values) CDB_AreasOfInterest(text query, text column_name)
table(numeric moran_val, text quadrant, numeric significance, int ids, numeric column_values) CDB_AreasOfInterest(text query, text column_name, int permutations, text geom_column, text id_column, text weight_type, int num_ngbrs)
```
## Description
CDB_AreasOfInterest is a table-returning function that classifies the geometries in a table by an attribute and gives a significance for that classification. This information can be used to find "Areas of Interest" by using the correlation of a geometry's attribute with that of its neighbors. Areas can be clusters, outliers, or neither (depending on which significance value is used).
Inputs:
* `query` (required): an arbitrary query against tables you have access to (e.g., in your account, shared in your organization, or through the Data Observatory). This string must contain the following columns: an id `INT` (e.g., `cartodb_id`), geometry (e.g., `the_geom`), and the numeric attribute which is specified in `column_name`
* `column_name` (required): column to perform the area of interest analysis tool on. The data must be numeric (e.g., `float`, `int`, etc.)
* `permutations` (optional): used to calculate the significance of a classification. Defaults to 99, which is sufficient in most situations.
* `geom_column` (optional): the name of the geometry column. Data must be of type `geometry`.
* `id_column` (optional): the name of the id column (e.g., `cartodb_id`). Data must be of type `int` or `bigint` and have a unique condition on the data.
* `weight_type` (optional): the type of weight used for determining what defines a neighborhood. Options are `knn` or `queen`.
* `num_ngbrs` (optional): the number of neighbors in a neighborhood around a geometry. Only used if `knn` is chosen above.
Outputs:
* `moran_val`: underlying correlation statistic used in analysis
* `quadrant`: human-readable interpretation of classification
* `significance`: significance of classification (closer to 0 is more significant)
* `ids`: id of original geometry (used for joining against original table if desired -- see examples)
* `column_values`: original column values from `column_name`
Availability: crankshaft v0.0.1 and above
## Examples
```sql
SELECT
t.the_geom_webmercator,
t.cartodb_id,
aoi.significance,
aoi.quadrant As aoi_quadrant
FROM
observatory.acs2013 As t
JOIN
crankshaft.CDB_AreasOfInterest('SELECT * FROM observatory.acs2013',
'gini_index')
```
## API Usage
Example
```text
http://eschbacher.cartodb.com/api/v2/sql?q=SELECT * FROM crankshaft.CDB_AreasOfInterest('SELECT * FROM observatory.acs2013','gini_index')
```
Result
```json
{
time: 0.120,
total_rows: 100,
rows: [{
moran_vals: 0.7213,
quadrant: 'High area',
significance: 0.03,
ids: 1,
column_value: 0.22
},
{
moran_vals: -0.7213,
quadrant: 'Low outlier',
significance: 0.13,
ids: 2,
column_value: 0.03
},
...
]
}
```
## See Also
crankshaft's areas of interest functions:
* [CDB_AreasOfInterest_Global]()
* [CDB_AreasOfInterest_Rate_Local]()
* [CDB_AreasOfInterest_Rate_Global]()
PostGIS clustering functions:
* [ST_ClusterIntersecting](http://postgis.net/docs/manual-2.2/ST_ClusterIntersecting.html)
* [ST_ClusterWithin](http://postgis.net/docs/manual-2.2/ST_ClusterWithin.html)
-- removing below, working into above
#### What is Moran's I and why is it significant for CartoDB?

24
doc/docs_template.md Normal file
View File

@@ -0,0 +1,24 @@
## Name
## Synopsis
## Description
Availability: v...
## Examples
```SQL
-- example of the function in use
SELECT cdb_awesome_function(the_geom, 'total_pop')
FROM table_name
```
## API Usage
_asdf_
## See Also
_Other function pages_

View File

@@ -1,37 +1,89 @@
-- Moran's I
-- Moran's I (global)
CREATE OR REPLACE FUNCTION
cdb_moran_local (
t TEXT,
attr TEXT,
significance float DEFAULT 0.05,
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_column TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn')
RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT)
CDB_AreasOfInterest_Global (
subquery TEXT,
attr_name TEXT,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5)
RETURNS TABLE (moran NUMERIC, significance NUMERIC)
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran_local(t, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
# TODO: use named parameters or a dictionary
return moran(subquery, attr, num_ngbrs, permutations, geom_col, id_col, w_type)
$$ LANGUAGE plpythonu;
-- Moran's I Local
CREATE OR REPLACE FUNCTION
CDB_AreasOfInterest_Local(
subquery TEXT,
attr TEXT,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5)
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, ids INT, y NUMERIC)
AS $$
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran_local(subquery, attr, permutations, geom_col, id_col, w_type, num_ngbrs)
$$ LANGUAGE plpythonu;
-- Moran's I Rate (global)
CREATE OR REPLACE FUNCTION
CDB_AreasOfInterest_Global_Rate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5)
RETURNS TABLE (moran FLOAT, significance FLOAT)
AS $$
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran_rate(subquery, numerator, denominator, permutations, geom_col, id_col, w_type, num_ngbrs)
$$ LANGUAGE plpythonu;
-- Moran's I Local Rate
CREATE OR REPLACE FUNCTION
cdb_moran_local_rate(t TEXT,
numerator TEXT,
denominator TEXT,
significance FLOAT DEFAULT 0.05,
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_column TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn')
RETURNS TABLE(moran FLOAT, quads TEXT, significance FLOAT, ids INT, y numeric)
CDB_AreasOfInterest_Local_Rate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5)
RETURNS
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, ids INT, y NUMERIC)
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local_rate
# TODO: use named parameters or a dictionary
return moran_local_rate(t, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
# TODO: use named parameters or a dictionary
return moran_local_rate(subquery, numerator, denominator, permutations, geom_col, id_col, w_type, num_ngbrs)
$$ LANGUAGE plpythonu;
-- -- Moran's I Local Bivariate
-- CREATE OR REPLACE FUNCTION
-- cdb_moran_local_bv(
-- subquery TEXT,
-- attr1 TEXT,
-- attr2 TEXT,
-- permutations INT DEFAULT 99,
-- geom_col TEXT DEFAULT 'the_geom',
-- id_col TEXT DEFAULT 'cartodb_id',
-- w_type TEXT DEFAULT 'knn',
-- num_ngbrs INT DEFAULT 5)
-- RETURNS TABLE(moran FLOAT, quads TEXT, significance FLOAT, ids INT, y numeric)
-- AS $$
-- from crankshaft.clustering import moran_local_bv
-- # TODO: use named parameters or a dictionary
-- return moran_local_bv(t, attr1, attr2, permutations, geom_col, id_col, w_type, num_ngbrs)
-- $$ LANGUAGE plpythonu;

View File

@@ -0,0 +1,15 @@
CREATE OR REPLACE FUNCTION cdb_SimilarityRank(cartodb_id numeric, query text)
returns TABLE (cartodb_id NUMERIC, similarity NUMERIC)
as $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.similarity import similarity_rank
return similarity_rank(cartodb_id, query)
$$ LANGUAGE plpythonu;
CREATE OR REPLACE FUNCTION cdb_MostSimilar(cartodb_id numeric, query text ,matches numeric)
returns TABLE (cartodb_id NUMERIC, similarity NUMERIC)
as $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.similarity import most_similar
return most_similar(matches, query)
$$ LANGUAGE plpythonu;

View File

@@ -110,7 +110,7 @@ INSERT INTO ppoints2 VALUES
(24,'0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry,'24','07',0.3, 1.0),
(29,'0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry,'29','01',0.3, 1.0),
(52,'0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry,'52','19',0.0, 1.01)
-- Moral functions perform some nondeterministic computations
-- Areas of Interest functions perform some nondeterministic computations
-- (to estimate the significance); we will set the seeds for the RNGs
-- that affect those results to have repeateble results
SELECT cdb_crankshaft._cdb_random_seeds(1234);
@@ -121,18 +121,64 @@ SELECT cdb_crankshaft._cdb_random_seeds(1234);
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_crankshaft.cdb_moran_local('SELECT * FROM ppoints', 'value') m
JOIN cdb_crankshaft.CDB_AreasOfInterest_Local('SELECT * FROM ppoints', 'value') m
ON ppoints.cartodb_id = m.ids
ORDER BY ppoints.code;
NOTICE: ** Constructing query
CONTEXT: PL/Python function "cdb_moran_local"
NOTICE: ** Query failed: "SELECT i."cartodb_id" As id, i."value"::numeric As attr1, (SELECT ARRAY(SELECT j."cartodb_id" FROM "(SELECT * FROM ppoints)" As j WHERE j."value" IS NOT NULL ORDER BY j."the_geom" <-> i."the_geom" ASC LIMIT 5 OFFSET 1 ) ) As neighbors FROM "(SELECT * FROM ppoints)" As i WHERE i."value" IS NOT NULL ORDER BY i."cartodb_id" ASC;"
CONTEXT: PL/Python function "cdb_moran_local"
NOTICE: ** Exiting function
CONTEXT: PL/Python function "cdb_moran_local"
code | quads
------+-------
(0 rows)
01 | HH
02 | HL
03 | LL
04 | LL
05 | LH
06 | LL
07 | HH
08 | HH
09 | HH
10 | LL
11 | LL
12 | LL
13 | HL
14 | LL
15 | LL
16 | HH
17 | HH
18 | LL
19 | HH
20 | HH
21 | LL
22 | HH
23 | LL
24 | LL
25 | HH
26 | HH
27 | LL
28 | HH
29 | LL
30 | LL
31 | HH
32 | LL
33 | HL
34 | LH
35 | LL
36 | LL
37 | HL
38 | HL
39 | HH
40 | HH
41 | HL
42 | LH
43 | LH
44 | LL
45 | LH
46 | LL
47 | LL
48 | HH
49 | LH
50 | HH
51 | LL
52 | LL
(52 rows)
SELECT cdb_crankshaft._cdb_random_seeds(1234);
_cdb_random_seeds
@@ -142,17 +188,61 @@ SELECT cdb_crankshaft._cdb_random_seeds(1234);
SELECT ppoints2.code, m.quads
FROM ppoints2
JOIN cdb_crankshaft.cdb_moran_local_rate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
JOIN cdb_crankshaft.CDB_AreasOfInterest_Local_Rate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.ids
ORDER BY ppoints2.code;
NOTICE: ** Constructing query
CONTEXT: PL/Python function "cdb_moran_local_rate"
NOTICE: ** Query failed: "SELECT i."cartodb_id" As id, i."denominator"::numeric As attr1, i."numerator"::numeric As attr2, (SELECT ARRAY(SELECT j."cartodb_id" FROM "(SELECT * FROM ppoints2)" As j WHERE j."denominator" IS NOT NULL AND j."numerator" IS NOT NULL AND j."numerator" <> 0 ORDER BY j."the_geom" <-> i."the_geom" ASC LIMIT 5 OFFSET 1 ) ) As neighbors FROM "(SELECT * FROM ppoints2)" As i WHERE i."denominator" IS NOT NULL AND i."numerator" IS NOT NULL AND i."numerator" <> 0 ORDER BY i."cartodb_id" ASC;"
CONTEXT: PL/Python function "cdb_moran_local_rate"
NOTICE: ** Error: <class 'plpy.SPIError'>
CONTEXT: PL/Python function "cdb_moran_local_rate"
NOTICE: ** Exiting function
CONTEXT: PL/Python function "cdb_moran_local_rate"
ERROR: length of returned sequence did not match number of columns in row
CONTEXT: while creating return value
PL/Python function "cdb_moran_local_rate"
code | quads
------+-------
01 | LL
02 | LH
03 | HH
04 | HH
05 | LL
06 | HH
07 | LL
08 | LL
09 | LL
10 | HH
11 | HH
12 | HL
13 | LL
14 | HH
15 | LL
16 | LL
17 | LL
18 | LH
19 | LL
20 | LL
21 | HH
22 | LL
23 | HL
24 | LL
25 | LL
26 | LL
27 | LL
28 | LL
29 | LH
30 | HH
31 | LL
32 | LL
33 | LL
34 | LL
35 | LH
36 | HL
37 | LH
38 | LH
39 | LL
40 | LL
41 | LH
42 | HL
43 | LL
44 | HL
45 | LL
46 | HL
47 | LL
48 | LL
49 | HL
50 | LL
51 | HH
(51 rows)

View File

@@ -1,14 +1,14 @@
\i test/fixtures/ppoints.sql
\i test/fixtures/ppoints2.sql
-- Moral functions perform some nondeterministic computations
-- Areas of Interest functions perform some nondeterministic computations
-- (to estimate the significance); we will set the seeds for the RNGs
-- that affect those results to have repeateble results
SELECT cdb_crankshaft._cdb_random_seeds(1234);
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_crankshaft.cdb_moran_local('SELECT * FROM ppoints', 'value') m
JOIN cdb_crankshaft.CDB_AreasOfInterest_Local('SELECT * FROM ppoints', 'value') m
ON ppoints.cartodb_id = m.ids
ORDER BY ppoints.code;
@@ -16,6 +16,6 @@ SELECT cdb_crankshaft._cdb_random_seeds(1234);
SELECT ppoints2.code, m.quads
FROM ppoints2
JOIN cdb_crankshaft.cdb_moran_local_rate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
JOIN cdb_crankshaft.CDB_AreasOfInterest_Local_Rate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.ids
ORDER BY ppoints2.code;

View File

@@ -9,7 +9,7 @@ SET search_path TO public,cartodb,cdb_crankshaft;
-- Exercise public functions
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_moran_local('ppoints', 'value') m
JOIN CDB_AreasOfInterest_Local('ppoints', 'value') m
ON ppoints.cartodb_id = m.ids
ORDER BY ppoints.code;
SELECT round(cdb_overlap_sum(

View File

@@ -8,7 +8,7 @@ cd crankshaft
nosetests test/
```
## Notes about python dependencies
## Notes about Python dependencies
* This extension is targeted at production databases. Therefore certain restrictions must be assumed about the production environment vs other experimental environments.
* We're using `pip` and `virtualenv` to generate a suitable isolated environment for python code that has all the dependencies
* Every dependency should be:

View File

@@ -1,2 +1,3 @@
import random_seeds
import clustering
import similarity

View File

@@ -5,143 +5,226 @@ Moran's I geostatistics (global clustering & outliers presence)
# TODO: Fill in local neighbors which have null/NoneType values with the
# average of the their neighborhood
import numpy as np
import pysal as ps
import plpy
# crankshaft module
import crankshaft.pysal_utils as pu
# High level interface ---------------------------------------
def moran_local(subquery, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
def moran(subquery, attr_name,
permutations, geom_col, id_col, w_type, num_ngbrs):
"""
Moran's I (global)
Implementation building neighbors with a PostGIS database and Moran's I
core clusters with PySAL.
Andy Eschbacher
"""
qvals = {"id_col": id_col,
"attr1": attr_name,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs}
query = pu.construct_neighbor_query(w_type, qvals)
plpy.notice('** Query: %s' % query)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(2)
plpy.notice('** Query returned with %d rows' % len(result))
except plpy.SPIError:
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError)
return pu.empty_zipped_array(2)
## collect attributes
attr_vals = pu.get_attributes(result)
## calculate weights
weight = pu.get_weight(result, w_type, num_ngbrs)
## calculate moran global
moran_global = ps.esda.moran.Moran(attr_vals, weight,
permutations=permutations)
return zip([moran_global.I], [moran_global.EI])
def moran_local(subquery, attr,
permutations, geom_col, id_col, w_type, num_ngbrs):
"""
Moran's I implementation for PL/Python
Andy Eschbacher
"""
# TODO: ensure that the significance output can be smaller that 1e-3 (0.001)
# TODO: make a wishlist of output features (zscores, pvalues, raw local lisa, what else?)
plpy.notice('** Constructing query')
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors
qvals = {"id_col": id_col,
"attr1": attr,
"geom_col": geom_column,
"attr1": attr,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs}
q = get_query(w_type, qvals)
query = pu.construct_neighbor_query(w_type, qvals)
try:
r = plpy.execute(q)
plpy.notice('** Query returned with %d rows' % len(r))
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(5)
except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q)
plpy.notice('** Exiting function')
return zip([None], [None], [None], [None])
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
return pu.empty_zipped_array(5)
y = get_attributes(r, 1)
w = get_weight(r, w_type)
attr_vals = pu.get_attributes(result)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.Moran_Local(y, w)
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
permutations=permutations)
# find units of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
# find quadrants for each geometry
quads = quad_position(lisa.q)
plpy.notice('** Finished calculations')
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order)
def moran_local_rate(subquery, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
def moran_rate(subquery, numerator, denominator,
permutations, geom_col, id_col, w_type, num_ngbrs):
"""
Moran's I Local Rate
Moran's I Rate (global)
Andy Eschbacher
"""
plpy.notice('** Constructing query')
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors
qvals = {"id_col": id_col,
"numerator": numerator,
"denominator": denominator,
"geom_col": geom_column,
"attr1": numerator,
"attr2": denominator,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs}
q = get_query(w_type, qvals)
query = pu.construct_neighbor_query(w_type, qvals)
plpy.notice('** Query: %s' % query)
try:
r = plpy.execute(q)
plpy.notice('** Query returned with %d rows' % len(r))
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(2)
plpy.notice('** Query returned with %d rows' % len(result))
except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q)
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError)
plpy.notice('** Exiting function')
return zip([None], [None], [None], [None])
plpy.notice('r.nrows() = %d' % r.nrows())
return pu.empty_zipped_array(2)
## collect attributes
numer = get_attributes(r, 1)
denom = get_attributes(r, 2)
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
w = get_weight(r, w_type, num_ngbrs)
weight = pu.get_weight(result, w_type, num_ngbrs)
## calculate moran global rate
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
permutations=permutations)
return zip([lisa_rate.I], [lisa_rate.EI])
def moran_local_rate(subquery, numerator, denominator,
permutations, geom_col, id_col, w_type, num_ngbrs):
"""
Moran's I Local Rate
Andy Eschbacher
"""
# geometries with values that are null are ignored
# resulting in a collection of not as near neighbors
query = pu.construct_neighbor_query(w_type,
{"id_col": id_col,
"numerator": numerator,
"denominator": denominator,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs})
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(5)
except plpy.SPIError:
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError)
return pu.empty_zipped_array(5)
## collect attributes
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, w, permutations=permutations)
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
permutations=permutations)
# find units of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
quads = quad_position(lisa.q)
plpy.notice('** Finished calculations')
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
## TODO: Decide on which return values here
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order, lisa.y)
def moran_local_bv(t, attr1, attr2, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
def moran_local_bv(subquery, attr1, attr2,
permutations, geom_col, id_col, w_type, num_ngbrs):
"""
Moran's I (local) Bivariate (untested)
"""
plpy.notice('** Constructing query')
qvals = {"num_ngbrs": num_ngbrs,
"attr1": attr1,
"attr2": attr2,
"table": t,
"geom_col": geom_column,
"subquery": subquery,
"geom_col": geom_col,
"id_col": id_col}
q = get_query(w_type, qvals)
query = pu.construct_neighbor_query(w_type, qvals)
try:
r = plpy.execute(q)
plpy.notice('** Query returned with %d rows' % len(r))
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(4)
except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q)
plpy.notice('** Error: %s' % plpy.SPIError)
plpy.notice('** Exiting function')
return zip([None], [None], [None], [None])
plpy.error("Error: areas of interest query failed, " \
"check input parameters")
plpy.notice('** Query failed: "%s"' % query)
return pu.empty_zipped_array(4)
## collect attributes
attr1_vals = get_attributes(r, 1)
attr2_vals = get_attributes(r, 2)
attr1_vals = pu.get_attributes(result, 1)
attr2_vals = pu.get_attributes(result, 2)
# create weights
w = get_weight(r, w_type, num_ngbrs)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, w)
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
permutations=permutations)
plpy.notice("len of Is: %d" % len(lisa.Is))
# find clustering of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
lisa_sig = quad_position(lisa.q)
plpy.notice('** Finished calculations')
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order)
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
# Low level functions ----------------------------------------
@@ -150,7 +233,9 @@ def map_quads(coord):
Map a quadrant number to Moran's I designation
HH=1, LH=2, LL=3, HL=4
Input:
:param coord (int): quadrant of a specific measurement
@param coord (int): quadrant of a specific measurement
Output:
classification (one of 'HH', 'LH', 'LL', or 'HL')
"""
if coord == 1:
return 'HH'
@@ -163,159 +248,13 @@ def map_quads(coord):
else:
return None
def query_attr_select(params):
"""
Create portion of SELECT statement for attributes inolved in query.
:param params: dict of information used in query (column names,
table name, etc.)
"""
attrs = [k for k in params
if k not in ('id_col', 'geom_col', 'table', 'num_ngbrs', 'subquery')]
template = "i.\"{%(col)s}\"::numeric As attr%(alias_num)s, "
attr_string = ""
for idx, val in enumerate(sorted(attrs)):
attr_string += template % {"col": val, "alias_num": idx + 1}
return attr_string
def query_attr_where(params):
"""
Create portion of WHERE clauses for weeding out NULL-valued geometries
"""
attrs = sorted([k for k in params
if k not in ('id_col', 'geom_col', 'table', 'num_ngbrs', 'subquery')])
attr_string = []
for attr in attrs:
attr_string.append("idx_replace.\"{%s}\" IS NOT NULL" % attr)
if len(attrs) == 2:
attr_string.append("idx_replace.\"{%s}\" <> 0" % attrs[1])
out = " AND ".join(attr_string)
return out
def knn(params):
"""SQL query for k-nearest neighbors.
:param vars: dict of values to fill template
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM \"({subquery})\" As j " \
"WHERE %(attr_where_j)s " \
"ORDER BY j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
"LIMIT {num_ngbrs} OFFSET 1 ) " \
") As neighbors " \
"FROM \"({subquery})\" As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## SQL query for finding queens neighbors (all contiguous polygons)
def queen(params):
"""SQL query for queen neighbors.
:param params: dict of information to fill query
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM \"({subquery})\" As j " \
"WHERE ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
"%(attr_where_j)s)" \
") As neighbors " \
"FROM \"({subquery})\" As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## to add more weight methods open a ticket or pull request
def get_query(w_type, query_vals):
"""Return requested query.
:param w_type: type of neighbors to calculate (knn or queen)
:param query_vals: values used to construct the query
"""
if w_type == 'knn':
return knn(query_vals)
else:
return queen(query_vals)
def get_attributes(query_res, attr_num):
"""
:param query_res: query results with attributes and neighbors
:param attr_num: attribute number (1, 2, ...)
"""
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
## Build weight object
def get_weight(query_res, w_type='queen', num_ngbrs=5):
"""
Construct PySAL weight from return value of query
:param query_res: query results with attributes and neighbors
"""
if w_type == 'knn':
row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
weights = {x['id']: row_normed_weights for x in query_res}
elif w_type == 'queen':
weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
if len(x['neighbors']) > 0
else [] for x in query_res}
neighbors = {x['id']: x['neighbors'] for x in query_res}
return ps.W(neighbors, weights)
def quad_position(quads):
"""
Produce Moran's I classification based of n
Input:
@param quads ndarray: an array of quads classified by
1-4 (PySAL default)
Output:
@param list: an array of quads classied by 'HH', 'LL', etc.
"""
lisa_sig = np.array([map_quads(q) for q in quads])
return lisa_sig
def lisa_sig_vals(pvals, quads, threshold):
"""
Produce Moran's I classification based of n
"""
sig = (pvals <= threshold)
lisa_sig = np.empty(len(sig), np.chararray)
for idx, val in enumerate(sig):
if val:
lisa_sig[idx] = map_quads(quads[idx])
else:
lisa_sig[idx] = 'Not significant'
return lisa_sig
return [map_quads(q) for q in quads]

View File

@@ -0,0 +1 @@
from pysal_utils import *

View File

@@ -0,0 +1,152 @@
"""
Utilities module for generic PySAL functionality, mainly centered on translating queries into numpy arrays or PySAL weights objects
"""
import numpy as np
import pysal as ps
def construct_neighbor_query(w_type, query_vals):
"""Return query (a string) used for finding neighbors
@param w_type text: type of neighbors to calculate ('knn' or 'queen')
@param query_vals dict: values used to construct the query
"""
if w_type == 'knn':
return knn(query_vals)
else:
return queen(query_vals)
## Build weight object
def get_weight(query_res, w_type='knn', num_ngbrs=5):
"""
Construct PySAL weight from return value of query
@param query_res: query results with attributes and neighbors
"""
if w_type == 'knn':
row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
weights = {x['id']: row_normed_weights for x in query_res}
else:
weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
if len(x['neighbors']) > 0
else [] for x in query_res}
neighbors = {x['id']: x['neighbors'] for x in query_res}
return ps.W(neighbors, weights)
def query_attr_select(params):
"""
Create portion of SELECT statement for attributes inolved in query.
@param params: dict of information used in query (column names,
table name, etc.)
"""
attrs = [k for k in params
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs')]
template = "i.\"{%(col)s}\"::numeric As attr%(alias_num)s, "
attr_string = ""
for idx, val in enumerate(sorted(attrs)):
attr_string += template % {"col": val, "alias_num": idx + 1}
return attr_string
def query_attr_where(params):
"""
Create portion of WHERE clauses for weeding out NULL-valued geometries
"""
attrs = sorted([k for k in params
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs')])
attr_string = []
for attr in attrs:
attr_string.append("idx_replace.\"{%s}\" IS NOT NULL" % attr)
if len(attrs) == 2:
attr_string.append("idx_replace.\"{%s}\" <> 0" % attrs[1])
out = " AND ".join(attr_string)
return out
def knn(params):
"""SQL query for k-nearest neighbors.
@param vars: dict of values to fill template
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM ({subquery}) As j " \
"WHERE " \
"i.\"{id_col}\" <> j.\"{id_col}\" AND " \
"%(attr_where_j)s " \
"ORDER BY " \
"j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
"LIMIT {num_ngbrs})" \
") As neighbors " \
"FROM ({subquery}) As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## SQL query for finding queens neighbors (all contiguous polygons)
def queen(params):
"""SQL query for queen neighbors.
@param params dict: information to fill query
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM ({subquery}) As j " \
"WHERE i.\"{id_col}\" <> j.\"{id_col}\" AND " \
"ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
"%(attr_where_j)s)" \
") As neighbors " \
"FROM ({subquery}) As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## to add more weight methods open a ticket or pull request
def get_attributes(query_res, attr_num=1):
"""
@param query_res: query results with attributes and neighbors
@param attr_num: attribute number (1, 2, ...)
"""
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
def empty_zipped_array(num_nones):
"""
prepare return values for cases of empty weights objects (no neighbors)
Input:
@param num_nones int: number of columns (e.g., 4)
Output:
[(None, None, None, None)]
"""
return [tuple([None] * num_nones)]

View File

@@ -0,0 +1 @@
from similarity import *

View File

@@ -0,0 +1,91 @@
from sklearn.neighbors import NearestNeighbors
import scipy.stats as stats
import numpy as np
import plpy
import time
import cPickle
def query_to_dictionary(result):
return [ dict(zip(r.keys(), r.values())) for r in result ]
def drop_all_nan_columns(data):
return data[ :, ~np.isnan(data).all(axis=0)]
def fill_missing_na(data,val=None):
inds = np.where(np.isnan(data))
if val==None:
col_mean = stats.nanmean(data,axis=0)
data[inds]=np.take(col_mean,inds[1])
else:
data[inds]=np.take(val, inds[1])
return data
def similarity_rank(target_cartodb_id, query):
start_time = time.time()
#plpy.notice('converting to dictionary ', start_time)
#data = query_to_dictionary(plpy.execute(query))
plpy.notice('coverted , running query ', time.time() - start_time)
data = plpy.execute(query_only_values(query))
plpy.notice('run query , getting cartodb_idsi', time.time() - start_time)
cartodb_ids = plpy.execute(query_cartodb_id(query))[0]['a']
target_id = cartodb_ids.index(target_cartodb_id)
plpy.notice('run query , extracting ', time.time() - start_time)
features, target = extract_features_target(data,target_id)
plpy.notice('extracted , cleaning ', time.time() - start_time)
features = fill_missing_na(drop_all_nan_columns(features))
plpy.notice('cleaned , normalizing', start_time - time.time())
normed_features, normed_target = normalize_features(features,target)
plpy.notice('normalized , training ', time.time() - start_time )
tree = train(normed_features)
plpy.notice('normalized , pickling ', time.time() - start_time )
#plpy.notice('tree_dump ', len(cPickle.dumps(tree, protocol=cPickle.HIGHEST_PROTOCOL)))
plpy.notice('pickles, querying ', time.time() - start_time)
dist, ind = tree.kneighbors(normed_target)
plpy.notice('queried , rectifying', time.time() - start_time)
return zip(cartodb_ids, dist[0])
def query_cartodb_id(query):
return 'select array_agg(cartodb_id) a from ({0}) b'.format(query)
def query_only_values(query):
first_row = plpy.execute('select * from ({query}) a limit 1'.format(query=query))
just_values = ','.join([ key for key in first_row[0].keys() if key not in ['the_geom', 'the_geom_webmercator','cartodb_id']])
return 'select Array[{0}] a from ({1}) b '.format(just_values, query)
def most_similar(matches,query):
data = plpy.execute(query)
features, _ = extract_features_target(data)
results = []
for i in features:
target = features
dist,ind = tree.query(target, k=matches)
cartodb_ids = [ dist[ind]['cartodb_id'] for index in ind ]
results.append(cartodb_ids)
return cartodb_ids, results
def train(features):
tree = NearestNeighbors( n_neighbors=len(features), algorithm='auto').fit(features)
return tree
def normalize_features(features, target):
maxes = features.max(axis=0)
mins = features.min(axis=0)
return (features - mins)/(maxes-mins), (target-mins)/(maxes-mins)
def extract_row(row):
keys = row.keys()
values = row.values()
del values[ keys.index('cartodb_id')]
return values
def extract_features_target(data, target_index=None):
target = None
features = [row['a'] for row in data]
target = features[target_index]
return np.array(features, dtype=float), np.array(target, dtype=float)

View File

@@ -40,9 +40,9 @@ setup(
# The choice of component versions is dictated by what's
# provisioned in the production servers.
install_requires=['pysal==1.9.1'],
install_requires=['pysal==1.9.1', 'scikit-learn==0.17.1'],
requires=['pysal', 'numpy' ],
requires=['pysal', 'numpy','sklearn'],
test_suite='test'
)

View File

@@ -1,52 +1,52 @@
[[0.9319096128346788, "HH"],
[-1.135787401862846, "HL"],
[0.11732030672508517, "Not significant"],
[0.6152779669180425, "Not significant"],
[-0.14657336660125297, "Not significant"],
[0.6967858120189607, "Not significant"],
[0.07949310115714454, "Not significant"],
[0.4703198759258987, "Not significant"],
[0.4421125200498064, "Not significant"],
[0.5724288737143592, "Not significant"],
[0.11732030672508517, "LL"],
[0.6152779669180425, "LL"],
[-0.14657336660125297, "LH"],
[0.6967858120189607, "LL"],
[0.07949310115714454, "HH"],
[0.4703198759258987, "HH"],
[0.4421125200498064, "HH"],
[0.5724288737143592, "LL"],
[0.8970743435692062, "LL"],
[0.18327334401918674, "Not significant"],
[-0.01466729201304962, "Not significant"],
[0.3481559372544409, "Not significant"],
[0.06547094736902978, "Not significant"],
[0.18327334401918674, "LL"],
[-0.01466729201304962, "HL"],
[0.3481559372544409, "LL"],
[0.06547094736902978, "LL"],
[0.15482141569329988, "HH"],
[0.4373841193538136, "Not significant"],
[0.15971286468915544, "Not significant"],
[1.0543588860308968, "Not significant"],
[0.4373841193538136, "HH"],
[0.15971286468915544, "LL"],
[1.0543588860308968, "HH"],
[1.7372866900020818, "HH"],
[1.091998586053999, "LL"],
[0.1171572584252222, "Not significant"],
[0.08438455015300014, "Not significant"],
[0.06547094736902978, "Not significant"],
[0.1171572584252222, "HH"],
[0.08438455015300014, "LL"],
[0.06547094736902978, "LL"],
[0.15482141569329985, "HH"],
[1.1627044812890683, "HH"],
[0.06547094736902978, "Not significant"],
[0.795275137550483, "Not significant"],
[0.06547094736902978, "LL"],
[0.795275137550483, "HH"],
[0.18562939195219, "LL"],
[0.3010757406693439, "Not significant"],
[0.3010757406693439, "LL"],
[2.8205795942839376, "HH"],
[0.11259190602909264, "Not significant"],
[-0.07116352791516614, "Not significant"],
[-0.09945240794119009, "Not significant"],
[0.11259190602909264, "LL"],
[-0.07116352791516614, "HL"],
[-0.09945240794119009, "LH"],
[0.18562939195219, "LL"],
[0.1832733440191868, "Not significant"],
[-0.39054253768447705, "Not significant"],
[0.1832733440191868, "LL"],
[-0.39054253768447705, "HL"],
[-0.1672071289487642, "HL"],
[0.3337669247916343, "Not significant"],
[0.2584386102554792, "Not significant"],
[0.3337669247916343, "HH"],
[0.2584386102554792, "HH"],
[-0.19733845476322634, "HL"],
[-0.9379282899805409, "LH"],
[-0.028770969951095866, "Not significant"],
[0.051367269430983485, "Not significant"],
[-0.028770969951095866, "LH"],
[0.051367269430983485, "LL"],
[-0.2172548045913472, "LH"],
[0.05136726943098351, "Not significant"],
[0.04191046803899837, "Not significant"],
[0.05136726943098351, "LL"],
[0.04191046803899837, "LL"],
[0.7482357030403517, "HH"],
[-0.014585767863118111, "Not significant"],
[0.5410013139159929, "Not significant"],
[-0.014585767863118111, "LH"],
[0.5410013139159929, "HH"],
[1.0223932668429925, "LL"],
[1.4179402898927476, "LL"]]
[1.4179402898927476, "LL"]]

View File

@@ -1,8 +1,6 @@
import unittest
import numpy as np
import unittest
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
@@ -12,11 +10,12 @@ import unittest
from helper import plpy, fixture_file
import crankshaft.clustering as cc
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
import json
class MoranTest(unittest.TestCase):
"""Testing class for Moran's I functions."""
"""Testing class for Moran's I functions"""
def setUp(self):
plpy._reset()
@@ -30,7 +29,7 @@ class MoranTest(unittest.TestCase):
self.moran_data = json.loads(open(fixture_file('moran.json')).read())
def test_map_quads(self):
"""Test map_quads."""
"""Test map_quads"""
self.assertEqual(cc.map_quads(1), 'HH')
self.assertEqual(cc.map_quads(2), 'LH')
self.assertEqual(cc.map_quads(3), 'LL')
@@ -38,80 +37,8 @@ class MoranTest(unittest.TestCase):
self.assertEqual(cc.map_quads(33), None)
self.assertEqual(cc.map_quads('andy'), None)
def test_query_attr_select(self):
"""Test query_attr_select."""
ans = "i.\"{attr1}\"::numeric As attr1, " \
"i.\"{attr2}\"::numeric As attr2, "
self.assertEqual(cc.query_attr_select(self.params), ans)
def test_query_attr_where(self):
"""Test query_attr_where."""
ans = "idx_replace.\"{attr1}\" IS NOT NULL AND "\
"idx_replace.\"{attr2}\" IS NOT NULL AND "\
"idx_replace.\"{attr2}\" <> 0"
self.assertEqual(cc.query_attr_where(self.params), ans)
def test_knn(self):
"""Test knn function."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM \"(SELECT * FROM a_list)\" As j WHERE j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0 ORDER BY " \
"j.\"the_geom\" <-> i.\"the_geom\" ASC LIMIT 321 OFFSET 1 ) ) " \
"As neighbors FROM \"(SELECT * FROM a_list)\" As i WHERE i.\"andy\" IS NOT " \
"NULL AND i.\"jay_z\" IS NOT NULL AND i.\"jay_z\" <> 0 ORDER " \
"BY i.\"cartodb_id\" ASC;"
self.assertEqual(cc.knn(self.params), ans)
def test_queen(self):
"""Test queen neighbors function."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT " \
"j.\"cartodb_id\" FROM \"(SELECT * FROM a_list)\" As j WHERE ST_Touches(" \
"i.\"the_geom\", j.\"the_geom\") AND j.\"andy\" IS NOT NULL " \
"AND j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0)) As " \
"neighbors FROM \"(SELECT * FROM a_list)\" As i WHERE i.\"andy\" IS NOT NULL " \
"AND i.\"jay_z\" IS NOT NULL AND i.\"jay_z\" <> 0 ORDER BY " \
"i.\"cartodb_id\" ASC;"
self.assertEqual(cc.queen(self.params), ans)
def test_get_query(self):
"""Test get_query."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT " \
"j.\"cartodb_id\" FROM \"(SELECT * FROM a_list)\" As j WHERE j.\"andy\" IS " \
"NOT NULL AND j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0 " \
"ORDER BY j.\"the_geom\" <-> i.\"the_geom\" ASC LIMIT 321 " \
"OFFSET 1 ) ) As neighbors FROM \"(SELECT * FROM a_list)\" As i WHERE " \
"i.\"andy\" IS NOT NULL AND i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(cc.get_query('knn', self.params), ans)
def test_get_attributes(self):
"""Test get_attributes."""
## need to add tests
self.assertEqual(True, True)
def test_get_weight(self):
"""Test get_weight."""
self.assertEqual(True, True)
def test_quad_position(self):
"""Test lisa_sig_vals."""
"""Test lisa_sig_vals"""
quads = np.array([1, 2, 3, 4], np.int)
@@ -125,7 +52,7 @@ class MoranTest(unittest.TestCase):
data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local('table', 'value', 0.05, 5, 99, 'the_geom', 'cartodb_id', 'knn')
result = cc.moran_local('subquery', 'value', 99, 'the_geom', 'cartodb_id', 'knn', 5)
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
@@ -137,8 +64,20 @@ class MoranTest(unittest.TestCase):
data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local_rate('table', 'numerator', 'denominator', 0.05, 5, 99, 'the_geom', 'cartodb_id', 'knn')
result = cc.moran_local_rate('subquery', 'numerator', 'denominator', 99, 'the_geom', 'cartodb_id', 'knn', 5)
print 'result == None? ', result == None
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
self.assertAlmostEqual(res_val, exp_val)
def test_moran(self):
"""Test Moran's I global"""
data = [{ 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1235)
result = cc.moran('table', 'value', 99, 'the_geom', 'cartodb_id', 'knn', 5)
print 'result == None?', result == None
result_moran = result[0][0]
expected_moran = np.array([row[0] for row in self.moran_data]).mean()
self.assertAlmostEqual(expected_moran, result_moran, delta=10e-2)

View File

@@ -0,0 +1,107 @@
import unittest
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
class PysalUtilsTest(unittest.TestCase):
"""Testing class for utility functions related to PySAL integrations"""
def setUp(self):
self.params = {"id_col": "cartodb_id",
"attr1": "andy",
"attr2": "jay_z",
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
def test_query_attr_select(self):
"""Test query_attr_select"""
ans = "i.\"{attr1}\"::numeric As attr1, " \
"i.\"{attr2}\"::numeric As attr2, "
self.assertEqual(pu.query_attr_select(self.params), ans)
def test_query_attr_where(self):
"""Test pu.query_attr_where"""
ans = "idx_replace.\"{attr1}\" IS NOT NULL AND " \
"idx_replace.\"{attr2}\" IS NOT NULL AND " \
"idx_replace.\"{attr2}\" <> 0"
self.assertEqual(pu.query_attr_where(self.params), ans)
def test_knn(self):
"""Test knn neighbors constructor"""
ans = "SELECT i.\"cartodb_id\" As id, " \
"i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE " \
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND " \
"j.\"jay_z\" <> 0 " \
"ORDER BY " \
"j.\"the_geom\" <-> i.\"the_geom\" ASC " \
"LIMIT 321)) As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"andy\" IS NOT NULL AND " \
"i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 " \
"ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(pu.knn(self.params), ans)
def test_queen(self):
"""Test queen neighbors constructor"""
ans = "SELECT i.\"cartodb_id\" As id, " \
"i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE " \
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"ST_Touches(i.\"the_geom\", " \
"j.\"the_geom\") AND " \
"j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND " \
"j.\"jay_z\" <> 0)" \
") As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"andy\" IS NOT NULL AND " \
"i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 " \
"ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(pu.queen(self.params), ans)
def test_construct_neighbor_query(self):
"""Test construct_neighbor_query"""
# Compare to raw knn query
self.assertEqual(pu.construct_neighbor_query('knn', self.params),
pu.knn(self.params))
def test_get_attributes(self):
"""Test get_attributes"""
## need to add tests
self.assertEqual(True, True)
def test_get_weight(self):
"""Test get_weight"""
self.assertEqual(True, True)
def test_empty_zipped_array(self):
"""Test empty_zipped_array"""
ans2 = [(None, None)]
ans4 = [(None, None, None, None)]
self.assertEqual(pu.empty_zipped_array(2), ans2)
self.assertEqual(pu.empty_zipped_array(4), ans4)