351 Commits
1.0.1 ... 1.3.3

Author SHA1 Message Date
John Krauss
ec53d354e9 release 1.3.3 artifact 2017-03-10 19:48:23 +00:00
John Krauss
c1aa91da5b update NEWS.md 2017-03-10 19:36:00 +00:00
John Krauss
93ebd9aa0f test getdata across multiple input columns; remove dead code from autotest 2017-03-10 19:27:06 +00:00
John Krauss
4a29c060ef fix unittest bug, easier to read use of unnest, static geomvals when one passed in 2017-03-10 19:18:06 +00:00
John Krauss
1639bea74a mark relevant functions STABLE 2017-03-10 18:36:51 +00:00
John Krauss
765cbfcccc only do polygon operations when polygons passed in 2017-03-10 16:32:31 +00:00
John Krauss
c4f3c5d534 selectively pass through obs geometries and area calcs 2017-03-10 16:23:27 +00:00
John Krauss
d5e7d95824 fix performance regression on getboundariesbygeometry, where pct overlap was being unnecessarily calculated 2017-03-09 21:26:53 +00:00
John Krauss
3ff1b36d7f remove erroneous NOTICE 2017-03-09 20:46:38 +00:00
John Krauss
c28cdeb767 Merge branch 'release-v-1.3.3' into separate-geom-from-data-calcs 2017-03-09 18:09:45 +00:00
John Krauss
b1d672bfe4 Merge branch 'release-v-1.3.3' into faster-autotest 2017-03-09 18:07:28 +00:00
John Krauss
524d477f7b Merge remote-tracking branch 'origin/release-v-1.3.3' into release-v-1.3.3 2017-03-09 17:59:49 +00:00
John Krauss
7ef035580f avoid geom calculation when points are passed in 2017-03-09 17:29:41 +00:00
John Krauss
20b347528c tests passing 2017-03-09 17:14:20 +00:00
John Krauss
d070802f53 resolving API bugs 2017-03-09 16:17:58 +00:00
John Krauss
751f470049 Merge branch 'faster-autotest' into separate-geom-from-data-calcs 2017-03-09 14:58:26 +00:00
John Krauss
a1b5f01d57 Merge remote-tracking branch 'origin/develop' into faster-autotest 2017-03-09 14:50:48 +00:00
John Krauss
f2d2b32bf1 Merge remote-tracking branch 'origin/develop' into separate-geom-from-data-calcs 2017-03-09 14:50:01 +00:00
csobier
02413eb974 line 412, bad tag 2017-03-09 08:15:43 -05:00
csobier
1a4a2edbc6 lien 207 2017-03-09 08:10:23 -05:00
csobier
47c6453bbc tags 2017-03-09 08:05:59 -05:00
csobier
5f2daad408 wrong quotes around context, breaking docs 2017-03-09 07:36:10 -05:00
csobier
764a1ce7cd highlight missing, breaking docs 2017-03-09 07:29:19 -05:00
csobier
12235c7138 missing tag on line 387, breaking docs. 2017-03-09 07:16:49 -05:00
John Krauss
3f817f8e9a bugfixes, most unit tests passing 2017-03-09 05:03:25 +00:00
John Krauss
5ca2664a17 first pass much faster multicolumn getdata via precalcs 2017-03-09 04:12:38 +00:00
John Krauss
1b913c77c4 fix last oustanding bug with autotest 2017-03-08 23:18:07 +00:00
John Krauss
22eb6349c2 fix issues with python autotest failing for nulls, try removing case statements around geometries in getdata 2017-03-08 21:17:45 +00:00
John Krauss
862db2c33a Merge remote-tracking branch 'origin/release-v-1.3.3' into faster-autotest
Conflicts:
	src/pg/sql/40_observatory_utility.sql
2017-03-08 20:52:31 +00:00
John Krauss
e2f92d78cf much faster autotest by grouping in getdata, fixes to getdata to prevent hangs 2017-03-08 20:51:41 +00:00
john krauss
3df1ffc3c8 Merge pull request #265 from CartoDB/check-intersection-errors
Resolve intersection errors
2017-03-08 15:38:39 -05:00
John Krauss
6a60cfc417 Merge branch 'develop' into faster-autotest 2017-03-08 15:57:14 +00:00
John Krauss
3b6b1b4843 limit safe_intersection to SRID 4326, DRY out ST_MakeValid 2017-03-08 15:52:19 +00:00
John Krauss
460059f2cf Merge branch 'develop' into check-intersection-errors 2017-03-07 20:45:05 +00:00
John Krauss
fc111dd1e2 Merge branch 'obs-getavailableX-docs' into develop 2017-03-07 20:39:40 +00:00
John Krauss
7cbef7e1b5 Merge branch 'obs-getdata-getmeta-docs' into develop 2017-03-07 20:39:25 +00:00
John Krauss
deede798e9 fix non-noded intersection between shoreline clipped and non-shoreline clipped geometries by using a safe_intersection function 2017-03-07 20:38:12 +00:00
John Krauss
fd3918b29c fix divide-by-zero errors 2017-03-07 16:45:15 +00:00
John Krauss
cdf7b17a4d tmp commit 2017-03-07 15:29:09 +00:00
John Krauss
50ec6dddf6 release-v1.3.2 artifact 2017-03-02 21:16:22 +00:00
John Krauss
0ebe9babeb update tests 2017-03-02 21:09:23 +00:00
John Krauss
4fad32d5f2 fix and NEWS.md 2017-03-02 21:07:29 +00:00
John Krauss
f0efa1e2eb release v1.3.1 2017-03-01 16:33:35 +00:00
John Krauss
bcbd8a2be4 change OBS_GetLegacyMetadata to return median/average measures too when called for polygons 2017-03-01 16:03:14 +00:00
John Krauss
63ae7c1392 add obs_getavailableX metadata API docs 2017-02-28 21:33:06 +00:00
John Krauss
af671931d4 integrate michelles comments 2017-02-23 20:12:27 +00:00
John Krauss
71d891c067 handle blank aggregates 2017-02-16 17:53:38 +00:00
John Krauss
01b56fbfcc update fixtures 2017-02-16 17:38:18 +00:00
John Krauss
6215f6585c update NEWS.md 2017-02-16 17:23:47 +00:00
John Krauss
9bda063148 Merge branch 'nonsum-interpolation' into release-v-1.3.1 2017-02-16 17:20:38 +00:00
John Krauss
4a97689705 add point for au 2017-02-16 16:50:40 +00:00
John Krauss
2edb850a45 estimate average and median across arbitrary areas if universe is provided, otherwise return null and raise a notice. fixes #252 2017-02-10 01:08:10 +00:00
Michelle Ho
8120081d68 Typo fix
Typo fix of "measured" to "measure"
2017-02-06 16:37:27 -05:00
Michelle Ho
72ced1a7a7 Change 'raise' to 'raises'
Changes semantic meaning-- user does not raise the error, CARTO raises the error
2017-02-06 16:27:43 -05:00
Michelle Ho
d15b74a594 Change ``OBS_GetUSCensusMeasure`` 2017-02-06 16:18:56 -05:00
Michelle Ho
60ab773549 change point to polygon in GetUSCensusMeasure 2017-02-06 15:57:49 -05:00
Michelle Ho
01b70dd06e proof-reading changes 2017-02-06 14:58:07 -05:00
John Krauss
4b409cc9f4 first-pass docs for obs_getdata and obs_getmeta 2017-02-01 09:12:18 -05:00
Mario de Frutos
79c450f63f Merge pull request #247 from CartoDB/develop
Release 1.3.0
2017-01-31 10:14:52 +01:00
Mario de Frutos
c8dd9e417b Release 1.3.0 artifact 2017-01-26 12:19:23 +01:00
Mario de Frutos
2717ecdc8b Merge pull request #246 from CartoDB/release-v-1.3.0
Observatory Release v 1.3.0
2017-01-26 12:18:15 +01:00
Mario de Frutos
0f372604db Remove fdw utilities 2017-01-26 11:57:24 +01:00
Mario de Frutos
c5a715f7b5 Delete empty sql file used for plpython code 2017-01-25 19:03:51 +01:00
John Krauss
e4b38413cd skip a few autotests that are failing, but not meaningfully exposed in interfaces 2017-01-25 17:23:36 +00:00
John Krauss
ee84604ced empty file to clear out artifacts from built extension 2017-01-25 17:09:38 +00:00
John Krauss
5e7bffae6a remove plpython and python code for now. also removed mistaken installation of postgres_fdw in tests 2017-01-25 16:59:37 +00:00
John Krauss
aa807eb65b fix hang generating fixtures 2017-01-18 23:28:46 +00:00
John Krauss
80277ba065 optimizations for cases where small amounts of metadata passed into obs_getmeta 2017-01-18 23:15:27 +00:00
John Krauss
0e4a514753 use simplification in obs_getdata for very complex geoms 2017-01-18 21:44:02 +00:00
John Krauss
fc74529a04 ensure fixture creation worked or do not run tests 2017-01-18 21:16:53 +00:00
John Krauss
a18d88a85f Merge branch 'overpass' into release-v-1.3.0 2017-01-18 18:28:53 +00:00
John Krauss
8ea972f4a0 update NEWS.md for 1.3.0 2017-01-18 18:27:50 +00:00
John Krauss
0e99e62eb2 remove unused table-level functions and dependencies 2017-01-17 22:51:30 +00:00
John Krauss
3db98fb522 full testing suite for obs_getdata and obs_getmeta 2017-01-17 22:49:29 +00:00
John Krauss
c18f16ed6d handle cases with mixed geometries in obs_getdata correctly 2017-01-17 22:49:04 +00:00
John Krauss
fa82c1bb4f Merge branch 'release-v-1.2.1' into overpass 2017-01-17 15:42:39 +00:00
John Krauss
00825e4ba1 update NEWS.md 2017-01-17 15:42:30 +00:00
John Krauss
afe4c27dd5 obs_getdata takes api_method and api_args in both forms, and handles them correctly; cleanup to getdata, added more tests 2017-01-14 01:14:42 +00:00
John Krauss
c2dc4fb8b9 add test for third-party call 2017-01-10 21:55:48 +00:00
John Krauss
bc4f1b5909 support use of dynamic tables (API-generated) in obs_getdata 2017-01-10 21:44:49 +00:00
John Krauss
267af19911 fix perftest to work with renamed core functions 2017-01-10 16:03:12 +00:00
John Krauss
7c093741dc major refactor of internals 2017-01-10 02:28:38 +00:00
John Krauss
4886222776 adaptation of obs_getmeasuredatamulti that can return geoms from a boundingbox 2017-01-04 21:18:56 +00:00
John Krauss
ddbe1b6763 return shops as part of POI for OSM 2017-01-04 18:23:52 +00:00
John Krauss
218840bfa8 first-pass function for overpass working 2017-01-04 16:59:48 +00:00
John Krauss
000a440417 resolve issues in build and with code, now returning geometries and data as expected from obs_getoverpass 2017-01-03 16:37:16 +00:00
John Krauss
ff50c5e2bf first pass on overpass api, still getting an error with columns 2017-01-03 15:39:01 +00:00
John Krauss
d7552031f6 support obtaining text measures with obs_getmeasuredatamulti 2016-12-29 23:01:48 +00:00
John Krauss
39eb031316 support POINT and LINESTRING types from obs_getboundaries 2016-12-29 17:07:38 +00:00
John Krauss
7adbad602e updating NEWS 2016-12-28 20:04:26 +00:00
john krauss
3233cb527e Merge pull request #241 from CartoDB/obs_getmeasure_res_bypass
Obs getmeasure res bypass
2016-12-28 14:44:01 -05:00
John Krauss
5bdcb59df3 remove commented code 2016-12-28 19:34:37 +00:00
John Krauss
6e475cf210 fix uppercase NULL in tests 2016-12-28 19:17:57 +00:00
John Krauss
eb508c5d16 Revert "subdivide complex geoms in obs_getmeasure"
This reverts commit d44887b2b3.
2016-12-28 18:40:01 +00:00
John Krauss
bbd0cc0938 capture boundary in multi, capture message from env 2016-12-28 16:54:16 +00:00
John Krauss
d44887b2b3 subdivide complex geoms in obs_getmeasure 2016-12-28 16:19:13 +00:00
John Krauss
fa96de5aa9 remove notices from getgeometryscores 2016-12-28 15:57:56 +00:00
John Krauss
b7943ad8d2 fix divide by zero issues for denominated 2016-12-21 23:22:31 +00:00
John Krauss
6b071db588 remove notices 2016-12-21 23:18:25 +00:00
John Krauss
fbf13be62a unit tests passing with 2015 geoms included, fixes to obs_getmeasure 2016-12-21 23:17:03 +00:00
John Krauss
fc3fcbec4e fix broken polygon area normalization 2016-12-21 22:41:53 +00:00
John Krauss
d3a57e637c keep track of table_id in obs_meta and geometryscores, use obs_getmeasure*multi for obs_getmeasure 2016-12-21 21:53:53 +00:00
John Krauss
24587b7e03 switch over to multi for the "split" test 2016-12-19 16:49:50 +00:00
John Krauss
2398b0268f major performance speedup for obs_getmeasuremeta 2016-12-16 21:54:42 +00:00
John Krauss
4c6d854e81 Merge branch 'release-v-1.1.7' into obs_getmeasure_res_bypass 2016-12-16 18:01:17 +00:00
John Krauss
fd32f962f2 remove failing MX test 2016-12-15 20:19:12 +00:00
John Krauss
462eed1d61 update NEWS.md and PULL_REQUEST_TEMPLATE.md 2016-12-15 19:56:42 +00:00
John Krauss
5a5d5a9386 tests pass, although obs_getmeasure performance suffers 2016-12-14 22:58:22 +00:00
John Krauss
88d1145c12 fix issue with NULL being passed into obs_getmeasure, add tests for obs_getmeasuremeta and obs_getmeasuredata 2016-12-13 15:43:04 +00:00
csobier
8455468ad0 Merge pull request #238 from CartoDB/csobier-patch-1
missed tool name in docs
2016-12-13 07:17:40 -05:00
John Krauss
9567f52a36 minor tweaks to obs_getmeasuremeta and obs_getmeasuredata, good behavior for geometryscores even when null is passed as desired_num_geoms 2016-12-13 00:14:19 +00:00
John Krauss
fad7bb991b split obs_getmeasuremeta and obs_getmeasuredata 2016-12-12 23:10:12 +00:00
John Krauss
d17b865648 add test that takes out the geom component 2016-12-12 21:49:00 +00:00
John Krauss
d4e6e7ac95 use obs_column_table_tile_raster with simpler bands for faster performance 2016-12-12 21:25:59 +00:00
csobier
e77ebe7bb1 missed tool
Totally missed mention of Editor here, changed to Builder.
2016-12-12 13:50:59 -05:00
John Krauss
82137d5679 Merge branch 'develop' into raster-simplification-experiments 2016-12-12 17:36:12 +00:00
Mario de Frutos
d745f07cac Merge pull request #237 from CartoDB/develop
Version 1.1.6 release artifacts
2016-12-12 16:45:08 +01:00
Mario de Frutos
aa3e0ed76b Version 1.1.6 release artifacts 2016-12-12 16:44:36 +01:00
Mario de Frutos
f378e75d4c Merge pull request #236 from CartoDB/develop
Release 1.1.6
2016-12-12 16:24:31 +01:00
Mario de Frutos
f97482f3fb Merge pull request #234 from CartoDB/release-v-1.1.6
Release v 1.1.6
2016-12-12 16:23:09 +01:00
Mario de Frutos
36f1c1974a Merge pull request #235 from CartoDB/develop
Docs update
2016-12-12 09:36:36 +01:00
John Krauss
21b108d32c move redundant aggregates to CTE 2016-12-09 22:31:29 +00:00
John Krauss
9f640f0c35 use simple envelope for very complex geometries in obs_getgetgeometryscores 2016-12-09 21:47:30 +00:00
John Krauss
95b6cba085 remove some unnecessary calculations from obs_getgeometryscores, yields QPS improvement from about 20 to 30 2016-12-09 21:06:42 +00:00
John Krauss
6a6d1bc3e4 Merge branch 'release-v-1.1.6' into raster-simplification-experiments 2016-12-09 19:38:12 +00:00
John Krauss
99166d1b4e update NEWS.md 2016-12-08 21:59:32 +00:00
John Krauss
e33bcae964 add several ignored MX measures likely due to new geometry scoring 2016-12-08 03:21:04 +00:00
John Krauss
48a8df8b98 switch brazil testpoint 2016-12-08 03:13:55 +00:00
John Krauss
4b9ba06b42 fix lat/lng switch for brazil 2016-12-08 02:55:53 +00:00
john krauss
209832e38d Merge pull request #233 from CartoDB/fix-area-getmeasure-denom-zerodiv
fix divide-by-zero condition with obs_getmeasure(area) using denominator
2016-12-07 21:28:41 -05:00
John Krauss
7373794c30 fix divide-by-zero condition with obs_getmeasure(area) using denominator 2016-12-08 02:32:03 +00:00
John Krauss
1a2e1dd8c9 Merge branch 'remove-format-literals' into release-v-1.1.6 2016-12-08 02:29:21 +00:00
John Krauss
14b82a0e09 Merge remote-tracking branch 'origin/release-v-1.1.6' into release-v-1.1.6 2016-12-08 02:29:06 +00:00
John Krauss
7e20a200c1 Merge branch 'complex-geom-perf-improvements' into release-v-1.1.6 2016-12-08 02:28:53 +00:00
John Krauss
39473db14b Merge branch 'improve-perftest' into complex-geom-perf-improvements 2016-12-08 02:21:29 +00:00
John Krauss
4d7fb145eb Merge branch 'improve-perftest' into remove-format-literals 2016-12-08 02:21:12 +00:00
john krauss
8e51d33e4a Merge pull request #232 from CartoDB/complex-geom-perf-improvements
Complex geom perf improvements
2016-12-07 21:20:29 -05:00
John Krauss
b7ee3a6d67 perftest updates, adding BR test point 2016-12-08 02:17:38 +00:00
csobier
d4dcb7f4ba Merge pull request #228 from CartoDB/docs-1149-update-catalog-link
edited default tool, and updated link to html catalog
2016-12-07 12:11:37 -05:00
csobier
401317738f edited default tool, and updated link to html catalog 2016-12-07 11:51:13 -05:00
John Krauss
1aca5b5ff0 Merge branch 'improve-perftest' into complex-geom-perf-improvements 2016-12-05 22:57:03 +00:00
John Krauss
521fcf9059 Merge branch 'improve-perftest' into remove-format-literals 2016-12-05 22:56:30 +00:00
John Krauss
255f8dc18e support peristence of test results to JSON 2016-12-05 22:55:14 +00:00
John Krauss
463db99222 add perf tests for different geometry complexities as well as all code branches for getmeasure 2016-12-05 18:51:58 +00:00
John Krauss
59857355c7 simplifying raster experiments 2016-12-02 19:33:16 +00:00
John Krauss
44932be1f5 improvements to scoring, fixing oversimplification and removing some premature optimization 2016-12-01 21:50:39 +00:00
John Krauss
4ce1648550 score rasters with lots of missing space lower 2016-11-30 23:16:18 +00:00
John Krauss
ff0f6ea6e0 use st_subdivide to deal with more complex geometries 2016-11-30 23:15:30 +00:00
John Krauss
34a3aab323 remove redundant area checks from other polygon-based getmeasure branches 2016-11-30 17:24:45 +00:00
John Krauss
f32cc60d61 remove redundant area check 2016-11-30 17:15:39 +00:00
John Krauss
81c8fc316b remove almost all %L formats, including all where geoms were dropped in 2016-11-30 16:53:22 +00:00
Mario de Frutos
cbe7b6dd15 Merge pull request #225 from CartoDB/develop
Release 1.1.5
2016-11-29 17:58:08 +01:00
John Krauss
70f4807139 update NEWS 2016-11-29 16:45:10 +00:00
Mario de Frutos
603d26c674 Version 1.1.5 artifacts 2016-11-29 17:43:28 +01:00
Mario de Frutos
355f6281e5 Merge pull request #224 from CartoDB/release-v-1.1.5
Release v 1.1.5
2016-11-29 17:40:53 +01:00
john krauss
84794124fd Merge pull request #223 from CartoDB/fix-getmeasure-exc-out-of-bounds
return NULL when there is no data for a measure at a geometry according to raster
2016-11-29 11:35:19 -05:00
John Krauss
6c08681446 return NULL when there is no data for a measure at a geometry according to our raster. Fixes #220 2016-11-29 16:41:44 +00:00
Mario de Frutos
e5e0b39595 Merge pull request #219 from CartoDB/develop
Release 1.1.4
2016-11-22 11:11:17 +01:00
Mario de Frutos
713aacf535 Version 1.1.4 artifact 2016-11-22 10:03:22 +01:00
Mario de Frutos
9bf4b07be7 Merge pull request #218 from CartoDB/release-v-1.1.4
Release v 1.1.4
2016-11-22 10:01:35 +01:00
John Krauss
aaf580baca update NEWS 2016-11-21 22:32:14 +00:00
john krauss
6845d4361d Merge pull request #217 from CartoDB/fix-legacy-metadata-dupes
Fix legacy metadata dupes
2016-11-21 16:59:05 -05:00
John Krauss
fa778f4eb0 test for #216 2016-11-21 22:03:31 +00:00
John Krauss
22a413102b Fixes bug where multiple subsections returned from OBS_LegacyBuilderMetadata, #216 2016-11-21 21:50:56 +00:00
Mario de Frutos
08980f47a7 Merge pull request #215 from CartoDB/develop
Release 1.1.3
2016-11-17 20:08:00 +01:00
Mario de Frutos
54d512d4fb Release 1.1.3 artifact 2016-11-17 20:03:50 +01:00
Mario de Frutos
2a0ff6a541 Merge pull request #214 from CartoDB/release-v-1.1.3
release v1.1.3
2016-11-17 19:58:56 +01:00
John Krauss
62e13086e1 release v1.1.3 2016-11-15 18:36:53 +00:00
Mario de Frutos
60b723de92 Merge pull request #212 from CartoDB/develop
Release 1.1.2
2016-11-11 17:09:56 +01:00
Mario de Frutos
7e04c38c3a Release 1.1.2 artifact 2016-11-11 17:08:04 +01:00
Mario de Frutos
45dea25ec0 Merge pull request #211 from CartoDB/release-v-1.1.2
Release v 1.1.2
2016-11-11 17:05:28 +01:00
John Krauss
39836ea321 update NEWS.md 2016-11-09 22:11:20 +00:00
john krauss
17d343a756 Merge pull request #209 from CartoDB/use-rasters
Use rasters
2016-11-09 16:58:25 -05:00
john krauss
c7c8a6676a Merge pull request #210 from CartoDB/eu-epa-testpoints
add test points for EU and EPA, make it easier to work with meta.py
2016-11-09 16:47:14 -05:00
John Krauss
be4b5abbfa use highest ranked geom for obs_getmeasure, simplify scoring 2016-11-07 23:57:33 +00:00
John Krauss
8dad88a6b3 fix minor bug in _obs_getgeometryscores with FIRST, add tests 2016-11-07 21:26:44 +00:00
John Krauss
7e6489f2a1 add test points for EU and EPA, make it easier to work with meta.py 2016-11-07 16:50:00 +00:00
John Krauss
9fdca9161c minor stylistic fix 2016-11-04 15:32:25 +00:00
John Krauss
785a5eed29 obs_getgeometryscores and usage by obs_getavailablegeometries 2016-11-02 21:11:38 +00:00
Mario de Frutos
c91fcab28c Merge pull request #208 from CartoDB/develop
Release 1.1.1
2016-10-21 12:09:59 +02:00
Mario de Frutos
174ee65f46 Release 1.1.1 artifact 2016-10-21 12:08:49 +02:00
Mario de Frutos
4aac696963 Merge pull request #205 from CartoDB/release-v-1.1.1
Release v 1.1.1
2016-10-21 12:06:01 +02:00
John Krauss
5c5b587495 Merge remote-tracking branch 'origin/release-v-1.1.1' into release-v-1.1.1 2016-10-14 20:18:01 +00:00
John Krauss
dccae1ed8b NEWS for 1.1.1 2016-10-14 20:17:46 +00:00
john krauss
1e02593fae Merge pull request #204 from CartoDB/fr-ca-testpoints
adding testpoints for FR, Guayane, and CA
2016-10-14 16:09:39 -04:00
John Krauss
89d10ff993 do not skip canada tests 2016-10-14 18:39:47 +00:00
John Krauss
e35b7825ce adding testpoints for FR, Guayane, and CA 2016-10-07 20:27:04 +00:00
Javier Goizueta
ff613f7c12 Merge pull request #203 from CartoDB/develop
Release v1.1.0
2016-10-05 16:48:44 +02:00
Javier Goizueta
06e0b5bcf8 Release 1.1.0 2016-10-05 16:24:55 +02:00
Javier Goizueta
efae735324 Merge pull request #202 from CartoDB/release-v-1.1.0
Release v 1.1.0
2016-10-05 16:16:36 +02:00
John Krauss
7bf87faba1 adding NEWS for 1.1.0 2016-10-04 22:35:48 +00:00
john krauss
0b7e794fb9 Merge pull request #201 from CartoDB/builder-api-func
Builder api func
2016-10-04 18:29:43 -04:00
John Krauss
017b404264 make bounds optional for dimensional queries, add all tests 2016-10-04 22:21:05 +00:00
John Krauss
50b745227b working obs_getavailablenumerators tests 2016-10-04 20:10:24 +00:00
John Krauss
2171cb83c7 add tests for builder legacy func 2016-10-04 19:46:37 +00:00
John Krauss
0d9f0e4996 allow null geom to be passed in for the obs_get* functions, add in convenience legacy builder metadata function 2016-10-04 19:16:32 +00:00
John Krauss
b473ffe307 updated fixtures generation from local postgres, fixed a few tests that broke 2016-10-03 20:36:14 +00:00
John Krauss
2a1598d491 first pass on generating new metadata from local 2016-09-30 20:44:03 +00:00
John Krauss
827104756e another test stub 2016-09-30 17:39:25 +00:00
John Krauss
3602aab804 remove table defintions, stub in tests 2016-09-29 20:53:12 +00:00
John Krauss
48221fc358 Merge branch 'develop' into builder-api-func 2016-09-29 20:23:08 +00:00
Carla
5629bdf035 Merge pull request #197 from CartoDB/develop
Release v1.0.7
2016-09-21 12:02:04 +02:00
Carla Iriberri
f4113eaea3 Release 1.0.7 2016-09-21 11:24:29 +02:00
Carla
86fac2a600 Merge pull request #196 from CartoDB/release-v-1.0.7
Release v 1.0.7
2016-09-21 11:12:22 +02:00
John Krauss
2d753cd758 Skip bad MX measure, smaller buffer for faster tests, updated NEWS.md 2016-09-20 17:56:23 +00:00
john krauss
96a98c3bce Merge pull request #194 from CartoDB/null-resilience
Resolve #178
2016-09-20 13:38:11 -04:00
john krauss
d58263935d Merge pull request #195 from CartoDB/ca-testing
Add point to make sure CA data is present
2016-09-20 12:27:02 -04:00
John Krauss
104608c6d3 Add point to make sure CA data is present 2016-09-20 16:31:15 +00:00
John Krauss
c67fe12111 return NULL in cases when NULL is passed as input geometry or geometry ID. resolves #178 2016-09-20 16:26:13 +00:00
John Krauss
18cfdc60d0 tmp commit 2016-09-19 16:08:37 +00:00
Carla
d63934bfc5 Merge pull request #191 from CartoDB/develop
Release 1.0.6 with table level framework improvements
2016-09-08 13:52:36 +02:00
Carla Iriberri
860290595c Release 1.0.6 2016-09-08 10:37:37 +02:00
Carla
bf4ade2fa0 Merge pull request #186 from CartoDB/measure_release
Use explicit functions for query construction and metadata
2016-09-08 09:58:25 +02:00
Carla
32d37a74b3 Remove cascades and quote conveniently 2016-09-02 12:04:03 +02:00
Mario de Frutos
da877e4ef0 Modify PR template to include the update of NEWS.md 2016-08-25 14:36:07 +02:00
Mario de Frutos
15de07ca33 Modify PR template 2016-08-25 14:30:42 +02:00
Mario de Frutos
8af3e22661 Merge pull request #188 from CartoDB/pr_template
Added PR template
2016-08-25 14:27:14 +02:00
Mario de Frutos
fdd591b159 Added PR template 2016-08-25 11:28:01 +02:00
Carla Iriberri
5eb4ede219 Fix 2016-08-23 17:20:48 +02:00
Carla Iriberri
dd5f560359 Separate functions between files 2016-08-19 16:39:30 +02:00
Carla Iriberri
62c2693553 Avoid function check to dispatch 2016-08-19 13:04:54 +02:00
Carla Iriberri
48d1bfdb13 Remove JSON manipulation to use json functions 2016-08-19 12:45:38 +02:00
Carla Iriberri
30f27e5b58 Check function name and use param names instead of 2016-08-18 15:43:03 +02:00
Carla Iriberri
26b22a9bf4 Use explicit functions for query construction and metadata 2016-08-18 15:36:32 +02:00
Mario de Frutos
c9e809c061 Merge pull request #185 from CartoDB/develop
Release 1.0.5
2016-08-18 15:06:50 +02:00
Mario de Frutos
43e83751ae Release 1.0.5 artifact 2016-08-18 15:05:38 +02:00
Mario de Frutos
4c13434b9a Merge pull request #182 from CartoDB/sql-tests
SQL Integration and Performance Tests
2016-08-18 14:54:53 +02:00
Mario de Frutos
8785639ece Merge pull request #154 from CartoDB/iriberri-patch-1
Use 6432 for connections from server
2016-08-18 11:10:02 +02:00
John Krauss
f991f5a1e6 docs and NEWS for the new tests 2016-08-12 18:56:06 +00:00
John Krauss
e4b4ebf72d Adapted autotest to to work with SQL directly instead of over HTTP SQL API 2016-08-12 18:48:31 +00:00
Mario de Frutos
20f56c98de Merge pull request #179 from CartoDB/develop
Release 1.0.4
2016-08-10 16:20:00 +02:00
Mario de Frutos
e4ea90835a Release 1.0.4 artifact 2016-08-10 16:18:59 +02:00
Mario de Frutos
8f2c8f571c Merge pull request #175 from CartoDB/release-v-1.0.4
Release v 1.0.4
2016-08-10 16:15:56 +02:00
John Krauss
e9857e89fb release-v-1.0.4 increment and news 2016-07-26 13:08:28 +00:00
john krauss
8ed2135a7f Merge pull request #174 from CartoDB/all-null-defaults
Always default to NULL, fixes #173
2016-07-26 09:03:53 -04:00
John Krauss
af69b44f25 Always default to NULL, fixes #173 2016-07-26 13:05:40 +00:00
Mario de Frutos
e12b729c51 Release 1.0.3 artifact 2016-07-25 16:44:05 +02:00
Mario de Frutos
a42827a3c9 Merge pull request #172 from CartoDB/develop
Release 1.0.3
2016-07-25 16:11:28 +02:00
Mario de Frutos
948cdbff19 Merge pull request #171 from CartoDB/release-v-1.0.3
Release v 1.0.3
2016-07-25 16:09:35 +02:00
John Krauss
1c7c73f948 release candidate 1.0.3 2016-07-25 13:20:09 +00:00
john krauss
360adc47df Merge pull request #170 from CartoDB/handle-bad-geoms
Handle bad geoms
2016-07-25 09:15:09 -04:00
john krauss
571f1f343a Merge pull request #168 from CartoDB/fix-per-sq-m-obs-getmeasure-area
Fix per sq m obs getmeasure area
2016-07-25 09:14:08 -04:00
john krauss
186c57efbd Merge pull request #167 from CartoDB/null-defaults
Null defaults
2016-07-25 09:12:51 -04:00
john krauss
b139a24012 Merge pull request #165 from CartoDB/fix-required-libs
Fix required libs
2016-07-25 09:09:21 -04:00
john krauss
260704327e Merge pull request #164 from CartoDB/hotfix-error-on-exception
in this function, its "measure_id" not "numer_id"
2016-07-25 09:06:26 -04:00
John Krauss
252610673a handle difficult geometries more gracefully. fixes #160 2016-07-25 13:05:36 +00:00
John Krauss
d054f37528 fixes #160: snaptogrid then buffer input polygons 2016-07-22 21:47:06 +00:00
John Krauss
3d58fd284a fix #159
ensure getuscensusmeasure and getpopulation work as expected with NULL passed explicitly as normalization
2016-07-22 19:24:36 +00:00
John Krauss
efcea9be7b Merge branch 'fix-required-libs' into fix-per-sq-m-obs-getmeasure-area 2016-07-22 18:59:42 +00:00
John Krauss
cf242515e3 install postgres_fdw in test setup. fixes #166 2016-07-22 18:59:11 +00:00
John Krauss
4c434f5448 tests doublechecking NULL default handled correctly, and that area normalization for polygon is per square kilometer 2016-07-22 18:56:27 +00:00
John Krauss
59dd09c554 Merge branch 'fix-required-libs' into fix-per-sq-m-obs-getmeasure-area 2016-07-22 18:17:54 +00:00
John Krauss
8187ab4bbe ensure tests run in order. Fixes #162 2016-07-22 17:44:16 +00:00
John Krauss
e54d95fa8f remove unused plpythonu and cartodb dependencies
Fixes #161
2016-07-22 17:43:40 +00:00
John Krauss
d766f08b03 calculate area normalization of a polygon by square kilometer, not square meter. fixes #158 2016-07-22 15:18:43 +00:00
John Krauss
8f345fd508 in this function, its "measure_id" not "numer_id" 2016-07-21 15:35:09 -04:00
csobier
383c3eb6ec Merge pull request #155 from CartoDB/148-move-glossary-and-license-files
added absolutel urls for doc links as weird redirects are happening f…
2016-07-19 11:58:59 -04:00
csobier
798c0a73a1 added absolutel urls for doc links as weird redirects are happening for relative links 2016-07-19 11:57:40 -04:00
Carla
bfa57f4971 Use 6432 for connections from server 2016-07-19 17:54:08 +02:00
csobier
e7a16f4b4d Merge pull request #153 from CartoDB/148-move-glossary-and-license-files
fixing hyperlinks to live docs
2016-07-19 11:43:23 -04:00
csobier
540ff68a90 fixing hyperlinks to live docs 2016-07-19 11:42:19 -04:00
csobier
6a1df2abd1 Merge pull request #149 from CartoDB/148-move-glossary-and-license-files
removed glossary and license files, updated any hyperlinks to these f…
2016-07-19 11:32:25 -04:00
csobier
dc9ed2de33 fixes issue 148 2016-07-19 11:30:09 -04:00
Carla
acaa434118 Merge pull request #152 from CartoDB/obs_fdw_dependency
Add postgres_fdw as a dependency of observatory
2016-07-19 15:58:05 +02:00
Carla
173d7c0aec Add postgres_fdw as a dependency of observatory 2016-07-19 15:56:25 +02:00
Belén Achaerandio
970d5d2119 Merge pull request #151 from CartoDB/add-docs-url
CR Update measures_functions.md
2016-07-19 15:06:32 +02:00
Belén Achaerandio
a3681062cb second-fix 2016-07-19 12:28:57 +02:00
Belén Achaerandio
a179a46b86 Update measures_functions.md 2016-07-19 12:15:58 +02:00
Mario de Frutos
4c434ffb8d Release 1.0.2 artifact 2016-07-15 15:52:38 +02:00
Mario de Frutos
b041821fc0 Merge pull request #150 from CartoDB/develop
Release 1.0.2 wit mocks for augment functions
2016-07-15 15:49:03 +02:00
Mario de Frutos
876515f9aa Merge pull request #127 from CartoDB/table_level_functions
Add table level functions and mocks
2016-07-15 15:47:02 +02:00
Mario de Frutos
25570e5b11 Merge pull request #147 from CartoDB/develop
Release 1.0.2
2016-07-15 15:28:52 +02:00
csobier
1054443117 removed glossary and license files, updated any hyperlinks to these files 2016-07-15 09:05:49 -04:00
Carla
d93752efa3 move addr_host as a parameter 2016-07-15 11:34:42 +02:00
Mario de Frutos
588cda3262 Merge pull request #146 from CartoDB/release-v-1.0.2
Release v 1.0.2
2016-07-14 17:12:33 +02:00
john krauss
e43d0ca4cf Merge pull request #144 from CartoDB/getmeasure-using-obsmeta
Getmeasure using obsmeta
2016-07-14 09:24:51 -04:00
john krauss
987c4c5b76 Merge pull request #145 from CartoDB/obsmeta-end-to-end
use obs_meta for tests
2016-07-14 09:22:57 -04:00
John Krauss
51ce13f8b9 update NEWS with additional improvements 2016-07-14 09:21:16 -04:00
John Krauss
25f4dbc416 use obs_meta for tests 2016-07-14 09:11:02 -04:00
John Krauss
c09e0b6e83 can eliminate getrelatedcolumn 2016-07-13 18:42:25 -04:00
John Krauss
748428ace1 Merge branch 'release-v-1.0.2' into getmeasure-using-obsmeta 2016-07-13 18:41:04 -04:00
john krauss
10a0dc9b26 Merge pull request #141 from CartoDB/fix-hardcoded-getcategory-geom
Fix hardcoded getcategory geom
2016-07-13 18:39:31 -04:00
john krauss
9245de84b0 Merge pull request #142 from CartoDB/comment-notices
comment out notices
2016-07-13 18:38:59 -04:00
john krauss
514e1e4c5b Merge pull request #138 from CartoDB/mx-tests
test location for MX
2016-07-13 18:38:46 -04:00
John Krauss
7bb1bbd804 handle predenomination of points properly 2016-07-13 18:37:17 -04:00
John Krauss
1d008ccbe9 should not try to use area normalization for zhvi 2016-07-13 18:33:53 -04:00
John Krauss
f581278b8a default is now NULL 2016-07-13 18:24:45 -04:00
John Krauss
cbf1c5e67d fix default normalizations 2016-07-13 18:16:53 -04:00
John Krauss
adc663b563 default to area normalization for point, no normalization for polygon getmeasures 2016-07-13 18:14:09 -04:00
John Krauss
3a37b98b72 we still needt hese for getdemographicsnapshot 2016-07-13 17:54:19 -04:00
John Krauss
a4a20e9c1d prevent internal join for denominated getmeasure by polygon 2016-07-13 17:41:05 -04:00
John Krauss
f485426085 fix syntax error 2016-07-13 17:38:54 -04:00
John Krauss
75e765f256 explicit type casts for = ANY 2016-07-13 17:38:05 -04:00
John Krauss
b690478aff use IN ANY to avoid joins elsewhere, and filter by nonzero overlap for all getmeasure polygon queries 2016-07-13 17:36:27 -04:00
John Krauss
6fa9d5c96a add missing array_agg 2016-07-13 17:27:03 -04:00
John Krauss
fc6317161f avoid joins 2016-07-13 17:26:01 -04:00
John Krauss
c07d9f6833 add missing params 2016-07-13 17:13:45 -04:00
John Krauss
ff173a0152 filter so theres some overlap 2016-07-13 17:12:16 -04:00
John Krauss
a7de1f2228 intersects, not overlaps 2016-07-13 16:57:27 -04:00
John Krauss
86529ada5a use st_overlaps instead of && 2016-07-13 16:53:50 -04:00
John Krauss
80cdc5e8ca fix predicate 2016-07-13 16:48:06 -04:00
John Krauss
7c8c5cca0a fix params 2016-07-13 16:42:02 -04:00
John Krauss
a946ab9d03 fix params in denominated polygon getmeasure 2016-07-13 16:28:50 -04:00
John Krauss
da127baa3c implementation for polygon/multipolygon weighted getmeasure 2016-07-13 16:24:33 -04:00
John Krauss
e89a88aa83 use subselects as joins are horrifically slow over FDW 2016-07-13 15:59:27 -04:00
John Krauss
af2259bb0a fix wrong number of variables INTO 2016-07-13 13:39:33 -04:00
John Krauss
fb083f4b9e fix typo 2016-07-13 13:30:05 -04:00
John Krauss
976e119abb fix typo 2016-07-13 12:21:53 -04:00
John Krauss
bbc6f9ef36 getmeasure bypassing several older functions, areas not yet implemented 2016-07-13 12:20:01 -04:00
John Krauss
5229279ee9 Merge branch 'comment-notices' into release-v-1.0.2-preview 2016-07-13 11:14:00 -04:00
John Krauss
0090e537fc add comment-notices branch merge to NEWS.md 2016-07-13 11:07:06 -04:00
John Krauss
e4052ed565 better feedback in autotest 2016-07-13 10:59:25 -04:00
John Krauss
2107796f07 updates to NEWS.md and observatory.control 2016-07-12 17:49:34 -04:00
john krauss
2463623658 Merge pull request #136 from CartoDB/obs-meta-internal
Use obs_meta for OBS_GetMeasureByID, support obs_meta
2016-07-12 17:33:43 -04:00
John Krauss
91797918c1 Merge branch 'fix-hardcoded-getcategory-geom' into release-v-1.0.2-preview 2016-07-12 16:10:19 -04:00
John Krauss
6a39bedee7 fix ambiguous colname for categories in points too 2016-07-12 16:10:00 -04:00
John Krauss
6ce0e5a8d9 Merge branch 'fix-hardcoded-getcategory-geom' into release-v-1.0.2-preview 2016-07-12 16:08:05 -04:00
John Krauss
81176d1df2 fix possible ambiguity in category colname 2016-07-12 16:06:19 -04:00
John Krauss
f22854b4e9 Merge branch 'fix-hardcoded-getcategory-geom' into release-v-1.0.2-preview 2016-07-12 15:58:02 -04:00
John Krauss
54701d595a Merge branch 'obs-meta-internal' into release-v-1.0.2-preview 2016-07-12 15:57:44 -04:00
John Krauss
4b26eeda65 fix to correct segment for testarea area 2016-07-12 15:33:26 -04:00
John Krauss
4fc02f99e2 choose largest segment in the polygon 2016-07-12 14:37:43 -04:00
John Krauss
5bb4285528 fix typo 2016-07-12 14:16:28 -04:00
John Krauss
1e9c3fb860 fix typo 2016-07-12 14:15:00 -04:00
John Krauss
62a2c259a7 fix typo 2016-07-12 14:13:09 -04:00
John Krauss
61854a070d fix wrong quoting 2016-07-12 14:11:02 -04:00
John Krauss
8654c22c87 handle area categories properly 2016-07-12 14:06:43 -04:00
John Krauss
62c08864af remove bad "target_table" notice 2016-07-12 12:37:30 -04:00
John Krauss
af39a37b43 fix missing comma 2016-07-12 12:34:32 -04:00
John Krauss
26b61a6ddb minor formatting 2016-07-12 12:26:10 -04:00
John Krauss
965fb94704 fix bugs in obs_getcategory implementation 2016-07-12 12:22:06 -04:00
John Krauss
84dec8bdf4 simplify obs_getcategory and use obs_meta 2016-07-12 12:09:42 -04:00
John Krauss
568996930b test location for MX 2016-07-12 12:02:49 -04:00
John Krauss
ebc27dbbb7 faster obs_meta generation, use better formatting and handle NULL boundary_id 2016-07-12 11:52:56 -04:00
John Krauss
56fa19118b adjust expectations 2016-07-12 11:25:50 -04:00
John Krauss
4f3baac10a adjust expectations and make sure echo is none 2016-07-12 11:21:42 -04:00
John Krauss
b512985b46 drop/create less, better indexes 2016-07-12 11:15:08 -04:00
John Krauss
329b4dbca3 do not imitate foreign keys 2016-07-12 10:46:53 -04:00
John Krauss
897cf38d42 faster generation of obs-meta via indexes 2016-07-12 10:42:00 -04:00
John Krauss
fe6343c73f should use coaelesce, not nullif 2016-07-12 10:16:19 -04:00
John Krauss
26ee8aedb1 solve null identifier issue 2016-07-12 10:16:13 -04:00
John Krauss
66e2c6be54 create obs_meta out of dump band 2016-07-12 10:16:02 -04:00
John Krauss
6b41994a87 add missing formatstring args 2016-07-12 10:15:53 -04:00
John Krauss
d3d5cbdbbd use obs_meta in obs_getmeasurebyid 2016-07-12 10:15:44 -04:00
John Krauss
4d51ecc12e comment out notices 2016-07-12 10:14:59 -04:00
Carlos Matallín
c0030acb0c Merge pull request #131 from CartoDB/docs-781
rebranding
2016-07-07 18:57:47 +02:00
Carlos Matallín
e938ee0c7b Merge branch 'develop' into docs-781 2016-07-07 18:57:26 +02:00
Carla
9ade6588e2 Add augment functions, add mocks for data retrieval, create own fdw functions to avoid cartodb dependency 2016-07-01 12:31:39 +02:00
csobier
a18b07fa84 rebranded name must appear in ALL CAPS 2016-05-31 12:33:15 -04:00
csobier
11b05877f4 reverted rebranded code, as instruted. Legacy cartodb code instead 2016-05-31 12:05:34 -04:00
csobier
02ca484719 applied docs 781 to data observatory docs 2016-05-26 12:31:01 -04:00
52 changed files with 61640 additions and 23327 deletions

23
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@@ -0,0 +1,23 @@
## Request for a new Data observatory extension deploy
I'd like to request a new data observatory extension deploy: dump + extension
## Performance comparison to last deployment
Please include link here to comparison perftests:
http://52.71.151.140/perftest/#oldsha..newsha
## Dump database id to be deployed
Please put here the dump id to be deployed: <dump_id>
## Data Observatory extension PRs included.
*Please update the NEWS.md*
Add down here the PR links to be added and deployed:
-
// @CartoDB/dataservices

View File

@@ -18,7 +18,7 @@ test: ## Run the tests for the development version of the extension
$(MAKE) -C $(EXT_DIR) test
# Generate a new release into release
release: ## Generate a new release of the extension. Only for telease manager
release: ## Generate a new release of the extension. Only for release manager
$(MAKE) -C $(EXT_DIR) release
# Install the current release.

276
NEWS.md
View File

@@ -1,3 +1,279 @@
1.3.3 (2017-03-10)
__Bugfixes__
* Resolve divide-by-zero errors in cases where the intersection of an
Observatory geometry and user geometry has 0 area
([#265](https://github.com/CartoDB/observatory-extension/pull/265))
* Run MakeValid on geometry's when intersecting, if necessary
([#268](https://github.com/CartoDB/observatory-extension/pull/268))
__Improvements__
* Add performance tests for multiple columns in `OBS_GetData`
* Major performance boost for `autotest.py` through the use of multi-column
`OBS_GetData` instead of separate `OBS_GetMeasure` calls for every single
measurement.
([#268](https://github.com/CartoDB/observatory-extension/pull/268))
* Major performance boost for `OBS_GetData` in cases where multiple columns are
requested. Previously, each additional column would result in a linear
slowdown, even if geometries could be reused.
([#267](https://github.com/CartoDB/observatory-extension/pull/267))
1.3.2 (2017-03-02)
__Bugfixes__
* Accept "prenormalized" as well as "predenominated" to bypass normalization.
This fixes issues with Camshaft.
1.3.1 (2017-02-16)
__Improvements__
* It is now possible to obtain measures that are averages or medians over
arbitrary polygons ([#254](https://github.com/CartoDB/observatory-extension/pull/254).
* Added test point for Australian data
* `OBS_GetLegacyMetadata` now returns median and averages in cases where it is
called for measures for polygons
1.3.0 (2017-01-17)
__API Changes__
* `OBS_GetMeasureDataMulti()` is now called `OBS_GetData()`
* `OBS_GetMeasureMetaMulti()` is now called `OBS_GetMeta()`
* Additional signature for `OBS_GetData` which can take an array of `TEXT`,
mimicking functionality of `OBS_GetMeasureByID`
__Improvements__
* Generate fixtures from `obs_meta`
* Remove unused table-level code
* Refactor all augmentation and geometry functions to obtain data from
`OBS_GetMeta()` and `OBS_GetData()`.
* Improvements to `OBS_GetMeta()` so it can still fill in metadata in cases
where only a geometry is being requested.
* `OBS_GetData()` returns two-column table instead of anonymous record.
* `OBS_GetData()` can return categorical (text) and geometries
__Bugfixes__
* Remove unnecessary dependency on `postgres_fdw`
* `OBS_GetData()` now aggregates measures with mixed geoms correctly
__API Changes__
1.2.1 (2017-01-17)
__Improvements__
* Support Point/LineString in responses from `OBS_GetBoundary`.
([#243](https://github.com/CartoDB/observatory-extension/pull/233))
1.2.0 (2016-12-28)
__API Changes__
* Added `OBS_GetMeasureDataMulti`, which takes an array of geomvals and
parameters as JSON, and returns a set of RECORDs keyed by the vals of the
geomvals.
* Added `OBS_GetMeasureMetaMulti`, which takes sparse metadata as JSON (for
example, the measure ID) and returns a filled-out version of the metadata
sufficient for use with `OBS_GetMeasureDataMulti`.
__Improvements__
* Move tests to 2015
* Fixes to `_OBS_GetGeometryScores` to avoid spamming NOTICEs about all pixels
for a band being NULL
* Tests for `_OBS_GetGeometryScores` with complex geometries
* Performance tests for `OBS_GetMeasureDataMulti`
* Return both `table_id` and `column_id` from `_OBS_GetGeometryScores`
1.1.7 (2016-12-15)
__Improvements__
* Use simpler raster table and simplified `_OBSGetGeometryScores` functions to
improve performance
* In cases where geometry passed into geometry scoring function has greater
than 10K points, simply use its buffer instead
* Add `IMMUTABLE` to `_OBSGetGeometryScores`
* Add tests explicitly for `_OBSGetGeometryScores` in perftest.py
* Yields a ~50% improvement in performance for `_OBSGetGeomeryScores`.
1.1.6 (2016-12-08)
__Bugfixes__
* Fix divide by zero condition in "denominator" branch of `OBS_GetMeasure`
when passing in a polygon ([#233](https://github.com/CartoDB/observatory-extension/pull/233)).
__Improvements__
* Use `ST_Subdivide` to improve performance when functions are called on very
complex geometries (with many points) ([#232](https://github.com/CartoDB/observatory-extension/pull/232))
* Improve raster scoring to more heavily weight boundaries with nearer to
correct number of points, and penalize boundaries with lots of blank space
([#232](https://github.com/CartoDB/observatory-extension/pull/232))
* Remove some redundant area calculations in `OBS_GetMeasure`
([#232](https://github.com/CartoDB/observatory-extension/pull/232))
* Replace use of `format('%L', var)` with proper use of `EXECUTE` and `$1` etc.
variables ([#231](https://github.com/CartoDB/observatory-extension/pull/231))
* Add test point for Brazil
([#229](https://github.com/CartoDB/observatory-extension/pull/229))
* Improvements to performance tests
([#229](https://github.com/CartoDB/observatory-extension/pull/229))
- Support simple and complex geometries
- Handle all code branches
- Add ability to persist results to JSON for graph visualization later
1.1.5 (2016-11-29)
__Bugfixes__
* Return `NULL` instead of raising an exception when a measure is requested for
a geometry where it does not exist ([#220](https://github.com/CartoDB/observatory-extension/issues/220)).
1.1.4 (2016-11-21)
__Bugfixes__
* Fix duplicate subsections with only a partial set of measures appearing from
`OBS_GetLegacyMetadata` ([#216](https://github.com/CartoDB/observatory-extension/issues/216)).
1.1.3 (2016-11-15)
* Temporarily ignore EU data for the sake of testing
1.1.2 (2016-11-09)
__Improvements__
* Update public `OBS_GetMeasure` to use highest ranked boundary, aiming for 500
geoms. ([#190](https://github.com/CartoDB/observatory-extension/issues/190))
* Update test generation to capture our raster tiles
* Standardize the way we generate our test points for `autotest.py`
* Add points for epa and eurostat
* Should support database dump generated 20161109
__API Changes (Internal)__
* Add internal `_OBS_GetGeometryScores`
1.1.1 (2016-10-14)
__Improvements__
* Test points for Canada and France ([#204](https://github.com/CartoDB/observatory-extension/issues/120))
1.1.0 (2016-10-04)
__Bugfixes__
* Fixed some minor errors in test suite
__Improvements__
* We now generate test fixtures from local data instead of remote server
([#120](https://github.com/CartoDB/observatory-extension/issues/120))
__API Changes__
* New function, `OBS_LegacyBuilderMetadata`, which resolves
([#133]( https://github.com/CartoDB/observatory-extension/issues/133))
* Creates "dimensional" metadata grabbing functions
(`OBS_GetAvailableNumerators`, `OBS_GetAvailableDenominators`,
`OBS_GetAvailableGeometries`, `OBS_GetAvailableTimespans`) which will be
used for obtaining metadata in the replacement for the Data Library
([CartoDB/design#104](https://github.com/CartoDB/design/issues/104)). This
is also referred to here ([CartoDB/design#68](https://github.com/CartoDB/design/issues/68)).
1.0.7 (2016-09-20)
__Bugfixes__
* `NULL` geometries or geometry IDs no longer result in an exception from any
augmentation functions ([#178](https://github.com/CartoDB/observatory-extension/issues/178))
__Improvements__
* Automatic tests work for Canada and Thailand
1.0.6 (2016-09-08)
__Improvements__
* New function structure for Table-level functions which allows to separate the
framework logic from the observatory measure functions.
1.0.5 (2016-08-12)
__Improvements__
* Integration tests moved to `src/python/test/`, and can be run without hitting
any HTTP SQL API.
1.0.4 (2016-07-26)
__Bugfixes__
* Always default arguments to `NULL`, which prevents duplication & overwrite by
dataservices-api
([#173](https://github.com/CartoDB/observatory-extension/issues/173))
1.0.3 (2016-07-25)
__Bugfixes__
* Raise exception instead of crashing when `OBS_GetMeasure` is passed a polygon
in combination with a non-summable measure ([cartodb/issues
#9063](https://github.com/CartoDB/cartodb/issues/9063))
* Unnecessary dependencies on cartodb and plpythonu removed
([#161](https://github.com/CartoDB/observatory-extension/issues/161))
* Tests forced to run in-order on all systems
([#162](https://github.com/CartoDB/observatory-extension/issues/162))
* Area normalization done by square kilometer instead of square meter for
polygons ([#158](https://github.com/CartoDB/observatory-extension/issues/158))
* `postgres-fdw` installed as required in unit test environment
([#166](https://github.com/CartoDB/observatory-extension/issues/166))
__Improvements__
* Added tests to make sure all functions can handle explicit NULL as default
([#159](https://github.com/CartoDB/observatory-extension/issues/159))
* Buffer and snaptogrid used to be far more liberal accepting problem geoms
([#170](https://github.com/CartoDB/observatory-extension/issues/160))
1.0.2 (2016-07-12)
---
__Bugfixes__
* Fix for `OBS_GetCategory` outside the US ([#135](https://github.com/CartoDB/observatory-extension/pull/137))
* `OBS_GetMeasure` now respects the `normalize` parameter even when passed
a multi/polygon. Previously, no normalization was erroneously assumed.
__Improvements__
* Automated tests cover Mexico data
* `obs_meta` is now provisioned during unit tests
* `obs_meta` is now used during end-to-end tests
* `OBS_GetMeasureByID` uses `obs_meta` internally, which should help
performance
* `OBS_GetCategory` uses `obs_meta` internally, which should help perfromance
* `OBS_GetCategory` will pick the correct category for an arbitrary polygon
(the category covering the highest % of that polygon)
* `OBS_GetMeasure` has been updated to use `obs_meta` internally, which should
help performance
* `OBS_GetMeasure` now can be passed "none" and skip normalization by area or
denominator for points
* Fixtures are only loaded at the start of the unit test suite, and dropped at the end,
instead of at the start/end of each individual test file
* Comment noisy NOTICEs ([#73](https://github.com/CartoDB/observatory-extension/issues/73))
1.0.1 (2016-07-01)
---

View File

@@ -1,6 +1,6 @@
# Data Observatory Documentation
This file is for reference purposes only. It is intended for tracking the Data Observatory functions that should be displayed from the live Docs site. Like all API doc, the golden source of this code will live in this observatory-extension repo, and will be edited in this repo.
This file is for reference purposes only. It is intended for tracking the Data Observatory functions that should be pulled into the live Docs site. Like all API doc, the golden source of this code will live in this observatory-extension repo, and will be edited in this repo. Other non-code related content will live as a local file in the Docs repo.
## Documentation
@@ -9,5 +9,5 @@ This file is for reference purposes only. It is intended for tracking the Data O
* [Measures Functions](measures_functions.md)
* [Boundary Functions](boundary_functions.md)
* [Discovery Functions](discovery_functions.md)
* [Glossary](glossary.md)
* [License](license.md)
* [Glossary](local file in the Docs repo)
* [License](local file in the Docs repo)

View File

@@ -1,8 +1,8 @@
# Boundary Functions
Use the following functions to retrieve [Boundary](/cartodb-platform/data/overview/#boundary-data) data. Data ranges from small areas (e.g. US Census Block Groups) to large areas (e.g. Countries). You can access boundaries by point location lookup, bounding box lookup, direct ID access and several other methods described below.
Use the following functions to retrieve [Boundary](https://carto.com/docs/carto-engine/data/overview/#boundary-data) data. Data ranges from small areas (e.g. US Census Block Groups) to large areas (e.g. Countries). You can access boundaries by point location lookup, bounding box lookup, direct ID access and several other methods described below.
You can [access](/cartodb-platform/data/accessing/#accessing-the-data-observatory) boundaries through the CartoDB Editor. The same methods will work if you are using the CartoDB Platform to develop your application. We [encourage you](/cartodb-platform/data/accessing/#best-practices) to use table modifying methods (UPDATE and INSERT) over dynamic methods (SELECT).
You can [access](https://carto.com/docs/carto-engine/data/accessing) boundaries through CARTO Builder. The same methods will work if you are using the CARTO Engine to develop your application. We [encourage you](http://docs/carto-engine/data/accessing/#best-practices) to use table modifying methods (UPDATE and INSERT) over dynamic methods (SELECT).
## OBS_GetBoundariesByGeometry(polygon geometry, geometry_id text)
@@ -91,14 +91,14 @@ FROM OBS_GetPointsByGeometry(
## OBS_GetBoundary(point_geometry, boundary_id)
The ```OBS_GetBoundary(point_geometry, boundary_id)``` method returns a boundary geometry defined as overlapping the point geometry and from the desired boundary set (e.g. Census Tracts). See the [Boundary ID glossary table below](below). This is a useful method for performing aggregations of points.
The ```OBS_GetBoundary(point_geometry, boundary_id)``` method returns a boundary geometry defined as overlapping the point geometry and from the desired boundary set (e.g. Census Tracts). See the [Boundary ID Glossary](https://carto.com/docs/carto-engine/data/glossary/#boundary-ids). This is a useful method for performing aggregations of points.
#### Arguments
Name | Description
--- | ---
point_geometry | a WGS84 polygon geometry (the_geom)
boundary_id | a boundary identifier from the [Boundary ID glossary table below](below)
boundary_id | a boundary identifier from the [Boundary ID Glossary](https://carto.com/docs/carto-engine/data/glossary/#boundary-ids)
timespan (optional) | year(s) to request from (`NULL` (default) gives most recent)
#### Returns
@@ -124,14 +124,14 @@ SET the_geom = OBS_GetBoundary(the_geom, 'us.census.tiger.block_group')
## OBS_GetBoundaryId(point_geometry, boundary_id)
The ```OBS_GetBoundaryId(point_geometry, boundary_id)``` returns a unique geometry_id for the boundary geometry that contains a given point geometry. See the [Boundary ID glossary table below](below). The method can be combined with ```OBS_GetBoundaryById(geometry_id)``` to create a point aggregation workflow.
The ```OBS_GetBoundaryId(point_geometry, boundary_id)``` returns a unique geometry_id for the boundary geometry that contains a given point geometry. See the [Boundary ID Glossary](http://docs/carto-engine/data/glossary/#boundary-ids). The method can be combined with ```OBS_GetBoundaryById(geometry_id)``` to create a point aggregation workflow.
#### Arguments
Name |Description
--- | ---
point_geometry | a WGS84 point geometry (the_geom)
boundary_id | a boundary identifier from the [Boundary ID glossary table below](below)
boundary_id | a boundary identifier from the [Boundary ID Glossary](https://carto.com/docs/carto-engine/data/glossary/#boundary-ids)
timespan (optional) | year(s) to request from (`NULL` (default) gives most recent)
#### Returns
@@ -164,7 +164,7 @@ The ```OBS_GetBoundaryById(geometry_id, boundary_id)``` returns the boundary geo
Name | Description
--- | ---
geometry_id | a string identifier for a Boundary geometry
boundary_id | a boundary identifier from the [Boundary ID glossary table below](below)
boundary_id | a boundary identifier from the [Boundary ID Glossary](https://carto.com/docs/carto-engine/data/glossary/#boundary-ids)
timespan (optional) | year(s) to request from (`NULL` (default) gives most recent)
#### Returns

View File

@@ -1,6 +1,6 @@
# Discovery Functions
If you are using the [discovery methods](/cartodb-platform/data/overview/#discovery-methods) from the Data Observatory, use the following functions to retrieve [boundary](/cartodb-platform/data/overview/#boundary-data) and [measures](/cartodb-platform/data/overview/#measures-data) data.
If you are using the [discovery methods](https://carto.com/docs/carto-engine/data/overview/#discovery-methods) from the Data Observatory, use the following functions to retrieve [boundary](https://carto.com/docs/carto-engine/data/overview/#boundary-data) and [measures](https://carto.com/docs/carto-engine/data/overview/#measures-data) data.
## OBS_Search(search_term)
@@ -47,7 +47,7 @@ A TABLE containing the following properties
Key | Description
--- | ---
boundary_id | a boundary identifier from the [boundary ID glossary](/cartodb-platform/data/glossary/#boundary-ids)
boundary_id | a boundary identifier from the [Boundary ID Glossary](https://carto.com/docs/carto-engine/data/glossary/#boundary-ids)
description | a brief description of the boundary dataset
time_span | the timespan attached the boundary. this does not mean that the boundary is invalid outside of the timespan, but is the explicit timespan published with the geometry.
@@ -56,3 +56,306 @@ time_span | the timespan attached the boundary. this does not mean that the boun
```SQL
SELECT * FROM OBS_GetAvailableBoundaries(CDB_LatLng(40.7, -73.9))
```
## OBS_GetAvailableNumerators(bounds, filter_tags, denom_id, geom_id, timespan)
Return available numerators within a boundary and with the specified
`filter_tags`.
#### Arguments
Name | Type | Description
--- | --- | ---
bounds | Geometry(Geometry, 4326) | a geometry which some of the numerator's data must intersect with
filter_tags | Text[] | a list of filters. Only numerators for which all of these apply are returned `NULL` to ignore (optional)
denom_id | Text | the ID of a denominator to check whether the numerator is valid against. Will not reduce length of returned table, but will change values for `valid_denom` (optional)
geom_id | Text | the ID of a geometry to check whether the numerator is valid against. Will not reduce length of returned table, but will change values for `valid_geom` (optional)
timespan | Text | the ID of a timespan to check whether the numerator is valid against. Will not reduce length of returned table, but will change values for `valid_timespan` (optional)
#### Returns
A TABLE containing the following properties
Key | Type | Description
--- | ---- | -----------
numer_id | Text | The ID of the numerator
numer_name | Text | A human readable name for the numerator
numer_description | Text | Description of the numerator. Is sometimes NULL
numer_weight | Numeric | Numeric "weight" of the numerator. Ignored.
numer_license | Text | ID of the license for the numerator
numer_source | Text | ID of the source for the numerator
numer_type | Text | Postgres type of the numerator
numer_aggregate | Text | Aggregate type of the numerator. If `'SUM'`, this can be normalized by area
numer_extra | JSONB | Extra information about the numerator column. Ignored.
numer_tags | Text[] | Array of all tags applying to this numerator
valid_denom | Boolean | True if the `denom_id` argument is a valid denominator for this numerator, False otherwise
valid_geom | Boolean | True if the `geom_id` argument is a valid geometry for this numerator, False otherwise
valid_timespan | Boolean | True if the `timespan` argument is a valid timespan for this numerator, False otherwise
#### Examples
Obtain all numerators that are available within a small rectangle.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326))
```
Obtain all numerators that are available within a small rectangle and are for
the United States only.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), '{section/tags.united_states}');
```
Obtain all numerators that are available within a small rectangle and are
employment related for the United States only.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), '{section/tags.united_states, subsection/tags.employment}');
```
Obtain all numerators that are available within a small rectangle and are
related to both employment and age & gender for the United States only.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), '{section/tags.united_states, subsection/tags.employment, subsection/tags.age_gender}');
```
Obtain all numerators that work with US population (`us.census.acs.B01003001`)
as a denominator.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, 'us.census.acs.B01003001')
WHERE valid_denom IS True;
```
Obtain all numerators that work with US states (`us.census.tiger.state`)
as a geometry.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, NULL, 'us.census.tiger.state')
WHERE valid_geom IS True;
```
Obtain all numerators available in the timespan `2011 - 2015`.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, NULL, NULL, '2011 - 2015')
WHERE valid_timespan IS True;
```
## OBS_GetAvailableDenominators(bounds, filter_tags, numer_id, geom_id, timespan)
Return available denominators within a boundary and with the specified
`filter_tags`.
#### Arguments
Name | Type | Description
--- | --- | ---
bounds | Geometry(Geometry, 4326) | a geometry which some of the denominator's data must intersect with
filter_tags | Text[] | a list of filters. Only denominators for which all of these apply are returned `NULL` to ignore (optional)
numer_id | Text | the ID of a numerator to check whether the denominator is valid against. Will not reduce length of returned table, but will change values for `valid_numer` (optional)
geom_id | Text | the ID of a geometry to check whether the denominator is valid against. Will not reduce length of returned table, but will change values for `valid_geom` (optional)
timespan | Text | the ID of a timespan to check whether the denominator is valid against. Will not reduce length of returned table, but will change values for `valid_timespan` (optional)
#### Returns
A TABLE containing the following properties
Key | Type | Description
--- | ---- | -----------
denom_id | Text | The ID of the denominator
denom_name | Text | A human readable name for the denominator
denom_description | Text | Description of the denominator. Is sometimes NULL
denom_weight | Numeric | Numeric "weight" of the denominator. Ignored.
denom_license | Text | ID of the license for the denominator
denom_source | Text | ID of the source for the denominator
denom_type | Text | Postgres type of the denominator
denom_aggregate | Text | Aggregate type of the denominator. If `'SUM'`, this can be normalized by area
denom_extra | JSONB | Extra information about the denominator column. Ignored.
denom_tags | Text[] | Array of all tags applying to this denominator
valid_numer | Boolean | True if the `numer_id` argument is a valid numerator for this denominator, False otherwise
valid_geom | Boolean | True if the `geom_id` argument is a valid geometry for this denominator, False otherwise
valid_timespan | Boolean | True if the `timespan` argument is a valid timespan for this denominator, False otherwise
#### Examples
Obtain all denominators that are available within a small rectangle.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326));
```
Obtain all denominators that are available within a small rectangle and are for
the United States only.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), '{section/tags.united_states}');
```
Obtain all denominators for male population (`us.census.acs.B01001002`).
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, 'us.census.acs.B01001002')
WHERE valid_numer IS True;
```
Obtain all denominators that work with US states (`us.census.tiger.state`)
as a geometry.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, NULL, 'us.census.tiger.state')
WHERE valid_geom IS True;
```
Obtain all denominators available in the timespan `2011 - 2015`.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, NULL, NULL, '2011 - 2015')
WHERE valid_timespan IS True;
```
## OBS_GetAvailableGeometries(bounds, filter_tags, numer_id, denom_id, timespan)
Return available geometries within a boundary and with the specified
`filter_tags`.
#### Arguments
Name | Type | Description
--- | --- | ---
bounds | Geometry(Geometry, 4326) | a geometry which must intersect the geometry
filter_tags | Text[] | a list of filters. Only geometries for which all of these apply are returned `NULL` to ignore (optional)
numer_id | Text | the ID of a numerator to check whether the geometry is valid against. Will not reduce length of returned table, but will change values for `valid_numer` (optional)
denom_id | Text | the ID of a denominator to check whether the geometry is valid against. Will not reduce length of returned table, but will change values for `valid_denom` (optional)
timespan | Text | the ID of a timespan to check whether the geometry is valid against. Will not reduce length of returned table, but will change values for `valid_timespan` (optional)
#### Returns
A TABLE containing the following properties
Key | Type | Description
--- | ---- | -----------
geom_id | Text | The ID of the geometry
geom_name | Text | A human readable name for the geometry
geom_description | Text | Description of the geometry. Is sometimes NULL
geom_weight | Numeric | Numeric "weight" of the geometry. Ignored.
geom_aggregate | Text | Aggregate type of the geometry. Ignored.
geom_license | Text | ID of the license for the geometry
geom_source | Text | ID of the source for the geometry
geom_type | Text | Postgres type of the geometry
geom_extra | JSONB | Extra information about the geometry column. Ignored.
geom_tags | Text[] | Array of all tags applying to this geometry
valid_numer | Boolean | True if the `numer_id` argument is a valid numerator for this geometry, False otherwise
valid_denom | Boolean | True if the `geom_id` argument is a valid geometry for this geometry, False otherwise
valid_timespan | Boolean | True if the `timespan` argument is a valid timespan for this geometry, False otherwise
score | Numeric | Score between 0 and 100 for this geometry, higher numbers mean that this geometry is a better choice for the passed extent
numtiles | Numeric | How many raster tiles were read for score, numgeoms, and percentfill estimates
numgeoms | Numeric | About how many of these geometries fit inside the passed extent
percentfill | Numeric | About what percentage of the passed extent is filled with these geometries
estnumgeoms | Numeric | Ignored
meanmediansize | Numeric | Ignored
#### Examples
Obtain all geometries that are available within a small rectangle.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_MakeEnvelope(-74, 41, -73, 40, 4326));
```
Obtain all geometries that are available within a small rectangle and are for
the United States only.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), '{section/tags.united_states}');
```
Obtain all geometries that work with total population (`us.census.acs.B01003001`).
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, 'us.census.acs.B01003001')
WHERE valid_numer IS True;
```
Obtain all geometries with timespan `2015`.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, NULL, NULL, '2015')
WHERE valid_timespan IS True;
```
## OBS_GetAvailableTimespans(bounds, filter_tags, numer_id, denom_id, geom_id)
Return available timespans within a boundary and with the specified
`filter_tags`.
#### Arguments
Name | Type | Description
--- | --- | ---
bounds | Geometry(Geometry, 4326) | a geometry which some of the timespan's data must intersect with
filter_tags | Text[] | a list of filters. Ignore
numer_id | Text | the ID of a numerator to check whether the timespans is valid against. Will not reduce length of returned table, but will change values for `valid_numer` (optional)
denom_id | Text | the ID of a denominator to check whether the timespans is valid against. Will not reduce length of returned table, but will change values for `valid_denom` (optional)
geom_id | Text | the ID of a geometry to check whether the timespans is valid against. Will not reduce length of returned table, but will change values for `valid_geom` (optional)
#### Returns
A TABLE containing the following properties
Key | Type | Description
--- | ---- | -----------
timespan_id | Text | The ID of the timespan
timespan_name | Text | A human readable name for the timespan
timespan_description | Text | Ignored
timespan_weight | Numeric | Ignored
timespan_license | Text | Ignored
timespan_source | Text | Ignored
timespan_aggregate | Text | Ignored
valid_numer | Boolean | True if the `numer_id` argument is a valid numerator for this timespan, False otherwise
valid_denom | Boolean | True if the `timespan` argument is a valid timespan for this timespan, False otherwise
valid_geom | Boolean | True if the `geom_id` argument is a valid geometry for this timespan, False otherwise
#### Examples
Obtain all timespans that are available within a small rectangle.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_MakeEnvelope(-74, 41, -73, 40, 4326));
```
Obtain all timespans for total population (`us.census.acs.B01003001`).
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, 'us.census.acs.B01003001')
WHERE valid_numer IS True;
```
Obtain all timespans that work with US states (`us.census.tiger.state`)
as a geometry.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, NULL, NULL, 'us.census.tiger.state')
WHERE valid_geom IS True;
```

View File

@@ -1,126 +0,0 @@
# Glossary
A list of boundary ids and measure_names for Data Observatory functions. For US based boundaries, the Shoreline Clipped version provides a high-quality shoreline clipping for mapping uses.
## Boundary IDs
Boundary name | Boundary ID | Shoreline Clipped Boundary ID
--------------------- | --------------------- | ---
US States | us.census.tiger.state | us.census.tiger.state_clipped
US County | us.census.tiger.county | us.census.tiger.county_clipped
US Census Zip Code Tabulation Areas | us.census.tiger.zcta5 | us.census.tiger.zcta5_clipped
US Census Tracts | us.census.tiger.census_tract | us.census.tiger.census_tract_clipped
US Elementary School District | us.census.tiger.school_district_elementary | us.census.tiger.school_district_elementary_clipped
US Secondary School District | us.census.tiger.school_district_secondary | us.census.tiger.school_district_secondary_clipped
US Unified School District | us.census.tiger.school_district_unified | us.census.tiger.school_district_unified_clipped
US Congressional Districts | us.census.tiger.congressional_district | us.census.tiger.congressional_district_clipped
US Census Blocks | us.census.tiger.block | us.census.tiger.block_clipped
US Census Block Groups | us.census.tiger.block_group | us.census.tiger.block_group_clipped
US Census PUMAs | us.census.tiger.puma | us.census.tiger.puma_clipped
US Incorporated Places | us.census.tiger.place | us.census.tiger.place_clipped
ES Sección Censal | es.ine.geom | none
Regions (First-level Administrative) | whosonfirst.wof_region_geom | none
Continents | whosonfirst.wof_continent_geom | none
Countries | whosonfirst.wof_country_geom | none
Marine Areas | whosonfirst.wof_marinearea_geom | none
Disputed Areas | whosonfirst.wof_disputed_geom | none
## OBS_GetUSCensusMeasure Names Table
This list contains human readable names accepted in the ```OBS_GetUSCensusMeasure``` function. For the more comprehensive list of columns available to the ```OBS_GetMeasure``` function, see the [Data Observatory Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf).
Measure name | Measure description
------------------------ | --------------------
Male Population | The number of people within each geography who are male.
Female Population | The number of people within each geography who are female.
Median Age | The median age of all people in a given geographic area.
Total Population | The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates.
Population not Hispanic | The number of people not identifying as Hispanic or Latino in each geography.
White Population | The number of people identifying as white, non-Hispanic in each geography.
Black or African American Population | The number of people identifying as black or African American, non-Hispanic in each geography.
American Indian and Alaska Native Population | The number of people identifying as American Indian or Alaska native in each geography.
Asian Population | The number of people identifying as Asian, non-Hispanic in each geography.
Other Race population | The number of people identifying as another race in each geography.
Two or more races population | The number of people identifying as two or more races in each geography.
Hispanic Population | The number of people identifying as Hispanic or Latino in each geography.
Not a U.S. Citizen Population | The number of people within each geography who indicated that they are not U.S. citizens.
Workers over the Age of 16 | The number of people in each geography who work. Workers include those employed at private for-profit companies, the self-employed, government workers and non-profit employees.
Commuters by Car, Truck, or Van | The number of workers age 16 years and over within a geographic area who primarily traveled to work by car, truck or van. This is the principal mode of travel or type of conveyance, by distance rather than time, that the worker usually used to get from home to work.
Commuters who drove alone | The number of workers age 16 years and over within a geographic area who primarily traveled by car driving alone. This is the principal mode of travel or type of conveyance, by distance rather than time, that the worker usually used to get from home to work.
Commuters by Carpool | The number of workers age 16 years and over within a geographic area who primarily traveled to work by carpool. This is the principal mode of travel or type of conveyance, by distance rather than time, that the worker usually used to get from home to work.
Commuters by Bus | The number of workers age 16 years and over within a geographic area who primarily traveled to work by bus. This is the principal mode of travel or type of conveyance, by distance rather than time, that the worker usually used to get from home to work. This is a subset of workers who commuted by public transport.
Commuters by Subway or Elevated | The number of workers age 16 years and over within a geographic area who primarily traveled to work by subway or elevated train. This is the principal mode of travel or type of conveyance, by distance rather than time, that the worker usually used to get from home to work. This is a subset of workers who commuted by public transport.
Walked to Work | The number of workers age 16 years and over within a geographic area who primarily walked to work. This would mean that of any way of getting to work, they travelled the most distance walking.
Worked at Home | The count within a geographical area of workers over the age of 16 who worked at home.
Workers age 16 and over who do not work from home | The number of workers over the age of 16 who do not work from home in a geographic area.
Number of workers with less than 10 minute commute | The number of workers over the age of 16 who do not work from home and commute in less than 10 minutes in a geographic area.
Number of workers with a commute between 35 and 44 minutes | The number of workers over the age of 16 who do not work from home and commute in between 35 and 44 minutes in a geographic area.
Number of workers with a commute of over 60 minutes | The number of workers over the age of 16 who do not work from home and commute in over 60 minutes in a geographic area.
Aggregate travel time to work | The total number of minutes every worker over the age of 16 who did not work from home spent spent commuting to work in one day in a geographic area.
Commuters by Public Transportation | The number of workers age 16 years and over within a geographic area who primarily traveled to work by public transportation. This is the principal mode of travel or type of conveyance, by distance rather than time, that the worker usually used to get from home to work.
Number of workers with a commute between 10 and 14 minutes | The number of workers over the age of 16 who do not work from home and commute in between 10 and 14 minutes in a geographic area.
Number of workers with a commute between 15 and 19 minutes | The number of workers over the age of 16 who do not work from home and commute in between 15 and 19 minutes in a geographic area.
Number of workers with a commute between 20 and 24 minutes | The number of workers over the age of 16 who do not work from home and commute in between 20 and 24 minutes in a geographic area.
Number of workers with a commute between 25 and 29 minutes | The number of workers over the age of 16 who do not work from home and commute in between 25 and 29 minutes in a geographic area.
Number of workers with a commute between 30 and 34 minutes | The number of workers over the age of 16 who do not work from home and commute in between 30 and 34 minutes in a geographic area.
Number of workers with a commute between 45 and 59 minutes | The number of workers over the age of 16 who do not work from home and commute in between 45 and 59 minutes in a geographic area.
Children under 18 Years of Age | The number of people within each geography who are under 18 years of age.
Households | A count of the number of households in each geography. A household consists of one or more people who live in the same dwelling and also share at meals or living accommodation, and may consist of a single family or some other grouping of people.
Population 15 Years and Over | The number of people in a geographic area who are over the age of 15. This is used mostly as a denominator of marital status.
Never Married | The number of people in a geographic area who have never been married.
Currently married | The number of people in a geographic area who are currently married.
Married but separated | The number of people in a geographic area who are married but separated.
Widowed | The number of people in a geographic area who are widowed.
Divorced | The number of people in a geographic area who are divorced.
Population 3 Years and Over | The total number of people in each geography age 3 years and over. This denominator is mostly used to calculate rates of school enrollment.
Students Enrolled in School | The total number of people in each geography currently enrolled at any level of school, from nursery or pre-school to advanced post-graduate education. Only includes those over the age of 3.
Students Enrolled in Grades 1 to 4 | The total number of people in each geography currently enrolled in grades 1 through 4 inclusive. This corresponds roughly to elementary school.
Students Enrolled in Grades 5 to 8 | The total number of people in each geography currently enrolled in grades 5 through 8 inclusive. This corresponds roughly to middle school.
Students Enrolled in Grades 9 to 12 | The total number of people in each geography currently enrolled in grades 9 through 12 inclusive. This corresponds roughly to high school.
Students Enrolled as Undergraduate in College | The number of people in a geographic area who are enrolled in college at the undergraduate level. Enrollment refers to being registered or listed as a student in an educational program leading to a college degree. This may be a public school or college, a private school or college.
Population 25 Years and Over | The number of people in a geographic area who are over the age of 25. This is used mostly as a denominator of educational attainment.
Population Completed High School | The number of people in a geographic area over the age of 25 who completed high school, and did not complete a more advanced degree.
Population completed less than one year of college, no degree | The number of people in a geographic area over the age of 25 who attended college for less than one year and no further.
Population completed more than one year of college, no degree | The number of people in a geographic area over the age of 25 who attended college for more than one year but did not obtain a degree.
Population Completed Associate's Degree | The number of people in a geographic area over the age of 25 who obtained a associate's degree, and did not complete a more advanced degree.
Population Completed Bachelor's Degree | The number of people in a geographic area over the age of 25 who obtained a bachelor's degree, and did not complete a more advanced degree.
Population Completed Master's Degree | The number of people in a geographic area over the age of 25 who obtained a master's degree, but did not complete a more advanced degree.
Population 5 Years and Over | The number of people in a geographic area who are over the age of 5. This is primarily used as a denominator of measures of language spoken at home.
Speaks only English at Home | The number of people in a geographic area over age 5 who speak only English at home.
Speaks Spanish at Home | The number of people in a geographic area over age 5 who speak Spanish at home, possibly in addition to other languages.
Population for Whom Poverty Status Determined | The number of people in each geography who could be identified as either living in poverty or not. This should be used as the denominator when calculating poverty rates, as it excludes people for whom it was not possible to determine poverty.
Income In The Past 12 Months Below Poverty Level | The number of people in a geographic area who are part of a family (which could be just them as an individual) determined to be in poverty following the Office of Management and Budget's Directive 14. (https://www.census.gov/hhes/povmeas/methodology/ombdir14.html)
Households with income less than $10,000 | The number of households in a geographic area whose annual income was less than $10,000.
Households with income of $10,000 to $14,999 | The number of households in a geographic area whose annual income was between $10,000 and $14,999.
Households with income of $15,000 to $19,999 | The number of households in a geographic area whose annual income was between $15,000 and $19,999.
Households with income of $20,000 To $24,999 | The number of households in a geographic area whose annual income was between $20,000 and $24,999.
Households with income of $25,000 To $29,999 | The number of households in a geographic area whose annual income was between $20,000 and $24,999.
Households with income of $30,000 To $34,999 | The number of households in a geographic area whose annual income was between $30,000 and $34,999.
Households with income of $35,000 To $39,999 | The number of households in a geographic area whose annual income was between $35,000 and $39,999.
Households with income of $40,000 To $44,999 | The number of households in a geographic area whose annual income was between $40,000 and $44,999.
Households with income of $45,000 To $49,999 | The number of households in a geographic area whose annual income was between $45,000 and $49,999.
Households with income of $50,000 To $59,999 | The number of households in a geographic area whose annual income was between $50,000 and $59,999.
Households with income of $60,000 To $74,999 | The number of households in a geographic area whose annual income was between $60,000 and $74,999.
Households with income of $75,000 To $99,999 | The number of households in a geographic area whose annual income was between $75,000 and $99,999.
Households with income of $100,000 To $124,999 | The number of households in a geographic area whose annual income was between $100,000 and $124,999.
Households with income of $125,000 To $149,999 | The number of households in a geographic area whose annual income was between $125,000 and $149,999.
Households with income of $150,000 To $199,999 | The number of households in a geographic area whose annual income was between $150,000 and $1999,999.
Households with income of $200,000 Or More | The number of households in a geographic area whose annual income was more than $200,000.
Median Household Income in the past 12 Months | Within a geographic area, the median income received by every household on a regular basis before payments for personal income taxes, social security, union dues, medicare deductions, etc. It includes income received from wages, salary, commissions, bonuses, and tips; self-employment income from own nonfarm or farm businesses, including proprietorships and partnerships; interest, dividends, net rental income, royalty income, or income from estates and trusts; Social Security or Railroad Retirement income; Supplemental Security Income (SSI); any cash public assistance or welfare payments from the state or local welfare office; retirement, survivor, or disability benefits; and any other sources of income received regularly such as Veterans' (VA) payments, unemployment and/or worker's compensation, child support, and alimony.
Population age 16 and over | The number of people in each geography who are age 16 or over.
Population in Labor Force | The number of people in each geography who are either in the civilian labor force or are members of the U.S. Armed Forces (people on active duty with the United States Army, Air Force, Navy, Marine Corps, or Coast Guard).
Population in Civilian Labor Force | The number of civilians 16 years and over in each geography who can be classified as either employed or unemployed below.
Employed Population | The number of civilians 16 years old and over in each geography who either (1) were at work, that is, those who did any work at all during the reference week as paid employees, worked in their own business or profession, worked on their own farm, or worked 15 hours or more as unpaid workers on a family farm or in a family business; or (2) were with a job but not at work, that is, those who did not work during the reference week but had jobs or businesses from which they were temporarily absent due to illness, bad weather, industrial dispute, vacation, or other personal reasons. Excluded from the employed are people whose only activity consisted of work around the house or unpaid volunteer work for religious, charitable, and similar organizations; also excluded are all institutionalized people and people on active duty in the United States Armed Forces.
Unemployed Population | The number of civilians in each geography who are 16 years old and over and are classified as unemployed.
Population in Armed Forces | The number of people in each geography who are members of the U.S. Armed Forces (people on active duty with the United States Army, Air Force, Navy, Marine Corps, or Coast Guard).
Population Not in Labor Force | The number of people in each geography who are 16 years old and over who are not classified as members of the labor force. This category consists mainly of students, homemakers, retired workers, seasonal workers interviewed in an off season who were not looking for work, institutionalized people, and people doing only incidental unpaid family work.
Housing Units | A count of housing units in each geography. A housing unit is a house, an apartment, a mobile home or trailer, a group of rooms, or a single room occupied as separate living quarters, or if vacant, intended for occupancy as separate living quarters.
Vacant Housing Units | The count of vacant housing units in a geographic area. A housing unit is vacant if no one is living in it at the time of enumeration, unless its occupants are only temporarily absent. Units temporarily occupied at the time of enumeration entirely by people who have a usual residence elsewhere are also classified as vacant.
Vacant Housing Units for Rent | The count of vacant housing units in a geographic area that are for rent. A housing unit is vacant if no one is living in it at the time of enumeration, unless its occupants are only temporarily absent. Units temporarily occupied at the time of enumeration entirely by people who have a usual residence elsewhere are also classified as vacant.
Vacant Housing Units for Sale | The count of vacant housing units in a geographic area that are for sale. A housing unit is vacant if no one is living in it at the time of enumeration, unless its occupants are only temporarily absent. Units temporarily occupied at the time of enumeration entirely by people who have a usual residence elsewhere are also classified as vacant.
Median Rent | The median contract rent within a geographic area. The contract rent is the monthly rent agreed to or contracted for, regardless of any furnishings, utilities, fees, meals, or services that may be included. For vacant units, it is the monthly rent asked for the rental unit at the time of interview.
Percent of Household Income Spent on Rent | Within a geographic area, the median percentage of household income which was spent on gross rent. Gross rent is the amount of the contract rent plus the estimated average monthly cost of utilities (electricity, gas, water, sewer etc.) and fuels (oil, coal, wood, etc.) if these are paid by the renter. Household income is the sum of the income of all people 15 years and older living in the household.
Owner-occupied Housing Units valued at $1,000,000 or more. | The count of owner occupied housing units in a geographic area that are valued at $1,000,000 or more. Value is the respondent's estimate of how much the property (house and lot, mobile home and lot, or condominium unit) would sell for if it were for sale.
Owner-occupied Housing Units with a Mortgage | The count of housing units within a geographic area that are mortagaged. Mortgage refers to all forms of debt where the property is pledged as security for repayment of the debt, including deeds of trust, trust deed, contracts to purchase, land contracts, junior mortgages, and home equity loans.

View File

@@ -1,20 +0,0 @@
# License
The Data Observatory is a collection of data sources with varying licenses and terms of use. We have endeavored to find you data that will work for the broadest set of use-cases. The following third-party data sources are used in the Data Observatory, and we have included the links to the terms governing their use.
_**Legal Note**: The Data Observatory makes use of a variety of third party data and databases (collectively, the “Data”). You acknowledge that the included Data, and the licenses and terms of use, may be amended from time to time. Whenever you use the Data, you agree to the current relevant terms or license. Some Data will require that you provide attribution to the data source. Other Data may be protected by US or international copyright laws, treaties, or conventions. The Data and associated metadata are provided 'as-is', without express or implied warranty of any kind, including, but not limited to, infringement, merchantability and fitness for a particular purpose. CartoDB is not responsible for the accuracy, completeness, timeliness or quality of the Data._
Name | Terms link
-------|---------
ACS | [https://www.usa.gov/government-works](https://www.usa.gov/government-works)
TIGER | [https://www.usa.gov/government-works](https://www.usa.gov/government-works)
Zillow Home Value Index | This data is "Aggregate Data", per the Zillow Terms of Use<br /><br />[http://www.zillow.com/corp/Terms.htm](http://www.zillow.com/corp/Terms.htm)
Who's on First | [http://whosonfirst.mapzen.com#License](http://whosonfirst.mapzen.com#License)
GeoNames | [http://www.geonames.org/](http://www.geonames.org/)
GeoPlanet | [https://developer.yahoo.com/geo/geoplanet/](https://developer.yahoo.com/geo/geoplanet/)
Natural Earth | [http://www.naturalearthdata.com/about/terms-of-use/](http://www.naturalearthdata.com/about/terms-of-use/)
Quattroshapes | [https://github.com/foursquare/quattroshapes/blob/master/LICENSE.md](https://github.com/foursquare/quattroshapes/blob/master/LICENSE.md)
Zetashapes | [http://zetashapes.com/license](http://zetashapes.com/license)
Spielman & Singleton | [https://www.openicpsr.org/repoEntity/show/41329](https://www.openicpsr.org/repoEntity/show/41329)
El Instituto Nacional de Estadística (INE) | The National Statistics Institute (INE) of Spain includes data from multiple sources. If you are re-using their data, they explicitly require that you reference them accordingly<br /><br />[http://www.ine.es/ss/Satellite?L=0&c=Page&cid=1254735849170&p=1254735849170&pagename=Ayuda%2FINELayout](http://www.ine.es/ss/Satellite?L=0&c=Page&cid=1254735849170&p=1254735849170&pagename=Ayuda%2FINELayout)

View File

@@ -1,22 +1,22 @@
# Measures Functions
[Data Observatory Measures](/cartodb-platform/data/overview/#measures-methods) are the numerical location data you can access. The measure functions allow you to access individual measures to augment your own data or integrate in your analysis workflows. Measures are used by sending an identifier or a geometry (point or polygon) and receiving back a measure (an absolute value) for that location.
[Data Observatory Measures](https://carto.com/docs/carto-engine/data/overview/#measures-methods) are the numerical location data you can access. The measure functions allow you to access individual measures to augment your own data or integrate in your analysis workflows. Measures are used by sending an identifier or a geometry (point or polygon) and receiving back a measure (an absolute value) for that location.
There are hundreds of measures and the list is growing with each release. You can currently discover and learn about measures contained in the Data Observatory by downloading our [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf).
There are hundreds of measures and the list is growing with each release. You can currently discover and learn about measures contained in the Data Observatory by downloading our [Data Catalog](https://cartodb.github.io/bigmetadata/index.html).
You can [access](/cartodb-platform/data/accessing/#accessing-the-data-observatory) measures through the CartoDB Editor. The same methods will work if you are using the CartoDB Platform to develop your application. We [encourage you](/cartodb-platform/data/accessing/#best-practices) to use table modifying methods (UPDATE and INSERT) over dynamic methods (SELECT).
You can [access](https://carto.com/docs/carto-engine/data/accessing) measures through CARTO Builder. The same methods will work if you are using the CARTO Engine to develop your application. We [encourage you](https://carto.com/docs/carto-engine/data/accessing/#best-practices) to use table modifying methods (UPDATE and INSERT) over dynamic methods (SELECT).
## OBS_GetUSCensusMeasure(point geometry, measure_name text)
The ```OBS_GetUSCensusMeasure(point, measure_name)``` function returns a measure based on a subset of the US Census variables at a point location. The ```OBS_GetUSCensusMeasure``` function is limited to only a subset of all measures that are available in the Data Observatory, to access the full list, use measure IDs with the ```OBS_GetMeasure``` function below.
The ```OBS_GetUSCensusMeasure(point, measure_name)``` function returns a measure based on a subset of the US Census variables at a point location. The ```OBS_GetUSCensusMeasure``` function is limited to only a subset of all measures that are available in the Data Observatory. To access the full list, use measure IDs with the ```OBS_GetMeasure``` function below.
#### Arguments
Name |Description
--- | ---
point | a WGS84 point geometry (the_geom)
measure_name | a human readable name of a US Census variable. The list of measure_names is [available in the glossary](/cartodb-platform/data/glossary/#obsgetuscensusmeasure-names-table).
normalize | for measures that are are **sums** (e.g. population) the default normalization is 'area' and response comes back as a rate per square kilometer. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf) (optional)
measure_name | a human-readable name of a US Census variable. The list of measure_names is [available in the Glossary](https://carto.com/docs/carto-engine/data/glossary/#obsgetuscensusmeasure-names-table).
normalize | for measures that are **sums** (e.g. population) the default normalization is 'area' and response comes back as a rate per square kilometer. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](https://cartodb.github.io/bigmetadata/index.html) (optional)
boundary_id | source of geometries to pull measure from (e.g., 'us.census.tiger.census_tract')
time_span | time span of interest (e.g., 2010 - 2014)
@@ -39,15 +39,15 @@ SET total_population = OBS_GetUSCensusMeasure(the_geom, 'Total Population')
## OBS_GetUSCensusMeasure(polygon geometry, measure_name text)
The ```OBS_GetUSCensusMeasure(point, measure_name)``` function returns a measure based on a subset of the US Census variables within a given polygon. The ```OBS_GetUSCensusMeasure``` function is limited to only a subset of all measures that are available in the Data Observatory, to access the full list, use the ```OBS_GetUSCensusMeasure``` function below.
The ```OBS_GetUSCensusMeasure(polygon, measure_name)``` function returns a measure based on a subset of the US Census variables within a given polygon. The ```OBS_GetUSCensusMeasure``` function is limited to only a subset of all measures that are available in the Data Observatory. To access the full list, use the ```OBS_GetMeasure``` function below.
#### Arguments
Name |Description
--- | ---
polygon | a WGS84 polygon geometry (the_geom)
measure_name | a human readable string name of a US Census variable. The list of measure_names is [available in the glossary](/cartodb-platform/data/glossary/#obsgetuscensusmeasure-names-table).
normalize | for measures that are **sums** (e.g. population) the default normalization is 'none' and response comes back as a raw value. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf) (optional)
measure_name | a human readable string name of a US Census variable. The list of measure_names is [available in the Glossary](https://carto.com/docs/carto-engine/data/glossary/#obsgetuscensusmeasure-names-table).
normalize | for measures that are **sums** (e.g. population) the default normalization is 'none' and response comes back as a raw value. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](https://cartodb.github.io/bigmetadata/index.html) (optional)
boundary_id | source of geometries to pull measure from (e.g., 'us.census.tiger.census_tract')
time_span | time span of interest (e.g., 2010 - 2014)
@@ -70,7 +70,7 @@ SET local_male_population = OBS_GetUSCensusMeasure(the_geom, 'Male Population')
## OBS_GetMeasure(point geometry, measure_id text)
The ```OBS_GetMeasure(point, measure_id)``` function returns any Data Observatory measure at a point location. You can browse all available Measures in the [Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf).
The ```OBS_GetMeasure(point, measure_id)``` function returns any Data Observatory measure at a point location. You can browse all available Measures in the [Catalog](https://cartodb.github.io/bigmetadata/index.html).
#### Arguments
@@ -78,7 +78,7 @@ Name |Description
--- | ---
point | a WGS84 point geometry (the_geom)
measure_id | a measure identifier from the Data Observatory ([see available measures](https://cartodb.github.io/bigmetadata/observatory.pdf)). It is important to note that these are different than 'measure_name' used in the Census based functions above.
normalize | for measures that are are **sums** (e.g. population) the default normalization is 'area' and response comes back as a rate per square kilometer. The other option is 'denominator', which will use the denominator specified in the [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf). (optional)
normalize | for measures that are **sums** (e.g. population) the default normalization is 'area' and response comes back as a rate per square kilometer. The other option is 'denominator', which will use the denominator specified in the [Data Catalog](https://cartodb.github.io/bigmetadata/index.html). (optional)
boundary_id | source of geometries to pull measure from (e.g., 'us.census.tiger.census_tract')
time_span | time span of interest (e.g., 2010 - 2014)
@@ -109,7 +109,7 @@ Name |Description
--- | ---
polygon_geometry | a WGS84 polygon geometry (the_geom)
measure_id | a measure identifier from the Data Observatory ([see available measures](https://cartodb.github.io/bigmetadata/observatory.pdf))
normalize | for measures that are are **sums** (e.g. population) the default normalization is 'none' and response comes back as a raw value. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf) (optional)
normalize | for measures that are **sums** (e.g. population) the default normalization is 'none' and response comes back as a raw value. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](https://cartodb.github.io/bigmetadata/index.html) (optional)
boundary_id | source of geometries to pull measure from (e.g., 'us.census.tiger.census_tract')
time_span | time span of interest (e.g., 2010 - 2014)
@@ -132,7 +132,7 @@ SET household_count = OBS_GetMeasure(the_geom, 'us.census.acs.B11001001')
#### Errors
* If an unrecognized normalization type is input, raise an error: `'Only valid inputs for "normalize" are "area" (default) and "denominator".`
* If an unrecognized normalization type is input, raises error: `'Only valid inputs for "normalize" are "area" (default) and "denominator".`
## OBS_GetMeasureById(geom_ref text, measure_id text, boundary_id text)
@@ -170,7 +170,7 @@ SET household_count = OBS_GetMeasureById(geoid_column, 'us.census.acs.B11001001'
## OBS_GetCategory(point geometry, category_id text)
The ```OBS_GetCategory(point, category_id)``` function returns any Data Observatory Category value at a point location. The Categories available are currently limited to Segmentation categories. See the Segmentation section of the [Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf) for more detail.
The ```OBS_GetCategory(point, category_id)``` function returns any Data Observatory Category value at a point location. The Categories available are currently limited to Segmentation categories. See the Segmentation section of the [Catalog](https://cartodb.github.io/bigmetadata/index.html) for more detail.
#### Arguments
@@ -195,3 +195,285 @@ Add the Category to an empty column text column based on point locations in your
UPDATE tablename
SET segmentation = OBS_GetCategory(the_geom, 'us.census.spielman_singleton_segments.X55')
```
## OBS_GetMeta(extent geometry, metadata json, max_timespan_rank, max_boundary_score_rank, num_target_geoms)
The ```OBS_GetMeta(extent, metadata)``` function returns a completed Data
Observatory metadata JSON Object for use in ```OBS_GetData(geomvals,
metadata)``` or ```OBS_GetData(ids, metadata)```. It is not possible to pass
metadata to those functions if it is not processed by ```OBS_GetMeta(extent,
metadata)``` first.
`OBS_GetMeta` makes it possible to automatically select appropriate timespans
and boundaries for the measurement you want.
#### Arguments
Name | Description
---- | -----------
extent | A geometry of the extent of the input geometries
metadata | A JSON array composed of metadata input objects. Each indicates one desired measure for an output column, and optionally additional parameters about that column
max_timespan_rank | How many historical time periods to include. Defaults to 1
max_boundary_score_rank | How many alternative boundary levels to include. Defaults to 1
num_target_geoms | Target number of geometries. Boundaries with close to this many objects within `extent` will be ranked highest.
The schema of the metadata input objects are as follows:
Metadata Input Key | Description
--- | -----------
numer_id | The identifier for the desired measurement. If left blank, but a `geom_id` is specified, the column will return a geometry instead of a measurement.
geom_id | Identifier for a desired geographic boundary level to use when calculating measures. Will be automatically assigned if undefined. If defined but `numer_id` is blank, then the column will return a geometry instead of a measurement.
normalization | The desired normalization. One of 'area', 'prenormalized', or 'denominated'. 'Area' will normalize the measure per square kilometer, 'prenormalized' will return the original value, and 'denominated' will normalize by a denominator. Ignored if this metadata object specifies a geometry.
denom_id | Identifier for a desired normalization column in case `normalization` is 'denominated'. Will be automatically assigned if necessary. Ignored if this metadata object specifies a geometry.
numer_timespan | The desired timespan for the measurement. Defaults to most recent timespan available if left unspecified.
geom_timespan | The desired timespan for the geometry. Defaults to timespan matching numer_timespan if left unspecified.
#### Returns
A JSON array composed of metadata output objects.
Key | Description
--- | -----------
meta | A JSON array with completed metadata for the requested data, including all keys below
The schema of the metadata output objects are as follows. You should pass this
array as-is to ```OBS_GetData```. If you modify any values the function will
fail.
Metadata Output Key | Description
--- | -----------
numer_id | Identifier for desired measurement
numer_timespan | Timespan that will be used of the desired measurement
numer_name | Human-readable name of desired measure
numer_type | PostgreSQL/PostGIS type of desired measure
numer_colname | Internal identifier for column name
numer_tablename | Internal identifier for table
numer_geomref_colname | Internal identifier for geomref column name
denom_id | Identifier for desired normalization
denom_timespan | Timespan that will be used of the desired normalization
denom_name | Human-readable name of desired measure's normalization
denom_type | PostgreSQL/PostGIS type of desired measure's normalization
denom_colname | Internal identifier for normalization column name
denom_tablename | Internal identifier for normalization table
denom_geomref_colname | Internal identifier for normalization geomref column name
geom_id | Identifier for desired boundary geometry
geom_timespan | Timespan that will be used of the desired boundary geometry
geom_name | Human-readable name of desired boundary geometry
geom_type | PostgreSQL/PostGIS type of desired boundary geometry
geom_colname | Internal identifier for boundary geometry column name
geom_tablename | Internal identifier for boundary geometry table
geom_geomref_colname | Internal identifier for boundary geometry ref column name
timespan_rank | Ranking of this measurement by time, most recent is 1, second most recent 2, etc.
score | The score of this measurement's boundary compared to the `extent` and `num_target_geoms` passed in. Between 0 and 100.
score_rank | The ranking of this measurement's boundary, highest ranked is 1, second is 2, etc.
numer_aggregate | The aggregate type of the numerator, either `sum`, `average`, `median`, or blank
denom_aggregate | The aggregate type of the denominator, either `sum`, `average`, `median`, or blank
normalization | The sort of normalization that will be used for this measure, either `area`, `predenominated`, or `denominated`
#### Examples
Obtain metadata that can augment with one additional column of US population
data, using a boundary relevant for the geometry provided and latest timespan.
Limit to only the most recent column most relevant to the extent & density of
input geometries in `tablename`.
```SQL
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom), 4326),
'[{"numer_id": "us.census.acs.B01003001"}]',
1, 1,
COUNT(*)
) FROM tablename
```
Obtain metadata that can augment with one additional column of US population
data, using census tract boundaries.
```SQL
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom), 4326),
'[{"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.census_tract"}]',
1, 1,
COUNT(*)
) FROM tablename
```
Obtain metadata that can augment with two additional columns, one for total
population and one for male population.
```SQL
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom), 4326),
'[{"numer_id": "us.census.acs.B01003001"}, {"numer_id": "us.census.acs.B01001002"}]',
1, 1,
COUNT(*)
) FROM tablename
```
## OBS_GetData(geomvals array[geomval], metadata json)
The ```OBS_GetData(geomvals, metadata)``` function returns a measure and/or
geometry corresponding to the `metadata` JSON array for each every Geometry of
the `geomval` element in the `geomvals` array. The metadata argument must be
obtained from ```OBS_GetMeta(extent, metadata)```.
#### Arguments
Name | Description
---- | -----------
geomvals | An array of `geomval` elements, which are obtained by casting together a `Geometry` and a `Numeric`. This should be obtained by using `ARRAY_AGG((the_geom, cartodb_id)::geomval)` from the CARTO table one wishes to obtain data for.
metadata | A JSON array composed of metadata output objects from ```OBS_GetMeta(extent, metadata)```. The schema of the elements of the `metadata` JSON array corresponds to that of the output of ```OBS_GetMeta(extent, metadata)```, and this argument must be obtained from that function in order for the call to be valid.
#### Returns
A TABLE with the following schema, where each element of the input `geomvals`
array corresponds to one row:
Column | Type | Description
------ | ---- | -----------
id | Numeric | ID corresponding to the `val` component of an element of the input `geomvals` array
data | JSON | A JSON array with elements corresponding to the input `metadata` JSON array
Each `data` object has the following keys:
Key | Description
--- | -----------
value | The value of the measurement or geometry for the geometry corresponding to this row and measurement corresponding to this position in the `metadata` JSON array
To determine the appropriate cast for `value`, one can use the `numer_type`
or `geom_type` key corresponding to that value in the input `metadata` JSON
array.
#### Examples
Obtain population densities for every geometry in a table, keyed by cartodb_id:
```SQL
WITH meta AS (
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom), 4326),
'[{"numer_id": "us.census.acs.B01003001"}]',
1, 1, COUNT(*)
) meta FROM tablename)
SELECT id AS cartodb_id, (data->0->>'value')::Numeric AS pop_density
FROM OBS_GetData((SELECT ARRAY_AGG((the_geom, cartodb_id)::geomval) FROM tablename),
(SELECT meta FROM meta))
```
Update a table with a blank numeric column called `pop_density` with population
densities:
```SQL
WITH meta AS (
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom), 4326),
'[{"numer_id": "us.census.acs.B01003001"}]',
1, 1, COUNT(*)
) meta FROM tablename),
data AS (
SELECT id AS cartodb_id, (data->0->>'value')::Numeric AS pop_density
FROM OBS_GetData((SELECT ARRAY_AGG((the_geom, cartodb_id)::geomval) FROM tablename),
(SELECT meta FROM meta)))
UPDATE tablename
SET pop_density = data.pop_density
FROM data
WHERE cartodb_id = data.id
```
Update a table with two measurements at once, population density and household
density. The table should already have a Numeric column `pop_density` and
`household_density`.
```SQL
WITH meta AS (
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom),4326),
'[{"numer_id": "us.census.acs.B01003001"},{"numer_id": "us.census.acs.B11001001"}]',
1, 1, COUNT(*)
) meta from tablename),
data AS (
SELECT id,
data->0->>'value' AS pop_density,
data->1->>'value' AS household_density
FROM OBS_GetData((SELECT ARRAY_AGG((the_geom, cartodb_id)::geomval) FROM tablename),
(SELECT meta FROM meta)))
UPDATE tablename
SET pop_density = data.pop_density,
household_density = data.household_density
FROM data
WHERE cartodb_id = data.id
```
## OBS_GetData(ids array[text], metadata json)
The ```OBS_GetData(ids, metadata)``` function returns a measure and/or
geometry corresponding to the `metadata` JSON array for each every id of
the `ids` array. The metadata argument must be obtained from
`OBS_GetMeta(extent, metadata)`. When obtaining metadata, one must include
the `geom_id` corresponding to the boundary that the `ids` refer to.
#### Arguments
Name | Description
---- | -----------
ids | An array of `TEXT` elements. This should be obtained by using `ARRAY_AGG(col_of_geom_refs)` from the CARTO table one wishes to obtain data for.
metadata | A JSON array composed of metadata output objects from ```OBS_GetMeta(extent, metadata)```. The schema of the elements of the `metadata` JSON array corresponds to that of the output of ```OBS_GetMeta(extent, metadata)```, and this argument must be obtained from that function in order for the call to be valid.
For this function to work, the `metadata` argument must include a `geom_id`
that corresponds to the ids found in `col_of_geom_refs`.
#### Returns
A TABLE with the following schema, where each element of the input `ids` array
corresponds to one row:
Column | Type | Description
------ | ---- | -----------
id | Text | ID corresponding to an element of the input `ids` array
data | JSON | A JSON array with elements corresponding to the input `metadata` JSON array
Each `data` object has the following keys:
Key | Description
--- | -----------
value | The value of the measurement or geometry for the geometry corresponding to this row and measurement corresponding to this position in the `metadata` JSON array
To determine the appropriate cast for `value`, one can use the `numer_type`
or `geom_type` key corresponding to that value in the input `metadata` JSON
array.
#### Examples
Obtain population densities for every row of a table with FIPS code county IDs
(USA).
```SQL
WITH meta AS (
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom), 4326),
'[{"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.county"}]'
) meta FROM tablename)
SELECT id AS fips, (data->0->>'value')::Numeric AS pop_density
FROM OBS_GetData((SELECT ARRAY_AGG((fips) FROM tablename),
(SELECT meta FROM meta))
```
Update a table with population densities for every FIPS code county ID (USA).
This table has a blank column called `pop_density` and fips codes stored in a
column `fips`.
```SQL
WITH meta AS (
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom), 4326),
'[{"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.county"}]'
) meta FROM tablename),
data as (
SELECT id AS fips, (data->0->>'value') AS pop_density
FROM OBS_GetData((SELECT ARRAY_AGG((fips) FROM tablename),
(SELECT meta FROM meta)))
UPDATE tablename
SET pop_density = data.pop_density
FROM data
WHERE fips = data.id
```

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1,5 +1,5 @@
comment = 'CartoDB Observatory backend extension'
default_version = '1.0.1'
default_version = '1.3.3'
requires = 'postgis'
superuser = true
schema = cdb_observatory

View File

@@ -1,233 +0,0 @@
from nose.tools import assert_equal, assert_is_not_none
from nose_parameterized import parameterized
import os
import re
import requests
HOSTNAME = os.environ['OBS_HOSTNAME']
API_KEY = os.environ['OBS_API_KEY']
META_HOSTNAME = os.environ.get('OBS_META_HOSTNAME', HOSTNAME)
META_API_KEY = os.environ.get('OBS_META_API_KEY', API_KEY)
USE_SCHEMA = 'OBS_USE_SCHEMA' in os.environ
def query(q, is_meta=False, **options):
'''
Query the account. Returned is the response, wrapped by the requests
library.
'''
url = 'https://{hostname}/api/v2/sql'.format(
hostname=META_HOSTNAME if is_meta else HOSTNAME)
params = options.copy()
params['q'] = re.sub(r'\s+', ' ', q)
params['api_key'] = META_API_KEY if is_meta else API_KEY
return requests.get(url, params=params)
MEASURE_COLUMNS = [(r['id'], r['point_only'], ) for r in query('''
SELECT id, aggregate NOT ILIKE 'sum' as point_only
FROM obs_column
WHERE type ILIKE 'numeric'
AND weight > 0
''', is_meta=True).json()['rows']]
CATEGORY_COLUMNS = [(r['id'], ) for r in query('''
SELECT id FROM obs_column
WHERE type ILIKE 'text'
AND weight > 0
''', is_meta=True).json()['rows']]
BOUNDARY_COLUMNS = [(r['id'], ) for r in query('''
SELECT id FROM obs_column
WHERE type ILIKE 'geometry'
AND weight > 0
''', is_meta=True).json()['rows']]
US_CENSUS_MEASURE_COLUMNS = [(r['name'], ) for r in query('''
SELECT c.name FROM obs_column c, obs_column_tag ct
WHERE type ILIKE 'numeric'
AND c.id = ct.column_id
AND ct.tag_id LIKE 'us.census%'
AND weight > 0
''', is_meta=True).json()['rows']]
def default_geometry_id(column_id):
'''
Returns default test point for the column_id.
'''
if column_id == 'whosonfirst.wof_disputed_geom':
return 'CDB_LatLng(33.78, 76.57)'
elif column_id == 'whosonfirst.wof_marinearea_geom':
return 'CDB_LatLng(43.33, -68.47)'
elif column_id in ('us.census.tiger.school_district_elementary',
'us.census.tiger.school_district_secondary',
'us.census.tiger.school_district_elementary_clipped',
'us.census.tiger.school_district_secondary_clipped'):
return 'CDB_LatLng(40.7025, -73.7067)'
elif column_id.startswith('es.ine'):
return 'CDB_LatLng(42.8226119029222, -2.51141249535454)'
elif column_id.startswith('us.zillow'):
return 'CDB_LatLng(28.3305906291771, -81.3544048197256)'
else:
return 'CDB_LatLng(40.7, -73.9)'
def default_point(column_id):
'''
Returns default test point for the column_id.
'''
if column_id == 'whosonfirst.wof_disputed_geom':
return 'CDB_LatLng(33.78, 76.57)'
elif column_id == 'whosonfirst.wof_marinearea_geom':
return 'CDB_LatLng(43.33, -68.47)'
elif column_id in ('us.census.tiger.school_district_elementary',
'us.census.tiger.school_district_secondary',
'us.census.tiger.school_district_elementary_clipped',
'us.census.tiger.school_district_secondary_clipped'):
return 'CDB_LatLng(40.7025, -73.7067)'
elif column_id.startswith('uk'):
if 'WA' in column_id:
return 'CDB_LatLng(51.46844551219723, -3.184833526611328)'
else:
return 'CDB_LatLng(51.51461834694225, -0.08883476257324219)'
elif column_id.startswith('es'):
return 'CDB_LatLng(42.8226119029222, -2.51141249535454)'
elif column_id.startswith('us.zillow'):
return 'CDB_LatLng(28.3305906291771, -81.3544048197256)'
else:
return 'CDB_LatLng(40.7, -73.9)'
def default_area(column_id):
'''
Returns default test area for the column_id
'''
point = default_point(column_id)
area = 'ST_Transform(ST_Buffer(ST_Transform({point}, 3857), 1000), 4326)'.format(
point=point)
return area
@parameterized(US_CENSUS_MEASURE_COLUMNS)
def test_get_us_census_measure_points(name):
resp = query('''
SELECT * FROM {schema}OBS_GetUSCensusMeasure({point}, '{name}')
'''.format(name=name.replace("'", "''"),
schema='cdb_observatory.' if USE_SCHEMA else '',
point=default_point('')))
assert_equal(resp.status_code, 200)
rows = resp.json()['rows']
assert_equal(1, len(rows))
assert_is_not_none(rows[0].values()[0])
@parameterized(MEASURE_COLUMNS)
def test_get_measure_areas(column_id, point_only):
if point_only:
return
resp = query('''
SELECT * FROM {schema}OBS_GetMeasure({area}, '{column_id}')
'''.format(column_id=column_id,
schema='cdb_observatory.' if USE_SCHEMA else '',
area=default_area(column_id)))
assert_equal(resp.status_code, 200)
rows = resp.json()['rows']
assert_equal(1, len(rows))
assert_is_not_none(rows[0].values()[0])
@parameterized(MEASURE_COLUMNS)
def test_get_measure_points(column_id, point_only):
resp = query('''
SELECT * FROM {schema}OBS_GetMeasure({point}, '{column_id}')
'''.format(column_id=column_id,
schema='cdb_observatory.' if USE_SCHEMA else '',
point=default_point(column_id)))
assert_equal(resp.status_code, 200)
rows = resp.json()['rows']
assert_equal(1, len(rows))
assert_is_not_none(rows[0].values()[0])
#@parameterized(CATEGORY_COLUMNS)
#def test_get_category_areas(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetCategory({area}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# area=default_area(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0].values()[0])
@parameterized(CATEGORY_COLUMNS)
def test_get_category_points(column_id):
resp = query('''
SELECT * FROM {schema}OBS_GetCategory({point}, '{column_id}')
'''.format(column_id=column_id,
schema='cdb_observatory.' if USE_SCHEMA else '',
point=default_point(column_id)))
assert_equal(resp.status_code, 200)
rows = resp.json()['rows']
assert_equal(1, len(rows))
assert_is_not_none(rows[0].values()[0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundaries_by_geometry(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundariesByGeometry({area}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# area=default_area(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0].values()[0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_points_by_geometry(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetPointsByGeometry({area}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# area=default_area(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0].values()[0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundary_points(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundary({point}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# point=default_point(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0].values()[0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundary_id(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundaryId({point}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# point=default_point(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0].values()[0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundary_by_id(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundaryById({geometry_id}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# geometry_id=default_geometry_id(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0].values()[0])

View File

@@ -1,92 +1,374 @@
import os
import psycopg2
import subprocess
DB_CONN = psycopg2.connect('postgres://{user}:{password}@{host}:{port}/{database}'.format(
user=os.environ.get('PGUSER', 'postgres'),
password=os.environ.get('PGPASSWORD', ''),
host=os.environ.get('PGHOST', 'localhost'),
port=os.environ.get('PGPORT', '5432'),
database=os.environ.get('PGDATABASE', 'postgres'),
))
CURSOR = DB_CONN.cursor()
def query(q):
'''
Query the database.
'''
try:
CURSOR.execute(q)
return CURSOR
except:
DB_CONN.rollback()
raise
def commit():
try:
DB_CONN.commit()
except:
DB_CONN.rollback()
raise
from sqldumpr import Dumpr
def get_tablename_query(column_id, boundary_id, timespan):
"""
given a column_id, boundary-id (us.census.tiger.block_group), and
timespan, give back the current table hash from the data observatory
"""
q = """
SELECT t.tablename, geoid_ct.colname colname
FROM obs_table t,
obs_column_table geoid_ct,
obs_column_table data_ct
WHERE
t.id = geoid_ct.table_id AND
t.id = data_ct.table_id AND
geoid_ct.column_id =
(SELECT source_id
FROM obs_column_to_column
WHERE target_id = '{boundary_id}'
AND reltype = 'geom_ref'
) AND
data_ct.column_id = '{column_id}' AND
timespan = '{timespan}'
""".replace('\n','')
return """
SELECT numer_tablename, numer_geomref_colname, numer_tid,
geom_tablename, geom_geomref_colname, geom_tid
FROM observatory.obs_meta
WHERE numer_id = '{numer_id}' AND
geom_id = '{geom_id}' AND
numer_timespan = '{numer_timespan}'
""".format(numer_id=column_id,
geom_id=boundary_id,
numer_timespan=timespan)
return q.format(column_id=column_id,
boundary_id=boundary_id,
timespan=timespan)
def select_star(tablename):
return "SELECT * FROM {}".format(tablename)
METADATA_TABLES = ['obs_table', 'obs_column_table', 'obs_column', 'obs_column_tag',
'obs_tag', 'obs_column_to_column', 'obs_dump_version', 'obs_meta',
'obs_meta_numer', 'obs_meta_denom', 'obs_meta_geom',
'obs_meta_timespan', 'obs_column_table_tile',
'obs_column_table_tile_simple']
cdb = Dumpr('observatory.cartodb.com','')
metadata = ['obs_table', 'obs_column_table', 'obs_column', 'obs_column_tag',
'obs_tag', 'obs_column_to_column', 'obs_dump_version']
fixtures = [
('us.census.tiger.census_tract', 'us.census.tiger.census_tract', '2014'),
('us.census.tiger.block_group', 'us.census.tiger.block_group', '2014'),
('us.census.tiger.zcta5', 'us.census.tiger.zcta5', '2014'),
('us.census.tiger.county', 'us.census.tiger.county', '2014'),
('us.census.acs.B01003001', 'us.census.tiger.census_tract', '2010 - 2014'),
FIXTURES = [
('us.census.acs.B01003001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01001002_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01001026_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01002001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002003_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002004_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002006_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002012_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B05001006_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006002_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08301010_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006009_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006011_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006015_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006017_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B09001001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B11001001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B14001001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B14001002_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B14001005_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B14001006_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B14001007_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B14001008_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003017_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003022_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003023_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B16001001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B16001002_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B16001003_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B17001001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B17001002_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19013001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19083001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19301001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25001001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25002003_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25004002_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25004004_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25058001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25071001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25075001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25075025_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01003001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B01001002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B01001026', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B01002001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002003', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002004', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002006', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002012', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002005', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002008', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002009', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B11001001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003017', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003019', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003020', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003021', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003022', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003023', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19013001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19301001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25001001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25002003', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25004002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25004004', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25058001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25071001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25075001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25075025', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25081002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08134001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08134002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001003', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001004', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001005', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001006', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001007', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001008', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001009', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001010', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001011', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001012', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001013', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001014', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001015', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001016', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001017', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B01001002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B01003001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01001002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01001026', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01002001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002003', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002004', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002006', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002012', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002005', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002008', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002009', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B11001001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003017', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003019', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003020', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003021', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003022', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003023', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19013001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19083001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19301001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25001001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25002003', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25004002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25004004', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25058001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25071001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25075001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25075025', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25081002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134008', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134008', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134010', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001003', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001004', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001005', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001006', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001007', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001008', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001009', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001010', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001011', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001012', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001013', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001014', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001015', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001016', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001017', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.spielman_singleton_segments.X10', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.spielman_singleton_segments.X55', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.zillow.AllHomes_Zhvi', 'us.census.tiger.zcta5', '2014-01'),
('us.zillow.AllHomes_Zhvi', 'us.census.tiger.zcta5', '2016-03'),
('whosonfirst.wof_country_geom', 'whosonfirst.wof_country_geom', '2016'),
('us.census.tiger.zcta5_clipped', 'us.census.tiger.zcta5_clipped', '2014'),
('us.census.tiger.block_group_clipped', 'us.census.tiger.block_group_clipped', '2014'),
('us.zillow.AllHomes_Zhvi', 'us.census.tiger.zcta5', '2016-06'),
('whosonfirst.wof_country_name', 'whosonfirst.wof_country_geom', '2016'),
('us.census.acs.B01003001', 'us.census.tiger.zcta5_clipped', '2010 - 2014'),
('us.census.acs.B01003001', 'us.census.tiger.block_group_clipped', '2010 - 2014'),
('us.census.acs.B01003001', 'us.census.tiger.census_tract_clipped', '2010 - 2014'),
('us.census.tiger.fullname', 'us.census.tiger.pointlm_geom', '2016'),
('us.census.tiger.fullname', 'us.census.tiger.prisecroads_geom', '2016'),
('us.census.tiger.name', 'us.census.tiger.county', '2015'),
('us.census.tiger.name', 'us.census.tiger.county_clipped', '2015'),
('us.census.tiger.name', 'us.census.tiger.block_group', '2015'),
]
unique_tables = set()
OUTFILE_PATH = os.path.join(os.path.dirname(__file__), '..',
'src/pg/test/fixtures/load_fixtures.sql')
DROPFILE_PATH = os.path.join(os.path.dirname(__file__), '..',
'src/pg/test/fixtures/drop_fixtures.sql')
for f in fixtures:
column_id, boundary_id, timespan = f
tablename_query = get_tablename_query(*f)
resp = cdb.query(tablename_query).json()['rows'][0]
tablename = resp['tablename']
colname = resp['colname']
table_colname = (tablename, colname, boundary_id, )
if table_colname not in unique_tables:
print table_colname
unique_tables.add(table_colname)
def dump(cols, tablename, where=''):
print unique_tables
with open(DROPFILE_PATH, 'a') as dropfile:
dropfile.write('DROP TABLE IF EXISTS observatory.{tablename};\n'.format(
tablename=tablename,
))
with open('src/pg/test/fixtures/load_fixtures.sql', 'w') as outfile:
with open('src/pg/test/fixtures/drop_fixtures.sql', 'w') as dropfiles:
outfile.write('SET client_min_messages TO WARNING;\n\set ECHO none\n')
dropfiles.write('SET client_min_messages TO WARNING;\n\set ECHO none\n')
for tablename in metadata:
cdb.dump(select_star(tablename), tablename, outfile, schema='observatory')
dropfiles.write('DROP TABLE IF EXISTS observatory.{};\n'.format(tablename))
print tablename
subprocess.check_call('pg_dump -x --section=pre-data -t observatory.{tablename} '
' | sed "s:SET search_path.*::" '
' | sed "s:CREATE TABLE :CREATE TABLE observatory.:" '
' | sed "s:ALTER TABLE.*OWNER.*::" '
' | sed "s:SET idle_in_transaction_session_timeout.*::" '
' >> {outfile}'.format(
tablename=tablename,
outfile=OUTFILE_PATH,
), shell=True)
for tablename, colname, boundary_id in unique_tables:
if 'zcta5' in boundary_id:
where = '\'11%\''
compare = 'LIKE'
elif 'whosonfirst' in boundary_id:
where = '(\'85632785\',\'85633051\',\'85633111\',\'85633147\',\'85633253\',\'85633267\')'
compare = 'IN'
else:
where = '\'36047%\''
compare = 'LIKE'
print ' '.join([select_star(tablename), "WHERE {}::text {} {}".format(colname, compare, where)])
cdb.dump(' '.join([select_star(tablename), "WHERE {}::text {} {}".format(colname, compare, where)]),
tablename, outfile, schema='observatory')
dropfiles.write('DROP TABLE IF EXISTS observatory.{};\n'.format(tablename))
with open(OUTFILE_PATH, 'a') as outfile:
outfile.write('COPY observatory."{}" FROM stdin WITH CSV HEADER;\n'.format(tablename))
subprocess.check_call('''
psql -c "COPY (SELECT {cols} \
FROM observatory.{tablename} {where}) \
TO STDOUT WITH CSV HEADER" >> {outfile}'''.format(
cols=cols,
tablename=tablename,
where=where,
outfile=OUTFILE_PATH,
), shell=True)
with open(OUTFILE_PATH, 'a') as outfile:
outfile.write('\\.\n\n')
def main():
unique_tables = set()
for f in FIXTURES:
column_id, boundary_id, timespan = f
tablename_query = get_tablename_query(column_id, boundary_id, timespan)
resp = query(tablename_query).fetchone()
if resp:
numer_tablename, numer_colname, numer_table_id = resp[0:3]
geom_tablename, geom_colname, geom_table_id = resp[3:6]
else:
raise Exception("Could not find table for {}, {}, {}".format(
column_id, boundary_id, timespan))
numer = (numer_tablename, numer_colname, numer_table_id, )
geom = (geom_tablename, geom_colname, geom_table_id, )
if numer not in unique_tables:
print(numer)
unique_tables.add(numer)
if geom not in unique_tables:
print(geom)
unique_tables.add(geom)
print unique_tables
with open(OUTFILE_PATH, 'w') as outfile:
outfile.write('SET client_min_messages TO WARNING;\n\\set ECHO none\n')
outfile.write('CREATE SCHEMA IF NOT EXISTS observatory;\n\n')
with open(DROPFILE_PATH, 'w') as dropfile:
dropfile.write('SET client_min_messages TO WARNING;\n\\set ECHO none\n')
for tablename in METADATA_TABLES:
print(tablename)
if tablename == 'obs_meta':
where = "WHERE " + " OR ".join([
"(numer_id, geom_id, numer_timespan) = ('{}', '{}', '{}')".format(
numer_id, geom_id, timespan)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename == 'obs_meta_numer':
where = "WHERE " + " OR ".join([
"numer_id IN ('{}', '{}')".format(numer_id, geom_id)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename == 'obs_meta_denom':
where = "WHERE " + " OR ".join([
"denom_id IN ('{}', '{}')".format(numer_id, geom_id)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename == 'obs_meta_geom':
where = "WHERE " + " OR ".join([
"geom_id IN ('{}', '{}')".format(numer_id, geom_id)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename == 'obs_meta_timespan':
where = "WHERE " + " OR ".join([
"timespan_id = ('{}')".format(timespan)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename == 'obs_column':
where = "WHERE " + " OR ".join([
"id IN ('{}', '{}')".format(numer_id, geom_id)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename == 'obs_column_tag':
where = "WHERE " + " OR ".join([
"column_id IN ('{}', '{}')".format(numer_id, geom_id)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename in ('obs_column_table', 'obs_column_table_tile',
'obs_column_table_tile_simple'):
where = '''WHERE table_id IN ({table_ids}) AND
(column_id IN ({numer_ids}) OR column_id IN ({geom_ids}))
'''.format(
numer_ids=','.join(["'{}'".format(x) for x, _, _ in FIXTURES]),
geom_ids=','.join(["'{}'".format(x) for _, x, _ in FIXTURES]),
table_ids=','.join(["'{}'".format(x) for _, _, x in unique_tables])
)
elif tablename == 'obs_column_to_column':
where = "WHERE " + " OR ".join([
"source_id IN ('{}', '{}') OR target_id IN ('{}', '{}')".format(
numer_id, geom_id, numer_id, geom_id)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename == 'obs_table':
where = 'WHERE timespan IN ({timespans}) ' \
'OR id IN ({table_ids}) '.format(
timespans=','.join(["'{}'".format(x) for _, _, x in FIXTURES]),
table_ids=','.join(["'{}'".format(x) for _, _, x in unique_tables])
)
else:
where = ''
dump('*', tablename, where)
for tablename, colname, table_id in unique_tables:
if 'zcta5' in table_id or 'zillow_zip' in table_id:
where = '\'11%\''
compare = 'LIKE'
elif 'pri_sec_roads' in table_id or 'point_landmark' in table_id:
dump('*', tablename, 'WHERE geom && ST_MakeEnvelope(-74,40.69,-73.9,40.72, 4326)')
continue
elif 'whosonfirst' in table_id:
where = "('85632785','85633051','85633111','85633147','85633253','85633267')"
compare = 'IN'
elif 'county' in table_id and 'tiger' in table_id:
where = "('48061', '36047')"
compare = 'IN'
else:
where = '\'36047%\''
compare = 'LIKE'
print ' '.join(['*', tablename, "WHERE {}::text {} {}".format(colname, compare, where)])
dump('*', tablename, "WHERE {}::text {} {}".format(colname, compare, where))
if __name__ == '__main__':
main()

View File

@@ -24,7 +24,7 @@ $(DATA): $(SOURCES_DATA)
$(SED) $(REPLACEMENTS) $(SOURCES_DATA_DIR)/*.sql > $@
TEST_DIR = test
REGRESS = $(notdir $(basename $(wildcard $(TEST_DIR)/sql/*test.sql)))
REGRESS = $(sort $(notdir $(basename $(wildcard $(TEST_DIR)/sql/*test.sql))))
REGRESS_OPTS = --inputdir='$(TEST_DIR)' --outputdir='$(TEST_DIR)'
PG_CONFIG = pg_config

View File

@@ -1,5 +1,5 @@
comment = 'CartoDB Observatory backend extension'
default_version = '1.0.1'
default_version = '1.3.3'
requires = 'postgis'
superuser = true
schema = cdb_observatory

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,4 @@
-- return a table that contains a string match based on input
-- TODO: implement search for timespan
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_SearchTables(
@@ -120,3 +120,377 @@ BEGIN
RETURN;
END
$$ LANGUAGE plpgsql;
-- Functions the interface works from to identify available numerators,
-- denominators, geometries, and timespans
CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetAvailableNumerators(
bounds GEOMETRY DEFAULT NULL,
filter_tags TEXT[] DEFAULT NULL,
denom_id TEXT DEFAULT NULL,
geom_id TEXT DEFAULT NULL,
timespan TEXT DEFAULT NULL
) RETURNS TABLE (
numer_id TEXT,
numer_name TEXT,
numer_description TEXT,
numer_weight NUMERIC,
numer_license TEXT,
numer_source TEXT,
numer_type TEXT,
numer_aggregate TEXT,
numer_extra JSONB,
numer_tags JSONB,
valid_denom BOOLEAN,
valid_geom BOOLEAN,
valid_timespan BOOLEAN
) AS $$
DECLARE
geom_clause TEXT;
BEGIN
filter_tags := COALESCE(filter_tags, (ARRAY[])::TEXT[]);
denom_id := COALESCE(denom_id, '');
geom_id := COALESCE(geom_id, '');
timespan := COALESCE(timespan, '');
IF bounds IS NULL THEN
geom_clause := '';
ELSE
geom_clause := 'ST_Intersects(the_geom, $5) AND';
END IF;
RETURN QUERY
EXECUTE
format($string$
SELECT numer_id::TEXT,
numer_name::TEXT,
numer_description::TEXT,
numer_weight::NUMERIC,
NULL::TEXT license,
NULL::TEXT source,
numer_type numer_type,
numer_aggregate numer_aggregate,
numer_extra::JSONB numer_extra,
numer_tags numer_tags,
$1 = ANY(denoms) valid_denom,
$2 = ANY(geoms) valid_geom,
$3 = ANY(timespans) valid_timespan
FROM observatory.obs_meta_numer
WHERE %s (numer_tags ?& $4 OR CARDINALITY($4) = 0)
$string$, geom_clause)
USING denom_id, geom_id, timespan, filter_tags, bounds;
RETURN;
END
$$ LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetAvailableDenominators(
bounds GEOMETRY DEFAULT NULL,
filter_tags TEXT[] DEFAULT NULL,
numer_id TEXT DEFAULT NULL,
geom_id TEXT DEFAULT NULL,
timespan TEXT DEFAULT NULL
) RETURNS TABLE (
denom_id TEXT,
denom_name TEXT,
denom_description TEXT,
denom_weight NUMERIC,
denom_license TEXT,
denom_source TEXT,
denom_type TEXT,
denom_aggregate TEXT,
denom_extra JSONB,
denom_tags JSONB,
valid_numer BOOLEAN,
valid_geom BOOLEAN,
valid_timespan BOOLEAN
) AS $$
DECLARE
geom_clause TEXT;
BEGIN
filter_tags := COALESCE(filter_tags, (ARRAY[])::TEXT[]);
numer_id := COALESCE(numer_id, '');
geom_id := COALESCE(geom_id, '');
timespan := COALESCE(timespan, '');
IF bounds IS NULL THEN
geom_clause := '';
ELSE
geom_clause := 'ST_Intersects(the_geom, $5) AND';
END IF;
RETURN QUERY
EXECUTE
format($string$
SELECT denom_id::TEXT,
denom_name::TEXT,
denom_description::TEXT,
denom_weight::NUMERIC,
NULL::TEXT license,
NULL::TEXT source,
denom_type::TEXT,
denom_aggregate::TEXT,
denom_extra::JSONB,
denom_tags::JSONB,
$1 = ANY(numers) valid_numer,
$2 = ANY(geoms) valid_geom,
$3 = ANY(timespans) valid_timespan
FROM observatory.obs_meta_denom
WHERE %s (denom_tags ?& $4 OR CARDINALITY($4) = 0)
$string$, geom_clause)
USING numer_id, geom_id, timespan, filter_tags, bounds;
RETURN;
END
$$ LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetAvailableGeometries(
bounds GEOMETRY DEFAULT NULL,
filter_tags TEXT[] DEFAULT NULL,
numer_id TEXT DEFAULT NULL,
denom_id TEXT DEFAULT NULL,
timespan TEXT DEFAULT NULL
) RETURNS TABLE (
geom_id TEXT,
geom_name TEXT,
geom_description TEXT,
geom_weight NUMERIC,
geom_aggregate TEXT,
geom_license TEXT,
geom_source TEXT,
valid_numer BOOLEAN,
valid_denom BOOLEAN,
valid_timespan BOOLEAN,
score NUMERIC,
numtiles BIGINT,
notnull_percent NUMERIC,
numgeoms NUMERIC,
percentfill NUMERIC,
estnumgeoms NUMERIC,
meanmediansize NUMERIC
) AS $$
DECLARE
geom_clause TEXT;
BEGIN
filter_tags := COALESCE(filter_tags, (ARRAY[])::TEXT[]);
numer_id := COALESCE(numer_id, '');
denom_id := COALESCE(denom_id, '');
timespan := COALESCE(timespan, '');
IF bounds IS NULL THEN
geom_clause := '';
ELSE
geom_clause := 'ST_Intersects(the_geom, $5) AND';
END IF;
RETURN QUERY
EXECUTE
format($string$
WITH available_geoms AS (
SELECT geom_id::TEXT,
geom_name::TEXT,
geom_description::TEXT,
geom_weight::NUMERIC,
NULL::TEXT geom_aggregate,
NULL::TEXT license,
NULL::TEXT source,
$1 = ANY(numers) valid_numer,
$2 = ANY(denoms) valid_denom,
$3 = ANY(timespans) valid_timespan
FROM observatory.obs_meta_geom
WHERE %s (geom_tags ?& $4 OR CARDINALITY($4) = 0)
), scores AS (
SELECT * FROM cdb_observatory._OBS_GetGeometryScores($5,
(SELECT ARRAY_AGG(geom_id) FROM available_geoms)
)
) SELECT available_geoms.*, score, numtiles, notnull_percent, numgeoms,
percentfill, estnumgeoms, meanmediansize
FROM available_geoms, scores
WHERE available_geoms.geom_id = scores.column_id
$string$, geom_clause)
USING numer_id, denom_id, timespan, filter_tags, bounds;
RETURN;
END
$$ LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetAvailableTimespans(
bounds GEOMETRY DEFAULT NULL,
filter_tags TEXT[] DEFAULT NULL,
numer_id TEXT DEFAULT NULL,
denom_id TEXT DEFAULT NULL,
geom_id TEXT DEFAULT NULL
) RETURNS TABLE (
timespan_id TEXT,
timespan_name TEXT,
timespan_description TEXT,
timespan_weight NUMERIC,
timespan_aggregate TEXT,
timespan_license TEXT,
timespan_source TEXT,
valid_numer BOOLEAN,
valid_denom BOOLEAN,
valid_geom BOOLEAN
) AS $$
DECLARE
geom_clause TEXT;
BEGIN
filter_tags := COALESCE(filter_tags, (ARRAY[])::TEXT[]);
numer_id := COALESCE(numer_id, '');
denom_id := COALESCE(denom_id, '');
geom_id := COALESCE(geom_id, '');
IF bounds IS NULL THEN
geom_clause := '';
ELSE
geom_clause := 'ST_Intersects(the_geom, $5) AND';
END IF;
RETURN QUERY
EXECUTE
format($string$
SELECT timespan_id::TEXT,
timespan_name::TEXT,
timespan_description::TEXT,
timespan_weight::NUMERIC,
NULL::TEXT timespan_aggregate,
NULL::TEXT license,
NULL::TEXT source,
$1 = ANY(numers) valid_numer,
$2 = ANY(denoms) valid_denom,
$3 = ANY(geoms) valid_geom_id
FROM observatory.obs_meta_timespan
WHERE %s (timespan_tags ?& $4 OR CARDINALITY($4) = 0)
$string$, geom_clause)
USING numer_id, denom_id, geom_id, filter_tags, bounds;
RETURN;
END
$$ LANGUAGE plpgsql;
-- Function below should replace SQL in
-- https://github.com/CartoDB/cartodb/blob/ab465cb2918c917940e955963b0cd8a050c06600/lib/assets/javascripts/cartodb3/editor/layers/layer-content-views/analyses/data-observatory-metadata.js
CREATE OR REPLACE FUNCTION cdb_observatory.OBS_LegacyBuilderMetadata(
aggregate_type TEXT DEFAULT NULL
)
RETURNS TABLE (
name TEXT,
subsection JSONB
) AS $$
DECLARE
aggregate_condition TEXT DEFAULT '';
BEGIN
IF LOWER(aggregate_type) ILIKE 'sum' THEN
aggregate_condition := ' AND numer_aggregate IN (''sum'', ''median'', ''average'') ';
ELSIF aggregate_type IS NOT NULL THEN
aggregate_condition := format(' AND numer_aggregate ILIKE %L ', aggregate_type);
END IF;
RETURN QUERY
EXECUTE format($string$
WITH expanded AS (
SELECT JSONB_Build_Object('id', numer_id, 'name', numer_name) "column",
SUBSTR((sections).key, 9) section_id, (sections).value section_name,
SUBSTR((subsections).key, 12) subsection_id, (subsections).value subsection_name
FROM (
SELECT numer_id, numer_name,
jsonb_each_text(numer_tags) as sections,
jsonb_each_text as subsections
FROM (SELECT numer_id, numer_name, numer_tags,
jsonb_each_text(numer_tags)
FROM cdb_observatory.obs_getavailablenumerators()
WHERE numer_weight > 0 %s
) foo
) bar
WHERE (sections).key LIKE 'section/%%'
AND (subsections).key LIKE 'subsection/%%'
), grouped_by_subsections AS (
SELECT JSONB_Agg(JSONB_Build_Object('f1', "column")) AS columns,
section_id, section_name, subsection_id, subsection_name
FROM expanded
GROUP BY section_id, section_name, subsection_id, subsection_name
)
SELECT section_name as name, JSONB_Agg(
JSONB_Build_Object(
'f1', JSONB_Build_Object(
'name', subsection_name,
'id', subsection_id,
'columns', columns
)
)
) as subsection
FROM grouped_by_subsections
GROUP BY section_name
$string$, aggregate_condition);
RETURN;
END
$$ LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetGeometryScores(
bounds Geometry(Geometry, 4326) DEFAULT NULL,
filter_geom_ids TEXT[] DEFAULT NULL,
desired_num_geoms INTEGER DEFAULT NULL
) RETURNS TABLE (
score NUMERIC,
numtiles BIGINT,
table_id TEXT,
column_id TEXT,
notnull_percent NUMERIC,
numgeoms NUMERIC,
percentfill NUMERIC,
estnumgeoms NUMERIC,
meanmediansize NUMERIC
) AS $$
BEGIN
IF desired_num_geoms IS NULL THEN
desired_num_geoms := 3000;
END IF;
filter_geom_ids := COALESCE(filter_geom_ids, (ARRAY[])::TEXT[]);
-- Very complex geometries simply fail. For a boundary check, we can
-- comfortably get away with the simplicity of an envelope
IF ST_Npoints(bounds) > 10000 THEN
bounds := ST_Envelope(bounds);
END IF;
RETURN QUERY
EXECUTE $string$
WITH clipped_geom AS (
SELECT column_id, table_id
, CASE WHEN $1 IS NOT NULL THEN ST_Clip(tile, $1, True) -- -20
ELSE tile END clipped_tile
, tile
FROM observatory.obs_column_table_tile_simple
WHERE ($1 IS NULL OR ST_Intersects($1, tile))
AND (column_id = ANY($2) OR cardinality($2) = 0)
), clipped_geom_countagg AS (
SELECT column_id, table_id
, BOOL_AND(ST_BandIsNoData(clipped_tile, 1)) nodata
, ST_CountAgg(clipped_tile, 1, False)::Numeric pixels -- -10
FROM clipped_geom
GROUP BY column_id, table_id
), clipped_geom_reagg AS (
SELECT COUNT(*)::BIGINT cnt, a.column_id, a.table_id,
cdb_observatory.FIRST(nodata) first_nodata,
cdb_observatory.FIRST(pixels) first_pixel,
cdb_observatory.FIRST(tile) first_tile,
(ST_SummaryStatsAgg(clipped_tile, 1, False)).sum::Numeric sum_geoms, -- ND
(ST_SummaryStatsAgg(clipped_tile, 2, False)).mean::Numeric / 255 mean_fill --ND
FROM clipped_geom_countagg a, clipped_geom b
WHERE a.table_id = b.table_id
AND a.column_id = b.column_id
GROUP BY a.column_id, a.table_id
), final AS (
SELECT
cnt, table_id, column_id
, NULL::Numeric AS notnull_percent
, (CASE WHEN first_nodata IS FALSE
THEN sum_geoms
ELSE COALESCE(ST_Value(first_tile, 1, ST_PointOnSurface($1)), 0)
* (ST_Area($1) / ST_Area(ST_PixelAsPolygon(first_tile, 0, 0))
* first_pixel) -- -20
END)::Numeric
AS numgeoms
, (CASE WHEN first_nodata IS FALSE
THEN mean_fill
ELSE COALESCE(ST_Value(first_tile, 2, ST_PointOnSurface($1))::Numeric / 255, 0) -- -2
END)::Numeric
AS percentfill
, null::numeric estnumgeoms
, null::numeric meanmediansize
FROM clipped_geom_reagg
) SELECT
((100.0 / (1+abs(log(0.0001 + $3) - log(0.0001 + numgeoms::Numeric)))) * percentfill)::Numeric
AS score, *
FROM final
$string$ USING bounds, filter_geom_ids, desired_num_geoms;
RETURN;
END
$$ LANGUAGE plpgsql IMMUTABLE;

View File

@@ -40,44 +40,11 @@ BEGIN
RAISE EXCEPTION 'Invalid geometry type (%), expecting ''ST_Point''', ST_GeometryType(geom);
END IF;
-- choose appropriate table based on time_span
IF time_span IS NULL
THEN
SELECT x.target_tables INTO target_table
FROM cdb_observatory._OBS_SearchTables(boundary_id,
time_span) As x(target_tables,
timespans)
ORDER BY x.timespans DESC
LIMIT 1;
ELSE
-- TODO: modify for only one table returned instead of arbitrarily choosing
-- one with LIMIT 1 (could be conflict between clipped vs non-clipped
-- boundaries in the metadata tables)
SELECT x.target_tables INTO target_table
FROM cdb_observatory._OBS_SearchTables(boundary_id,
time_span) As x(target_tables,
timespans)
WHERE x.timespans = time_span
LIMIT 1;
END IF;
-- if no tables are found, raise notice and return null
IF target_table IS NULL
THEN
RAISE NOTICE 'No boundaries found for ''%'' in ''%''', ST_AsText(geom), boundary_id;
RETURN NULL::geometry;
END IF;
RAISE NOTICE 'target_table: %', target_table;
-- return the first boundary in intersections
EXECUTE format(
'SELECT the_geom
FROM observatory.%I
WHERE ST_Intersects($1, the_geom)
LIMIT 1', target_table)
INTO boundary
USING geom;
EXECUTE $query$
SELECT * FROM cdb_observatory._OBS_GetBoundariesByGeometry($1, $2, $3) LIMIT 1
$query$ INTO boundary
USING geom, boundary_id, time_span;
RETURN boundary;
@@ -111,67 +78,17 @@ CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundaryId(
RETURNS text
AS $$
DECLARE
output_id text;
target_table text;
geoid_colname text;
result TEXT;
BEGIN
-- If not point, raise error
IF ST_GeometryType(geom) != 'ST_Point'
THEN
RAISE EXCEPTION 'Invalid geometry type (%), expecting ''ST_Point''', ST_GeometryType(geom);
END IF;
-- choose appropriate table based on time_span
IF time_span IS NULL
THEN
SELECT x.target_tables INTO target_table
FROM cdb_observatory._OBS_SearchTables(boundary_id,
time_span) As x(target_tables,
timespans)
ORDER BY x.timespans DESC
LIMIT 1;
ELSE
SELECT x.target_tables INTO target_table
FROM cdb_observatory._OBS_SearchTables(boundary_id,
time_span) As x(target_tables,
timespans)
WHERE x.timespans = time_span
LIMIT 1;
END IF;
-- if no tables are found, raise notice and return null
IF target_table IS NULL
THEN
RAISE NOTICE 'Warning: No boundaries found for ''%''', boundary_id;
RETURN NULL::text;
END IF;
EXECUTE
format('SELECT ct.colname
FROM observatory.obs_column_to_column c2c,
observatory.obs_column_table ct,
observatory.obs_table t
WHERE c2c.reltype = ''geom_ref''
AND ct.column_id = c2c.source_id
AND ct.table_id = t.id
AND t.tablename = %L'
, target_table)
INTO geoid_colname;
RAISE NOTICE 'target_table: %, geoid_colname: %', target_table, geoid_colname;
-- return geometry id column value
EXECUTE format(
'SELECT %I::text
FROM observatory.%I
WHERE ST_Intersects($1, the_geom)
LIMIT 1', geoid_colname, target_table)
INTO output_id
USING geom;
RETURN output_id;
EXECUTE $query$
SELECT geom_refs FROM cdb_observatory._OBS_GetBoundariesByGeometry(
$1, $2, $3) LIMIT 1
$query$
INTO result
USING geom, boundary_id, time_span;
RETURN result;
END;
$$ LANGUAGE plpgsql;
@@ -203,35 +120,21 @@ CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundaryById(
RETURNS geometry(geometry, 4326)
AS $$
DECLARE
boundary geometry(geometry, 4326);
target_table text;
geoid_colname text;
geom_colname text;
result GEOMETRY;
BEGIN
SELECT * INTO geoid_colname, target_table, geom_colname
FROM cdb_observatory._OBS_GetGeometryMetadata(boundary_id);
RAISE NOTICE '%', target_table;
IF target_table IS NULL
THEN
RAISE NOTICE 'No geometries found';
RETURN NULL::geometry;
END IF;
-- retrieve boundary
EXECUTE
format(
'SELECT %I
FROM observatory.%I
WHERE %I = $1
LIMIT 1', geom_colname, target_table, geoid_colname)
INTO boundary
USING geometry_id;
RETURN boundary;
EXECUTE $query$
SELECT (data->0->>'value')::Geometry
FROM cdb_observatory.OBS_GetData(
ARRAY[$1],
cdb_observatory.OBS_GetMeta(
ST_MakeEnvelope(-180, -90, 180, 90, 4326),
('[{"geom_id": "' || $2 || '"}]')::JSON))
$query$
INTO result
USING geometry_id, boundary_id;
RETURN result;
END;
$$ LANGUAGE plpgsql;
@@ -244,49 +147,41 @@ CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetBoundariesByGeometry(
geom geometry(Geometry, 4326),
boundary_id text,
time_span text DEFAULT NULL,
overlap_type text DEFAULT 'intersects')
RETURNS TABLE(the_geom geometry, geom_refs text)
AS $$
overlap_type text DEFAULT NULL)
RETURNS TABLE (
the_geom geometry,
geom_refs text
) AS $$
DECLARE
boundary geometry(Geometry, 4326);
geom_colname text;
geoid_colname text;
target_table text;
meta JSON;
BEGIN
overlap_type := COALESCE(overlap_type, 'intersects');
-- check inputs
IF lower(overlap_type) NOT IN ('contains', 'intersects', 'within')
THEN
-- recognized overlap type (map to ST_Contains, ST_Intersects, and ST_Within)
RAISE EXCEPTION 'Overlap type ''%'' is not an accepted type (choose intersects, within, or contains)', overlap_type;
ELSIF ST_GeometryType(geom) NOT IN ('ST_Polygon', 'ST_MultiPolygon')
THEN
RAISE EXCEPTION 'Invalid geometry type (%), expecting ''ST_MultiPolygon'' or ''ST_Polygon''', ST_GeometryType(geom);
END IF;
-- TODO: add timespan in search
-- TODO: add overlap info in search
SELECT * INTO geoid_colname, target_table, geom_colname
FROM cdb_observatory._OBS_GetGeometryMetadata(boundary_id);
EXECUTE $query$
SELECT cdb_observatory.OBS_GetMeta($1, JSON_Build_Array(JSON_Build_Object(
'geom_id', $2, 'geom_timespan', $3)))
$query$
INTO meta
USING geom, boundary_id, time_span;
-- if no tables are found, raise notice and return null
IF target_table IS NULL
THEN
RAISE NOTICE 'No boundaries found for bounding box ''%'' in ''%''', ST_AsText(geom), boundary_id;
RETURN QUERY SELECT NULL::geometry, NULL::text;
IF meta->0->>'geom_id' IS NULL THEN
RETURN QUERY EXECUTE 'SELECT NULL::Geometry, NULL::Text LIMIT 0';
RETURN;
END IF;
RAISE NOTICE 'target_table: %', target_table;
-- return first boundary in intersections
RETURN QUERY
EXECUTE format(
'SELECT %I, %I::text
FROM observatory.%I
WHERE ST_%s($1, the_geom)
', geom_colname, geoid_colname, target_table, overlap_type)
USING geom;
RETURN QUERY EXECUTE $query$
SELECT (data->0->>'value')::Geometry the_geom, data->0->>'geomref' geom_refs
FROM cdb_observatory.OBS_GetData(
ARRAY[($1, 1)::geomval], $2, False
)
$query$ USING geom, meta;
RETURN;
END;
@@ -318,7 +213,7 @@ CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundariesByGeometry(
geom geometry(Geometry, 4326),
boundary_id text,
time_span text DEFAULT NULL,
overlap_type text DEFAULT 'intersects')
overlap_type text DEFAULT NULL)
RETURNS TABLE(the_geom geometry, geom_refs text)
AS $$
BEGIN
@@ -364,7 +259,7 @@ CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundariesByPointAndRadius(
radius numeric, -- radius in meters
boundary_id text,
time_span text DEFAULT NULL,
overlap_type text DEFAULT 'intersects')
overlap_type text DEFAULT NULL)
RETURNS TABLE(the_geom geometry, geom_refs text)
AS $$
DECLARE
@@ -382,7 +277,8 @@ BEGIN
FROM cdb_observatory._OBS_GetBoundariesByGeometry(
circle_boundary,
boundary_id,
time_span);
time_span,
overlap_type);
RETURN;
END;
$$ LANGUAGE plpgsql;
@@ -394,7 +290,7 @@ CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetPointsByGeometry(
geom geometry(Geometry, 4326),
boundary_id text,
time_span text DEFAULT NULL,
overlap_type text DEFAULT 'intersects')
overlap_type text DEFAULT NULL)
RETURNS TABLE(the_geom geometry, geom_refs text)
AS $$
DECLARE
@@ -403,6 +299,7 @@ DECLARE
geoid_colname text;
target_table text;
BEGIN
overlap_type := COALESCE(overlap_type, 'intersects');
IF lower(overlap_type) NOT IN ('contains', 'within', 'intersects')
THEN
@@ -412,27 +309,11 @@ BEGIN
RAISE EXCEPTION 'Invalid geometry type (%), expecting ''ST_MultiPolygon'' or ''ST_Polygon''', ST_GeometryType(geom);
END IF;
SELECT * INTO geoid_colname, target_table, geom_colname
FROM cdb_observatory._OBS_GetGeometryMetadata(boundary_id);
-- if no tables are found, raise notice and return null
IF target_table IS NULL
THEN
RAISE NOTICE 'No boundaries found for bounding box ''%'' in ''%''', ST_AsText(geom), boundary_id;
RETURN QUERY SELECT NULL::geometry, NULL::text;
RETURN;
END IF;
RAISE NOTICE 'target_table: %', target_table;
-- return first boundary in intersections
RETURN QUERY
EXECUTE format(
'SELECT ST_PointOnSurface(%I) As %s, %I::text
FROM observatory.%I
WHERE ST_%s($1, the_geom)
', geom_colname, geom_colname, geoid_colname, target_table, overlap_type)
USING geom;
RETURN QUERY EXECUTE $query$
SELECT ST_PointOnSurface(the_geom), geom_refs
FROM cdb_observatory._OBS_GetBoundariesByGeometry($1, $2)
$query$ USING geom, boundary_id;
RETURN;
END;
@@ -464,7 +345,7 @@ CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetPointsByGeometry(
geom geometry(Geometry, 4326),
boundary_id text,
time_span text DEFAULT NULL,
overlap_type text DEFAULT 'intersects')
overlap_type text DEFAULT NULL)
RETURNS TABLE(the_geom geometry, geom_refs text)
AS $$
BEGIN
@@ -509,7 +390,7 @@ CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetPointsByPointAndRadius(
radius numeric, -- radius in meters
boundary_id text,
time_span text DEFAULT NULL,
overlap_type text DEFAULT 'intersects')
overlap_type text DEFAULT NULL)
RETURNS TABLE(the_geom geometry, geom_refs text)
AS $$
DECLARE
@@ -532,44 +413,3 @@ BEGIN
RETURN;
END;
$$ LANGUAGE plpgsql;
-- _OBS_GetGeometryMetadata()
-- TODO: add timespan in search
-- TODO: add choice of clipped versus not clipped
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetGeometryMetadata(boundary_id text)
RETURNS table(geoid_colname text, target_table text, geom_colname text)
AS $$
BEGIN
RETURN QUERY
EXECUTE
format($string$
SELECT geoid_ct.colname::text As geoid_colname,
tablename::text,
geom_ct.colname::text As geom_colname
FROM observatory.obs_column_table As geoid_ct,
observatory.obs_table As geom_t,
observatory.obs_column_table As geom_ct,
observatory.obs_column As geom_c
WHERE geoid_ct.column_id
IN (
SELECT source_id
FROM observatory.obs_column_to_column
WHERE reltype = 'geom_ref'
AND target_id = '%s'
)
AND geoid_ct.table_id = geom_t.id AND
geom_t.id = geom_ct.table_id AND
geom_ct.column_id = geom_c.id AND
geom_c.type ILIKE 'geometry' AND
geom_c.id = '%s'
$string$, boundary_id, boundary_id);
RETURN;
-- AND geom_t.timespan = '%s' <-- put in requested year
-- TODO: filter by clipped vs. not so appropriate tablename are unique
-- so the limit 1 can be removed
RETURN;
END;
$$ LANGUAGE plpgsql;

View File

@@ -1,6 +1,4 @@
-- Install dependencies
CREATE EXTENSION postgis;
CREATE EXTENSION plpythonu;
CREATE EXTENSION cartodb;
-- Install the extension
CREATE EXTENSION observatory VERSION 'dev';

View File

@@ -9,24 +9,19 @@ t
_obs_geomtable_with_null_response
t
(1 row)
test_get_obs_column_with_geoid_and_census_1|test_get_obs_column_with_geoid_and_census_2
t|t
(1 row)
obs_getcolumndata_missing_measure
t
(1 row)
_obs_buildsnapshotquery_test_1
t
(1 row)
_obs_buildsnapshotquery_test_2
t
(1 row)
_obs_getrelatedcolumn_test
t
(1 row)
_obs_standardizemeasurename_test
t
(1 row)
obs_dumpversion_notnull
t
(1 row)
ERROR: Error performing intersection: TopologyException: found non-noded intersection between LINESTRING (-97.1968 25.9574, -97.1971 25.9576) and LINESTRING (-97.197 25.9575, -97.1972 25.9576) at -97.19699802694231 25.957551976080605
complex_safe_intersection_works
t
(1 row)

View File

@@ -1,39 +1,14 @@
\i test/fixtures/load_fixtures.sql
SET client_min_messages TO WARNING;
\pset format unaligned
\set ECHO none
obs_getdemographicsnapshot_test_no_returns
t
(1 row)
obs_get_median_income_at_test_point
t
(1 row)
obs_get_median_income_at_null_island
t
(1 row)
obs_getpoints_for_test_point_value|obs_getpoints_for_test_point_name|obs_getpoints_for_test_point_tablename|obs_getpoints_for_test_point_aggregate|obs_getpoints_for_test_point_type|obs_getpoints_for_test_point_description
t|t|t|t|t|t
(1 row)
obs_getpoints_for_null_island
t
(1 row)
obs_getpolygons_for_test_point
t
(1 row)
obs_getpolygons_for_null_island
t
(1 row)
test_point_segmentation
t
(1 row)
null_island_segmentation
t
(1 row)
getcategories_at_test_point_1
t
(1 row)
getcategories_at_null_island
t
(1 row)
obs_getmeasure_zhvi_point_test
t
(1 row)
@@ -43,39 +18,87 @@ t
obs_getmeasure_total_pop_point_test
t
(1 row)
obs_getmeasure_total_pop_point_null_normalization_test
t
(1 row)
obs_getmeasure_total_pop_point_area_test
t
(1 row)
obs_getmeasure_total_pop_polygon_test
t
(1 row)
obs_getmeasure_total_pop_polygon_null_normalization_test
t
(1 row)
obs_getmeasure_total_pop_polygon_area_test
t
(1 row)
obs_getmeasure_total_male_point_denominator
t
(1 row)
obs_getmeasure_total_male_poly_denominator
t
(1 row)
obs_getmeasure_bad_geometry
t
(1 row)
obs_getmeasure_null_geometry
t
(1 row)
obs_getmeasure_out_of_bounds_geometry
t
(1 row)
obs_getmeasure_estimate_for_blank_aggregate
t
(1 row)
obs_getmeasure_per_capita_income_average
t
(1 row)
obs_getmeasure_median_capita_income_average
t
(1 row)
obs_getcategory_point
t
(1 row)
obs_getcategory_polygon
t
(1 row)
obs_getcategory_null
t
(1 row)
obs_getpopulation
t
(1 row)
obs_getpopulation_polygon_test
t
(1 row)
obs_getpopulation_polygon_null_test
t
(1 row)
obs_getpopulation_polygon_null_geom_test
t
(1 row)
obs_getuscensusmeasure_point_male_pop
t
(1 row)
obs_getuscensusmeasure
t
(1 row)
obs_getuscensusmeasure_null
t
(1 row)
obs_getuscensusmeasure_null_geom
t
(1 row)
obs_getuscensuscategory_point
t
(1 row)
obs_getuscensuscategory_polygon
t
(1 row)
obs_getuscensuscategory_null
t
(1 row)
obs_getmeasurebyid_cartodb_census_tract
t
(1 row)
@@ -88,3 +111,153 @@ t
obs_getmeasurebyid_nulls
t
(1 row)
obs_getmeasurebyid_null_id
t
(1 row)
obs_getmeta_null_null_is_null
t
(1 row)
obs_getmeta_null_empty_is_null
t
(1 row)
obs_getmeta_nullisland_null_is_null
t
(1 row)
obs_getmeta_nullisland_empty_is_null
t
(1 row)
obs_getmeta_nullisland_us_measure_is_null
t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization|id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t|t|t|t|t
(1 row)
obs_getmeta_conflicting_metadata
t
(1 row)
obs_getdata_geomval_empty_null
t
(1 row)
obs_getdata_text_empty_null
t
(1 row)
obs_getdata_geomval_empty_one_measure
t
(1 row)
id|data_point_measure_null|nullcol
t|t|t
(1 row)
id|data_polygon_measure_null|nullcol
t|t|t
(1 row)
id|data_point_measure_area|nullcol
t|t|t
(1 row)
id|data_polygon_measure_area|nullcol
t|t|t
(1 row)
id|data_point_measure_prenormalized|nullcol
t|t|t
(1 row)
id|data_point_measure_predenominated|nullcol
t|t|t
(1 row)
id|data_polygon_measure_prenormalized|nullcol
t|t|t
(1 row)
id|data_polygon_measure_predenominated|nullcol
t|t|t
(1 row)
id|data_point_measure_impossible_denominated|nullcol
t|t|t
(1 row)
id|data_polygon_measure_impossible_denominated|nullcol
t|t|t
(1 row)
id|data_point_measure_denominated|nullcol
t|t|t
(1 row)
id|data_polygon_measure_denominated|nullcol
t|t|t
(1 row)
id|data_polygon_measure_one_null|data_polygon_measure_two_null
t|t|t
(1 row)
id|data_polygon_measure_one_predenom|data_polygon_measure_two_predenom
t|t|t
(1 row)
id|data_polygon_measure_one_area|data_polygon_measure_two_area
t|t|t
(1 row)
id|data_polygon_measure_tract|data_polygon_measure_bg
t|t|t
(1 row)
id|data_point_categorical|nullcol
t|t|t
(1 row)
id|data_poly_categorical|nullcol
t|t|t
(1 row)
id|data_poly_categorical|valcol
t|t|t
(1 row)
id|correct_num_geoms
t|t
(1 row)
id|correct_num_geoms|correct_pop
t|t|t
(1 row)
id|correct_num_geoms|correct_pop|correct_bg_names
t|t|t|t
(1 row)
id|correct_num_points
t|t
(1 row)
id|correct_num_points|pointgeom_names
t|t|t
(1 row)
id|obs_getdata_by_id_one_measure_null
t|t
(1 row)
id|obs_getdata_by_id_one_measure_predenom
t|t
(1 row)
id|obs_getdata_by_id_one_measure_null|obs_getdata_by_id_two_measure_null
t|t|t
(1 row)
id|obs_getdata_by_id_categorical
t|t
(1 row)
id|obs_getdata_by_id_geometry
t|t
(1 row)
obs_getdata_api_geomvals_no_args
t
(1 row)
ary_type|obs_getdata_api_geomvals_args_numer_return
t|t
(1 row)
ary_type|obs_getdata_api_geomvals_args_string_return
t|t
(1 row)
ary_type|obs_getdata_api_geomrefs_args_numer_return
t|t
(1 row)
ary_type|obs_getdata_api_geomrefs_args_string_return
t|t
(1 row)

View File

@@ -1,5 +1,4 @@
\i test/fixtures/load_fixtures.sql
SET client_min_messages TO WARNING;
\pset format unaligned
\set ECHO none
_obs_searchtables_tables_match|_obs_searchtables_timespan_matches
t|t
@@ -13,3 +12,198 @@ t
_obs_getavailableboundariesexist
t
(1 row)
_obs_getavailablenumerators_usa_pop_in_all
t
(1 row)
_obs_getavailablenumerators_usa_pop_in_nyc_point
t
(1 row)
_obs_getavailablenumerators_usa_pop_in_usa_extents
t
(1 row)
_obs_getavailablenumerators_no_usa_pop_not_in_zero_point
t
(1 row)
_obs_getavailablenumerators_usa_pop_in_age_gender_subsection
t
(1 row)
_obs_getavailablenumerators_no_pop_in_income_subsection
t
(1 row)
_obs_getavailablenumerators_male_pop_denom_by_total_pop
t
(1 row)
_obs_getavailablenumerators_no_income_denom_by_total_pop
t
(1 row)
_obs_getavailablenumerators_zillow_at_zcta5
t
(1 row)
_obs_getavailablenumerators_no_zillow_at_block_group
t
(1 row)
_obs_getavailablenumerators_total_pop_2010_2014
t
(1 row)
_obs_getavailablenumerators_no_total_pop_1996
t
(1 row)
_obs_getavailabledenominators_usa_pop_in_all
t
(1 row)
_obs_getavailabledenominators_usa_pop_in_nyc_point
t
(1 row)
_obs_getavailabledenominators_usa_pop_in_usa_extents
t
(1 row)
_obs_getavailabledenominators_no_usa_pop_not_in_zero_point
t
(1 row)
_obs_getavailabledenominators_usa_pop_in_age_gender_subsection
t
(1 row)
_obs_getavailabledenominators_no_pop_in_income_subsection
t
(1 row)
_obs_getavailabledenominators_male_pop_denom_by_total_pop
t
(1 row)
_obs_getavailabledenominators_no_income_denom_by_total_pop
t
(1 row)
_obs_getavailabledenominators_at_zcta5
t
(1 row)
_obs_getavailabledenominators_none_spanish_geom
t
(1 row)
_obs_getavailabledenominators_total_pop_2010_2014
t
(1 row)
_obs_getavailabledenominators_no_total_pop_1996
t
(1 row)
_obs_getavailablegeometries_usa_bg_in_all
t
(1 row)
_obs_getavailablegeometries_usa_bg_in_nyc_point
t
(1 row)
_obs_getavailablegeometries_usa_bg_in_usa_extents
t
(1 row)
_obs_getavailablegeometries_no_usa_bg_not_in_zero_point
t
(1 row)
_obs_getavailablegeometries_usa_bg_in_boundary_subsection
t
(1 row)
_obs_getavailablegeometries_no_bg_in_uk_section
t
(1 row)
_obs_getavailablegeometries_total_pop_in_usa_bg
t
(1 row)
_obs_getavailablegeometries_foobarbaz_not_in_usa_bg
t
(1 row)
_obs_getavailablegeometries_total_pop_denom_in_usa_bg
t
(1 row)
_obs_getavailablegeometries_foobarbaz_denom_not_in_usa_bg
t
(1 row)
_obs_getavailablegeometries_bg_2015
t
(1 row)
_obs_getavailablegeometries_bg_not_1996
t
(1 row)
_obs_getavailabletimespans_2010_2014_in_all
t
(1 row)
_obs_getavailabletimespans_2010_2014_in_nyc_point
t
(1 row)
_obs_getavailabletimespans_2010_2014_in_usa_extents
t
(1 row)
_obs_getavailabletimespans_no_usa_bg_not_in_zero_point
t
(1 row)
_obs_getavailabletimespans_total_pop_in_2010_2014
t
(1 row)
_obs_getavailabletimespans_foobarbaz_not_in_2010_2014
t
(1 row)
_obs_getavailablegeometries_total_pop_denom_in_2010_2014
t
(1 row)
_obs_getavailablegeometries_foobarbaz_denom_not_in_2010_2014
t
(1 row)
_obs_geometryscores_500m_buffer
t
(1 row)
_obs_geometryscores_5km_buffer
t
(1 row)
_obs_geometryscores_50km_buffer
t
(1 row)
_obs_geometryscores_500km_buffer
t
(1 row)
_obs_geometryscores_2500km_buffer
t
(1 row)
_obs_geometryscores_numgeoms_500m_buffer
t
(1 row)
_obs_geometryscores_numgeoms_5km_buffer
t
(1 row)
_obs_geometryscores_numgeoms_50km_buffer
t
(1 row)
_obs_geometryscores_numgeoms_500km_buffer
t
(1 row)
_obs_geometryscores_numgeoms_2500km_buffer
t
(1 row)
_obs_geometryscores_500km_buffer_50_geoms
t
(1 row)
_obs_geometryscores_500km_buffer_500_geoms
t
(1 row)
_obs_geometryscores_500km_buffer_2500_geoms
t
(1 row)
_obs_geometryscores_500km_buffer_25000_geoms
t
(1 row)
_total_pop_in_legacy_builder_metadata
t
(1 row)
_median_income_in_legacy_builder_metadata
t
(1 row)
_gini_in_legacy_builder_metadata
t
(1 row)
_total_pop_in_legacy_builder_metadata_sums
t
(1 row)
_median_income_in_legacy_builder_metadata_sums
t
(1 row)
_gini_not_in_legacy_builder_metadata_sums
t
(1 row)
_no_dupe_subsections_in_legacy_builder_metadata
t
(1 row)

View File

@@ -1,7 +1,4 @@
\pset format unaligned
\set ECHO all
\i test/fixtures/load_fixtures.sql
SET client_min_messages TO WARNING;
\set ECHO none
obs_getboundary_cartodb_census_tract
t
@@ -45,6 +42,12 @@ t
obs_getboundarybyid_boundary_id_mismatch_geom_id
t
(1 row)
_obs_getboundariesbygeometry_roads_around_cartodb
t
(1 row)
_obs_getboundariesbygeometry_points_around_cartodb
t
(1 row)
_obs_getboundariesbygeometry_tracts_around_cartodb
t
(1 row)
@@ -90,9 +93,3 @@ t
obs_getpointsbypointandradius_around_null_island
t
(1 row)
geoid_name_matches|table_name_matches|geom_name_matches
t|t|t
(1 row)
geoid_name_matches|table_name_matches|geom_name_matches
t|t|t
(1 row)

View File

@@ -7,16 +7,28 @@ DROP TABLE IF EXISTS observatory.obs_column_tag;
DROP TABLE IF EXISTS observatory.obs_tag;
DROP TABLE IF EXISTS observatory.obs_column_to_column;
DROP TABLE IF EXISTS observatory.obs_dump_version;
DROP TABLE IF EXISTS observatory.obs_meta;
DROP TABLE IF EXISTS observatory.obs_meta_numer;
DROP TABLE IF EXISTS observatory.obs_meta_denom;
DROP TABLE IF EXISTS observatory.obs_meta_geom;
DROP TABLE IF EXISTS observatory.obs_meta_timespan;
DROP TABLE IF EXISTS observatory.obs_column_table_tile;
DROP TABLE IF EXISTS observatory.obs_column_table_tile_simple;
DROP TABLE IF EXISTS observatory.obs_78fb6c1d6ff6505225175922c2c389ce48d7632c;
DROP TABLE IF EXISTS observatory.obs_65f29658e096ca1485bf683f65fdbc9f05ec3c5d;
DROP TABLE IF EXISTS observatory.obs_1746e37b7cd28cb131971ea4187d42d71f09c5f3;
DROP TABLE IF EXISTS observatory.obs_fcd4e4f5610f6764973ef8c0c215b2e80bec8963;
DROP TABLE IF EXISTS observatory.obs_c4411eba732408d47d73281772dbf03d60645dec;
DROP TABLE IF EXISTS observatory.obs_1a098da56badf5f32e336002b0a81708c40d29cd;
DROP TABLE IF EXISTS observatory.obs_7615e8622a68bfc5fe37c69c9880edfb40250103;
DROP TABLE IF EXISTS observatory.obs_1babf5a26a1ecda5fb74963e88408f71d0364b81;
DROP TABLE IF EXISTS observatory.obs_8764a6b439a4f8714f54d4b3a157bc5e36519066;
DROP TABLE IF EXISTS observatory.obs_b393b5b88c6adda634b2071a8005b03c551b609a;
DROP TABLE IF EXISTS observatory.obs_1ea93bbc109c87c676b3270789dacf7a1430db6c;
DROP TABLE IF EXISTS observatory.obs_fc050f0b8673cfe3c6aa1040f749eb40975691b7;
DROP TABLE IF EXISTS observatory.obs_a01cd5d8ccaa6531cef715071e9307e6b1987ec3;
DROP TABLE IF EXISTS observatory.obs_6c1309a64d8f3e6986061f4d1ca7b57743e75e74;
DROP TABLE IF EXISTS observatory.obs_0310c639744a2014bb1af82709228f05b59e7d3d;
DROP TABLE IF EXISTS observatory.obs_87a814e485deabe3b12545a537f693d16ca702c2;
DROP TABLE IF EXISTS observatory.obs_e32f8e59c7c8861ee5ee4029b3ace2af9a5c9caf;
DROP TABLE IF EXISTS observatory.obs_23cb5063486bd7cf36f17e89e5e65cd31b331f6e;
DROP TABLE IF EXISTS observatory.obs_1ea93bbc109c87c676b3270789dacf7a1430db6c;
DROP TABLE IF EXISTS observatory.obs_b393b5b88c6adda634b2071a8005b03c551b609a;
DROP TABLE IF EXISTS observatory.obs_8e30e6b3792430b410ba5b9e49cdc6a0d404d48f;
DROP TABLE IF EXISTS observatory.obs_08025e1287e3af2b5de571d06562ba8d3bdb48e9;
DROP TABLE IF EXISTS observatory.obs_d39f7fe5959891c8296490d83c22ded31c54af13;
DROP TABLE IF EXISTS observatory.obs_144e8b4f906885b2e057ac4842644a553ae49c6e;
DROP TABLE IF EXISTS observatory.obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308;

File diff suppressed because one or more lines are too long

View File

@@ -1,7 +1,5 @@
-- Install dependencies
CREATE EXTENSION postgis;
CREATE EXTENSION plpythonu;
CREATE EXTENSION cartodb;
-- Install the extension
CREATE EXTENSION observatory VERSION 'dev';

View File

@@ -1,6 +1,8 @@
\pset format unaligned
\set ECHO all
\i test/fixtures/load_fixtures.sql
SET client_min_messages TO WARNING;
\set ECHO none
-- OBS_GeomTable
-- get table with known geometry_id
@@ -9,8 +11,8 @@ SELECT
cdb_observatory._OBS_GeomTable(
ST_SetSRID(ST_Point(-74.0059, 40.7128), 4326),
'us.census.tiger.census_tract',
'2014'
) = 'obs_fc050f0b8673cfe3c6aa1040f749eb40975691b7' As _obs_geomtable_with_returned_table;
'2015'
) = 'obs_87a814e485deabe3b12545a537f693d16ca702c2' As _obs_geomtable_with_returned_table;
-- get null for unknown geometry_id
-- should give back null
@@ -27,29 +29,6 @@ SELECT
-- 'us.census.tiger.census_tract'
-- );
WITH result as (
SELECT
array_agg(a) expected from cdb_observatory._OBS_GetColumnData(
'us.census.tiger.census_tract',
Array['us.census.spielman_singleton_segments.X55', 'us.census.acs.B01003001'],
'2010 - 2014') a
)
select
(expected)[1]::text = '{"colname":"x55","tablename":"obs_65f29658e096ca1485bf683f65fdbc9f05ec3c5d","aggregate":null,"name":"Spielman-Singleton Segments: 55 Clusters","type":"Text","description":"Sociodemographic classes from Spielman and Singleton 2015, 55 clusters","boundary_id":"us.census.tiger.census_tract"}' as test_get_obs_column_with_geoid_and_census_1,
(expected)[2]::text = '{"colname":"total_pop","tablename":"obs_b393b5b88c6adda634b2071a8005b03c551b609a","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates.","boundary_id":"us.census.tiger.census_tract"}' as test_get_obs_column_with_geoid_and_census_2
from result;
-- should be null-valued
WITH result as (
SELECT
array_agg(a) expected from cdb_observatory._OBS_GetColumnData(
'us.census.tiger.census_tract',
Array['us.census.tiger.baloney'],
'2010 - 2014') a
)
select expected is null as OBS_GetColumnData_missing_measure
from result;
-- OBS_BuildSnapshotQuery
-- Should give back: SELECT vals[1] As total_pop, vals[2] As male_pop, vals[3] As female_pop, vals[4] As median_age
SELECT
@@ -63,19 +42,20 @@ SELECT
Array['mandarin_orange']
) = 'SELECT vals[1] As mandarin_orange' As _OBS_BuildSnapshotQuery_test_2;
SELECT cdb_observatory._OBS_GetRelatedColumn(
Array[
'es.ine.t3_1',
'us.census.acs.B01003001',
'us.census.acs.B01001002'
],
'denominator'
) = '{es.ine.t1_1,NULL,us.census.acs.B01003001}' As _OBS_GetRelatedColumn_test;
-- should give back a standardized measure name
SELECT cdb_observatory._OBS_StandardizeMeasureName('test 343 %% 2 qqq }}{{}}') = 'test_343_2_qqq' As _OBS_StandardizeMeasureName_test;
SELECT cdb_observatory.OBS_DumpVersion()
IS NOT NULL AS OBS_DumpVersion_notnull;
\i test/fixtures/drop_fixtures.sql
-- Should fail to perform intersection
SELECT ST_IsValid(ST_Intersection(
cdb_observatory.OBS_GetBoundaryByID('48061', 'us.census.tiger.county'),
cdb_observatory.OBS_GetBoundaryByID('48061', 'us.census.tiger.county_clipped')
)) AS complex_intersection_fails;
-- Should succeed in intersecting
SELECT ST_IsValid(cdb_observatory.safe_intersection(
cdb_observatory.OBS_GetBoundaryByID('48061', 'us.census.tiger.county'),
cdb_observatory.OBS_GetBoundaryByID('48061', 'us.census.tiger.county_clipped')
)) AS complex_safe_intersection_works;

View File

@@ -1,143 +1,36 @@
\i test/fixtures/load_fixtures.sql
\pset format unaligned
\set ECHO none
SET client_min_messages TO WARNING;
--
WITH result as(
Select count(coalesce(OBS_GetDemographicSnapshot->>'value', 'foo')) expected_columns
FROM cdb_observatory.OBS_GetDemographicSnapshot(cdb_observatory._TestPoint())
FROM cdb_observatory.OBS_GetDemographicSnapshot(cdb_observatory._TestPoint(), '2010 - 2014')
) select expected_columns = 52 as OBS_GetDemographicSnapshot_test_no_returns
FROM result;
WITH result as (
SELECT _OBS_Get::text as expected FROM
cdb_observatory._OBS_Get(
cdb_observatory._TestPoint(),
Array['us.census.acs.B19013001']::text[],
'2010 - 2014',
'us.census.tiger.block_group'
)
) SELECT expected = '{"value":79292,"name":"Median Household Income in the past 12 Months","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"median","type":"Numeric","description":"Within a geographic area, the median income received by every household on a regular basis before payments for personal income taxes, social security, union dues, medicare deductions, etc. It includes income received from wages, salary, commissions, bonuses, and tips; self-employment income from own nonfarm or farm businesses, including proprietorships and partnerships; interest, dividends, net rental income, royalty income, or income from estates and trusts; Social Security or Railroad Retirement income; Supplemental Security Income (SSI); any cash public assistance or welfare payments from the state or local welfare office; retirement, survivor, or disability benefits; and any other sources of income received regularly such as Veterans'' (VA) payments, unemployment and/or worker''s compensation, child support, and alimony."}'
As OBS_Get_median_income_at_test_point
FROM result;
-- median income at null island
WITH result as (
SELECT count(_OBS_Get) as expected FROM
cdb_observatory._OBS_Get(
ST_SetSRID(ST_Point(0, 0), 4326),
Array['us.census.acs.B19013001']::text[],
'2010 - 2014',
'us.census.tiger.block_group'
)
) select expected = 0 as OBS_Get_median_income_at_null_island
from result;
-- OBS_GetPoints
-- obs_getpoints
-- --------------------
-- {4809.33511352425}
-- SELECT
-- (cdb_observatory._OBS_GetPoints(
-- cdb_observatory._TestPoint(),
-- 'obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308'::text, -- block groups (see _obs_geomtable)
-- (Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json])
-- ))[1]::text = '{"value":10923.093200390833950,"name":"Total Population","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'
-- as OBS_GetPoints_for_test_point;
WITH cte As (
SELECT
(cdb_observatory._OBS_GetPoints(
cdb_observatory._TestPoint(),
'obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308'::text, -- block groups (see _obs_geomtable)
(Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json])
))[1]
as OBS_GetPoints_for_test_point)
SELECT
(abs((OBS_GetPoints_for_test_point ->> 'value')::numeric - 10923.093200390833950) / 10923.093200390833950) < 0.001 As OBS_GetPoints_for_test_point_value,
(OBS_GetPoints_for_test_point ->> 'name') = 'Total Population' As OBS_GetPoints_for_test_point_name,
(OBS_GetPoints_for_test_point ->> 'tablename') = 'obs_1a098da56badf5f32e336002b0a81708c40d29cd' As OBS_GetPoints_for_test_point_tablename,
(OBS_GetPoints_for_test_point ->> 'aggregate') = 'sum' As OBS_GetPoints_for_test_point_aggregate,
(OBS_GetPoints_for_test_point ->> 'type') = 'Numeric' As OBS_GetPoints_for_test_point_type,
(OBS_GetPoints_for_test_point ->> 'description') = 'The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates.' As OBS_GetPoints_for_test_point_description
FROM cte;
-- what happens at null island
SELECT
(cdb_observatory._OBS_GetPoints(
ST_SetSRID(ST_Point(0, 0), 4326),
'obs_1a098da56badf5f32e336002b0a81708c40d29cd'::text, -- see example in obs_geomtable
(Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json])
))[1]::text is null
as OBS_GetPoints_for_null_island;
-- OBS_GetPolygons
-- obs_getpolygons
-- --------------------
-- {12996.8172420752}
SELECT
(cdb_observatory._OBS_GetPolygons(
cdb_observatory._TestArea(),
'obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308'::text, -- see example in obs_geomtable
Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json]
))[1]::text = '{"value":12327.3133495107,"name":"Total Population","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'
as OBS_GetPolygons_for_test_point;
-- see what happens around null island
SELECT
((cdb_observatory._OBS_GetPolygons(
ST_Buffer(ST_SetSRID(ST_Point(0, 0), 4326)::geography, 500)::geometry,
'obs_1a098da56badf5f32e336002b0a81708c40d29cd'::text, -- see example in obs_geomtable
Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json])
)[1]->>'value') is null
as OBS_GetPolygons_for_null_island;
SELECT cdb_observatory.OBS_GetSegmentSnapshot(
cdb_observatory._TestPoint(),
'us.census.tiger.census_tract'
)::text =
'{"x10_segment":"Wealthy, urban without Kids","x55_segment":"Wealthy transplants displacing long-term local residents","us.census.acs.B01003001_quantile":"0.3235","us.census.acs.B01001002_quantile":"0.494716216216216","us.census.acs.B01001026_quantile":"0.183756756756757","us.census.acs.B01002001_quantile":"0.0752837837837838","us.census.acs.B03002003_quantile":"0.293162162162162","us.census.acs.B03002004_quantile":"0.455527027027027","us.census.acs.B03002006_quantile":"0.656405405405405","us.census.acs.B03002012_quantile":"0.840081081081081","us.census.acs.B05001006_quantile":"0.727135135135135","us.census.acs.B08006001_quantile":"0.688635135135135","us.census.acs.B08006002_quantile":"0.0204459459459459","us.census.acs.B08006008_quantile":"0.679324324324324","us.census.acs.B08006009_quantile":"0.996716216216216","us.census.acs.B08006011_quantile":"0.967418918918919","us.census.acs.B08006015_quantile":"0.512945945945946","us.census.acs.B08006017_quantile":"0.0504864864864865","us.census.acs.B09001001_quantile":"0.192405405405405","us.census.acs.B11001001_quantile":"0.331702702702703","us.census.acs.B14001001_quantile":"0.296283783783784","us.census.acs.B14001002_quantile":"0.045472972972973","us.census.acs.B14001005_quantile":"0.0442702702702703","us.census.acs.B14001006_quantile":"0.0829054054054054","us.census.acs.B14001007_quantile":"0.701135135135135","us.census.acs.B14001008_quantile":"0.404527027027027","us.census.acs.B15003001_quantile":"0.191824324324324","us.census.acs.B15003017_quantile":"0.864162162162162","us.census.acs.B15003022_quantile":"0.754297297297297","us.census.acs.B15003023_quantile":"0.350054054054054","us.census.acs.B16001001_quantile":"0.217635135135135","us.census.acs.B16001002_quantile":"0.85972972972973","us.census.acs.B16001003_quantile":"0.342851351351351","us.census.acs.B17001001_quantile":"0.51204054054054","us.census.acs.B17001002_quantile":"0.813540540540541","us.census.acs.B19013001_quantile":"0.0948648648648649","us.census.acs.B19083001_quantile":"0.678351351351351","us.census.acs.B19301001_quantile":"0.146108108108108","us.census.acs.B25001001_quantile":"0.149067567567568","us.census.acs.B25002003_quantile":"0","us.census.acs.B25004002_quantile":"0","us.census.acs.B25004004_quantile":"0.944554054054054","us.census.acs.B25058001_quantile":"0.398040540540541","us.census.acs.B25071001_quantile":"0.0596081081081081","us.census.acs.B25075001_quantile":"0","us.census.acs.B25075025_quantile":null}' as test_point_segmentation;
)::JSONB =
'{"x10_segment": "Wealthy, urban without Kids", "x55_segment": "Wealthy transplants displacing long-term local residents", "us.census.acs.B01001002_quantile": "0.494716216216216", "us.census.acs.B01001026_quantile": "0.183756756756757", "us.census.acs.B01002001_quantile": "0.0752837837837838", "us.census.acs.B01003001_quantile": "0.3235", "us.census.acs.B03002003_quantile": "0.293162162162162", "us.census.acs.B03002004_quantile": "0.455527027027027", "us.census.acs.B03002006_quantile": "0.656405405405405", "us.census.acs.B03002012_quantile": "0.840081081081081", "us.census.acs.B05001006_quantile": "0.727135135135135", "us.census.acs.B08006001_quantile": "0.688635135135135", "us.census.acs.B08006002_quantile": "0.0204459459459459", "us.census.acs.B08006009_quantile": "0.679324324324324", "us.census.acs.B08006011_quantile": "0.996716216216216", "us.census.acs.B08006015_quantile": "0.967418918918919", "us.census.acs.B08006017_quantile": "0.512945945945946", "us.census.acs.B08301010_quantile": "0.994743243243243", "us.census.acs.B09001001_quantile": "0.0504864864864865", "us.census.acs.B11001001_quantile": "0.192405405405405", "us.census.acs.B14001001_quantile": "0.331702702702703", "us.census.acs.B14001002_quantile": "0.296283783783784", "us.census.acs.B14001005_quantile": "0.045472972972973", "us.census.acs.B14001006_quantile": "0.0442702702702703", "us.census.acs.B14001007_quantile": "0.0829054054054054", "us.census.acs.B14001008_quantile": "0.701135135135135", "us.census.acs.B15003001_quantile": "0.404527027027027", "us.census.acs.B15003017_quantile": "0.191824324324324", "us.census.acs.B15003022_quantile": "0.864162162162162", "us.census.acs.B15003023_quantile": "0.754297297297297", "us.census.acs.B16001001_quantile": "0.350054054054054", "us.census.acs.B16001002_quantile": "0.217635135135135", "us.census.acs.B16001003_quantile": "0.85972972972973", "us.census.acs.B17001001_quantile": "0.342851351351351", "us.census.acs.B17001002_quantile": "0.51204054054054", "us.census.acs.B19013001_quantile": "0.813540540540541", "us.census.acs.B19083001_quantile": "0.0948648648648649", "us.census.acs.B19301001_quantile": "0.678351351351351", "us.census.acs.B25001001_quantile": "0.146108108108108", "us.census.acs.B25002003_quantile": "0.149067567567568", "us.census.acs.B25004002_quantile": "0", "us.census.acs.B25004004_quantile": "0", "us.census.acs.B25058001_quantile": "0.944554054054054", "us.census.acs.B25071001_quantile": "0.398040540540541", "us.census.acs.B25075001_quantile": "0.0596081081081081", "us.census.acs.B25075025_quantile": "0"}'::JSONB as test_point_segmentation;
-- segmentation around null island
SELECT cdb_observatory.OBS_GetSegmentSnapshot(
ST_SetSRID(ST_Point(0, 0), 4326),
'us.census.tiger.census_tract'
)::text = '{"x10_segment":null,"x55_segment":null,"us.census.acs.B01003001_quantile":null,"us.census.acs.B01001002_quantile":null,"us.census.acs.B01001026_quantile":null,"us.census.acs.B01002001_quantile":null,"us.census.acs.B03002003_quantile":null,"us.census.acs.B03002004_quantile":null,"us.census.acs.B03002006_quantile":null,"us.census.acs.B03002012_quantile":null,"us.census.acs.B05001006_quantile":null,"us.census.acs.B08006001_quantile":null,"us.census.acs.B08006002_quantile":null,"us.census.acs.B08006008_quantile":null,"us.census.acs.B08006009_quantile":null,"us.census.acs.B08006011_quantile":null,"us.census.acs.B08006015_quantile":null,"us.census.acs.B08006017_quantile":null,"us.census.acs.B09001001_quantile":null,"us.census.acs.B11001001_quantile":null,"us.census.acs.B14001001_quantile":null,"us.census.acs.B14001002_quantile":null,"us.census.acs.B14001005_quantile":null,"us.census.acs.B14001006_quantile":null,"us.census.acs.B14001007_quantile":null,"us.census.acs.B14001008_quantile":null,"us.census.acs.B15003001_quantile":null,"us.census.acs.B15003017_quantile":null,"us.census.acs.B15003022_quantile":null,"us.census.acs.B15003023_quantile":null,"us.census.acs.B16001001_quantile":null,"us.census.acs.B16001002_quantile":null,"us.census.acs.B16001003_quantile":null,"us.census.acs.B17001001_quantile":null,"us.census.acs.B17001002_quantile":null,"us.census.acs.B19013001_quantile":null,"us.census.acs.B19083001_quantile":null,"us.census.acs.B19301001_quantile":null,"us.census.acs.B25001001_quantile":null,"us.census.acs.B25002003_quantile":null,"us.census.acs.B25004002_quantile":null,"us.census.acs.B25004004_quantile":null,"us.census.acs.B25058001_quantile":null,"us.census.acs.B25071001_quantile":null,"us.census.acs.B25075001_quantile":null,"us.census.acs.B25075025_quantile":null}' as null_island_segmentation;
WITH result as (
SELECT array_agg(_OBS_GetCategories) as expected FROM
cdb_observatory._OBS_GetCategories(
cdb_observatory._TestPoint(),
Array['us.census.spielman_singleton_segments.X10'],
'us.census.tiger.census_tract'
)
)
select (expected)[1]::text = '{"category":"Wealthy, urban without Kids","name":"Spielman-Singleton Segments: 10 Clusters","tablename":"obs_65f29658e096ca1485bf683f65fdbc9f05ec3c5d","aggregate":null,"type":"Text","description":"Sociodemographic classes from Spielman and Singleton 2015, 10 clusters"}' as GetCategories_at_test_point_1
from result;
WITH result as (
SELECT array_agg(_OBS_GetCategories) as expected FROM
cdb_observatory._OBS_GetCategories(
ST_SetSRID(ST_Point(0,0), 4326),
Array['us.census.spielman_singleton_segments.X10'],
'us.census.tiger.census_tract'
)
)
select expected[0] is NULL as GetCategories_at_null_island
from result;
)::text is null as null_island_segmentation;
-- Point-based OBS_GetMeasure with zillow
SELECT abs(OBS_GetMeasure_zhvi_point - 583600) / 583600 < 0.001 AS OBS_GetMeasure_zhvi_point_test FROM cdb_observatory.OBS_GetMeasure(
SELECT abs(OBS_GetMeasure_zhvi_point - 597900) / 597900 < 5.0 AS OBS_GetMeasure_zhvi_point_test FROM cdb_observatory.OBS_GetMeasure(
ST_SetSRID(ST_Point(-73.94602417945862, 40.6768220087458), 4326),
'us.zillow.AllHomes_Zhvi', 'area', 'us.census.tiger.zcta5', '2014-01'
'us.zillow.AllHomes_Zhvi', null, 'us.census.tiger.zcta5', '2014-01'
) As t(OBS_GetMeasure_zhvi_point);
-- Point-based OBS_GetMeasure with zillow default to latest
SELECT abs(OBS_GetMeasure_zhvi_point_default_latest - 972900) / 972900 < 0.001 AS OBS_GetMeasure_zhvi_point_default_latest_test FROM cdb_observatory.OBS_GetMeasure(
-- Point-based OBS_GetMeasure with later measure
SELECT abs(OBS_GetMeasure_zhvi_point_default_latest - 995400) / 995400 < 5.0 AS OBS_GetMeasure_zhvi_point_default_latest_test FROM cdb_observatory.OBS_GetMeasure(
ST_SetSRID(ST_Point(-73.94602417945862, 40.6768220087458), 4326),
'us.zillow.AllHomes_Zhvi'
'us.zillow.AllHomes_Zhvi', null, 'us.census.tiger.zcta5', '2016-06'
) As t(OBS_GetMeasure_zhvi_point_default_latest);
-- Point-based OBS_GetMeasure, default normalization (area)
@@ -148,6 +41,22 @@ SELECT abs(OBS_GetMeasure_total_pop_point - 10923.093200390833950) / 10923.09320
'us.census.acs.B01003001'
) As t(OBS_GetMeasure_total_pop_point);
-- Point-based OBS_GetMeasure, default normalization by NULL (area)
-- is result within 0.1% of expected
SELECT abs(OBS_GetMeasure_total_pop_point_null_normalization - 10923.093200390833950) / 10923.093200390833950 < 0.001 As OBS_GetMeasure_total_pop_point_null_normalization_test FROM
cdb_observatory.OBS_GetMeasure(
cdb_observatory._TestPoint(),
'us.census.acs.B01003001', NULL
) As t(OBS_GetMeasure_total_pop_point_null_normalization);
-- Point-based OBS_GetMeasure, explicit area normalization area
-- is result within 0.1% of expected
SELECT abs(OBS_GetMeasure_total_pop_point_area - 10923.093200390833950) / 10923.093200390833950 < 0.001 As OBS_GetMeasure_total_pop_point_area_test FROM
cdb_observatory.OBS_GetMeasure(
cdb_observatory._TestPoint(),
'us.census.acs.B01003001', 'area'
) As t(OBS_GetMeasure_total_pop_point_area);
-- Poly-based OBS_GetMeasure, default normalization (none)
-- is result within 0.1% of expected
SELECT abs(OBS_GetMeasure_total_pop_polygon - 12327.3133495107) / 12327.3133495107 < 0.001 As OBS_GetMeasure_total_pop_polygon_test FROM
@@ -156,6 +65,22 @@ SELECT abs(OBS_GetMeasure_total_pop_polygon - 12327.3133495107) / 12327.31334951
'us.census.acs.B01003001'
) As t(OBS_GetMeasure_total_pop_polygon);
-- Poly-based OBS_GetMeasure, default normalization by NULL (none)
-- is result within 0.1% of expected
SELECT abs(OBS_GetMeasure_total_pop_polygon_null_normalization - 12327.3133495107) / 12327.3133495107 < 0.001 As OBS_GetMeasure_total_pop_polygon_null_normalization_test FROM
cdb_observatory.OBS_GetMeasure(
cdb_observatory._TestArea(),
'us.census.acs.B01003001', NULL
) As t(OBS_GetMeasure_total_pop_polygon_null_normalization);
-- Poly-based OBS_GetMeasure, explicit area normalization
-- is result within 0.1% of expected
SELECT abs(OBS_GetMeasure_total_pop_polygon_area - 15787.4325563538) / 15787.4325563538 < 0.001 As OBS_GetMeasure_total_pop_polygon_area_test FROM
cdb_observatory.OBS_GetMeasure(
cdb_observatory._TestArea(),
'us.census.acs.B01003001', 'area'
) As t(OBS_GetMeasure_total_pop_polygon_area);
-- Point-based OBS_GetMeasure with denominator normalization
SELECT (abs(cdb_observatory.OBS_GetMeasure(
cdb_observatory._TestPoint(),
@@ -164,7 +89,37 @@ SELECT (abs(cdb_observatory.OBS_GetMeasure(
-- Poly-based OBS_GetMeasure with denominator normalization
SELECT abs(cdb_observatory.OBS_GetMeasure(
cdb_observatory._TestArea(),
'us.census.acs.B01001002', 'denominator') - 0.49026340444793965457) / 0.49026340444793965457 < 0.001 As OBS_GetMeasure_total_male_poly_denominator;
'us.census.acs.B01001002', 'denominator', null, '2010 - 2014') - 0.49026340444793965457) / 0.49026340444793965457 < 0.001 As OBS_GetMeasure_total_male_poly_denominator;
-- Poly-based OBS_GetMeasure with one very bad geom
SELECT abs(cdb_observatory.OBS_GetMeasure(
cdb_observatory._ProblemTestArea(),
'us.census.acs.B01003001') - 96230.2929825897) / 96230.2929825897 < 0.001 As OBS_GetMeasure_bad_geometry;
-- OBS_GetMeasure with NULL Input geometry
SELECT cdb_observatory.OBS_GetMeasure(
NULL,
'us.census.acs.B01003001') IS NULL As OBS_GetMeasure_null_geometry;
-- OBS_GetMeasure where there is no data
SELECT cdb_observatory.OBS_GetMeasure(
ST_SetSRID(st_point(0, 0), 4326),
'us.census.acs.B01003001') IS NULL As OBS_GetMeasure_out_of_bounds_geometry;
-- OBS_GetMeasure over arbitrary area for a measure we cannot estimate
SELECT cdb_observatory.OBS_GetMeasure(
ST_Buffer(cdb_observatory._testpoint(), 0.1),
'us.census.acs.B19083001') IS NULL As OBS_GetMeasure_estimate_for_blank_aggregate;
-- OBS_GetMeasure over arbitrary area for an average measure we can estimate
SELECT abs(cdb_observatory.OBS_GetMeasure(
ST_Buffer(cdb_observatory._testpoint(), 0.01),
'us.census.acs.B19301001') - 20025) / 20025 < 0.001 As OBS_GetMeasure_per_capita_income_average;
-- OBS_GetMeasure over arbitrary area for a median measure we can estimate
SELECT abs(cdb_observatory.OBS_GetMeasure(
ST_Buffer(cdb_observatory._testpoint(), 0.01),
'us.census.acs.B19013001') - 39266) / 39266 < 0.001 As OBS_GetMeasure_median_capita_income_average;
-- Point-based OBS_GetCategory
SELECT cdb_observatory.OBS_GetCategory(
@@ -172,7 +127,11 @@ SELECT cdb_observatory.OBS_GetCategory(
-- Poly-based OBS_GetCategory
SELECT cdb_observatory.OBS_GetCategory(
cdb_observatory._TestArea(), 'us.census.spielman_singleton_segments.X10') = 'Low income, mix of minorities' As obs_getcategory_polygon;
cdb_observatory._TestArea(), 'us.census.spielman_singleton_segments.X10') = 'Hispanic and Young' As obs_getcategory_polygon;
-- NULL Input OBS_GetCategory
SELECT cdb_observatory.OBS_GetCategory(
NULL, 'us.census.spielman_singleton_segments.X10') IS NULL As obs_getcategory_null;
-- Point-based OBS_GetPopulation, default normalization (area)
SELECT (abs(OBS_GetPopulation - 10923.093200390833950) / 10923.093200390833950) < 0.001 As OBS_GetPopulation FROM
@@ -187,6 +146,20 @@ FROM
cdb_observatory._TestArea()
) As m(obs_getpopulation_polygon);
-- Poly-based OBS_GetPopulation, default normalization (none) specified as NULL
SELECT (abs(obs_getpopulation_polygon_null - 12327.3133495107) / 12327.3133495107) < 0.001 As obs_getpopulation_polygon_null_test
FROM
cdb_observatory.OBS_GetPopulation(
cdb_observatory._TestArea(), NULL
) As m(obs_getpopulation_polygon_null);
-- Null input OBS_GetPopulation
SELECT obs_getpopulation_polygon_null_geom IS NULL As obs_getpopulation_polygon_null_geom_test
FROM
cdb_observatory.OBS_GetPopulation(
NULL, NULL
) As m(obs_getpopulation_polygon_null_geom);
-- Point-based OBS_GetUSCensusMeasure, default normalization (area)
SELECT (abs(cdb_observatory.obs_getuscensusmeasure(
cdb_observatory._testpoint(), 'male population') - 6789.5647735060920500) / 6789.5647735060920500) < 0.001 As obs_getuscensusmeasure_point_male_pop;
@@ -195,13 +168,27 @@ SELECT (abs(cdb_observatory.obs_getuscensusmeasure(
SELECT (abs(cdb_observatory.obs_getuscensusmeasure(
cdb_observatory._testarea(), 'male population') - 6043.63061042765) / 6043.63061042765) < 0.001 As obs_getuscensusmeasure;
-- Poly-based OBS_GetUSCensusMeasure, default normalization (none) specified
-- with NULL
SELECT (abs(cdb_observatory.obs_getuscensusmeasure(
cdb_observatory._testarea(), 'male population', NULL) - 6043.63061042765) / 6043.63061042765) < 0.001 As obs_getuscensusmeasure_null;
-- Poly-based OBS_GetUSCensusMeasure, Null input geom
SELECT cdb_observatory.obs_getuscensusmeasure(
NULL, 'male population', NULL) IS NULL As obs_getuscensusmeasure_null_geom;
-- Point-based OBS_GetUSCensusCategory
SELECT cdb_observatory.OBS_GetUSCensusCategory(
cdb_observatory._testpoint(), 'Spielman-Singleton Segments: 10 Clusters') = 'Wealthy, urban without Kids' As OBS_GetUSCensusCategory_point;
-- Area-based OBS_GetUSCensusCategory
SELECT cdb_observatory.OBS_GetUSCensusCategory(
cdb_observatory._testarea(), 'Spielman-Singleton Segments: 10 Clusters') = 'Low income, mix of minorities' As OBS_GetUSCensusCategory_polygon;
cdb_observatory._testarea(), 'Spielman-Singleton Segments: 10 Clusters') = 'Hispanic and Young' As OBS_GetUSCensusCategory_polygon;
-- Null-input OBS_GetUSCensusCategory
SELECT cdb_observatory.OBS_GetUSCensusCategory(
NULL, 'Spielman-Singleton Segments: 10 Clusters') IS NULL As OBS_GetUSCensusCategory_null;
-- OBS_GetMeasureById tests
@@ -237,4 +224,577 @@ SELECT cdb_observatory.OBS_GetMeasureById(
'2010 - 2014'
) IS NULL As OBS_GetMeasureById_nulls;
\i test/fixtures/drop_fixtures.sql
-- NULL input id
SELECT cdb_observatory.OBS_GetMeasureById(
NULL,
'us.census.acs.B01003001',
'us.census.tiger.block_group',
'2010 - 2014'
) IS NULL As OBS_GetMeasureById_null_id;
-- OBS_GetMeta null/null
SELECT cdb_observatory.OBS_GetMeta(NULL, NULL) IS NULL
AS OBS_GetMeta_null_null_is_null;
-- OBS_GetMeta null/empty array
SELECT cdb_observatory.OBS_GetMeta(NULL, '[]') IS NULL
AS OBS_GetMeta_null_empty_is_null;
-- OBS_GetMeta nullisland/null
SELECT cdb_observatory.OBS_GetMeta(ST_Point(0, 0), NULL) IS NULL
AS OBS_GetMeta_nullisland_null_is_null;
-- OBS_GetMeta nullisland/empty array
SELECT cdb_observatory.OBS_GetMeta(ST_Point(0, 0), '[]') IS NULL
AS OBS_GetMeta_nullisland_empty_is_null;
-- OBS_GetMeta nullisland/us_measure data
SELECT cdb_observatory.OBS_GetMeta(ST_Point(0, 0),
'[{"numer_id": "us.census.acs.B01003001"}]') IS NULL
AS OBS_GetMeta_nullisland_us_measure_is_null;
-- OBS_GetMeta for point completes one partial measure with "best" metadata
-- with no denominator
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01003001' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'total_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Total Population' numer_name,
(meta->0->>'denom_id') IS NULL denom_id,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for point completes one partial measure with "best" metadata
-- with a denominator
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'male_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Male Population' numer_name,
(meta->0->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->0->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->0->>'denom_colname') = 'total_pop' denom_colname,
(meta->0->>'denom_type') = 'Numeric' denom_type,
(meta->0->>'denom_name') = 'Total Population' denom_name,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for polygon completes one partial measure with "best" metadata
-- with no denominator
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01003001' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'total_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Total Population' numer_name,
(meta->0->>'denom_id') IS NULL denom_id,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for polygon completes one partial measure with "best" metadata
-- with a denominator
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01001002"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'male_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Male Population' numer_name,
(meta->0->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->0->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->0->>'denom_colname') = 'total_pop' denom_colname,
(meta->0->>'denom_type') = 'Numeric' denom_type,
(meta->0->>'denom_name') = 'Total Population' denom_name,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for point completes several partial measures with "best"
-- metadata, includes geom alternatives if asked
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002"}]', null, 2) meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'male_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Male Population' numer_name,
(meta->0->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->0->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->0->>'denom_colname') = 'total_pop' denom_colname,
(meta->0->>'denom_type') = 'Numeric' denom_type,
(meta->0->>'denom_name') = 'Total Population' denom_name,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization,
(meta->1->>'id')::integer = 1 id,
(meta->1->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->1->>'timespan_rank')::integer = 1 timespan_rank,
(meta->1->>'score_rank')::integer = 2 score_rank,
(meta->1->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->1->>'numer_colname') = 'male_pop' numer_colname,
(meta->1->>'numer_type') = 'Numeric' numer_type,
(meta->1->>'numer_name') = 'Male Population' numer_name,
(meta->1->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->1->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->1->>'denom_colname') = 'total_pop' denom_colname,
(meta->1->>'denom_type') = 'Numeric' denom_type,
(meta->1->>'denom_name') = 'Total Population' denom_name,
(meta->1->>'geom_id') = 'us.census.tiger.census_tract' geom_id,
(meta->1->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for point completes several partial measures with "best" metadata
-- with pre-computed geom
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002", "geom_id": "us.census.tiger.census_tract"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'male_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Male Population' numer_name,
(meta->0->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->0->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->0->>'denom_colname') = 'total_pop' denom_colname,
(meta->0->>'denom_type') = 'Numeric' denom_type,
(meta->0->>'denom_name') = 'Total Population' denom_name,
(meta->0->>'geom_id') = 'us.census.tiger.census_tract' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for point completes several partial measures with conflicting
-- metadata
SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002", "denom_id": "us.census.acs.B01001002", "geom_id": "us.census.tiger.census_tract"}]') IS NULL
AS obs_getmeta_conflicting_metadata;
-- OBS_GetData/OBS_GetMeta by id with empty list/null
WITH data AS (SELECT * FROM cdb_observatory.OBS_GetData(ARRAY[]::TEXT[], null))
SELECT ARRAY_AGG(data) IS NULL AS obs_getdata_geomval_empty_null FROM data;
-- OBS_GetData/OBS_GetMeta by geom with empty list/null
WITH data AS (SELECT * FROM cdb_observatory.OBS_GetData(ARRAY[]::GEOMVAL[], null))
SELECT ARRAY_AGG(data) IS NULL AS obs_getdata_text_empty_null FROM data;
-- OBS_GetData/OBS_GetMeta by geom with empty list
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(ARRAY[]::GEOMVAL[],
(SELECT meta FROM meta)))
SELECT ARRAY_AGG(data) IS NULL AS obs_getdata_geomval_empty_one_measure FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with one standard measure NULL
-- normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 10923) / 10923 < 0.001 data_point_measure_null,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one standard measure NULL
-- normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_null,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with one standard measure area
-- normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "area"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 10923) / 10923 < 0.001 data_point_measure_area,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one standard measure area
-- normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "area"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_area,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with one standard measure predenom
-- called "prednormalized"
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "prenormalized"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 1900) / 1900 < 0.001 data_point_measure_prenormalized,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with one standard measure predenom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "predenominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 1900) / 1900 < 0.001 data_point_measure_predenominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one standard measure predenom
-- called "prenormalized"
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "prenormalized"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 12327) / 12327 < 0.001 data_polygon_measure_prenormalized,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one standard measure predenom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "predenominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 12327) / 12327 < 0.001 data_polygon_measure_predenominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with impossible denom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "denominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' IS NULL data_point_measure_impossible_denominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one impossible denom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "denominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' IS NULL data_polygon_measure_impossible_denominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with denom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002", "normalization": "denominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 0.6215) / 0.6215 < 0.001 data_point_measure_denominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one denom measure
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01001002", "normalization": "denominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 0.4902) / 0.4902 < 0.001 data_polygon_measure_denominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with two standard measures NULL normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001"}, {"numer_id": "us.census.acs.B01001002"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_one_null,
abs((data->1->>'value')::Numeric - 0.4902) / 0.4902 < 0.001 data_polygon_measure_two_null
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with two standard measures predenom normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "predenom"}, {"numer_id": "us.census.acs.B01001002", "normalization": "predenom"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 12327) / 12327 < 0.001 data_polygon_measure_one_predenom,
abs((data->1->>'value')::Numeric - 6043) / 6043 < 0.001 data_polygon_measure_two_predenom
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with two standard measures area normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "area"}, {"numer_id": "us.census.acs.B01001002", "normalization": "area"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_one_area,
abs((data->1->>'value')::Numeric - 7739) / 7739 < 0.001 data_polygon_measure_two_area
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with two standard measures different geoms
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.census_tract"}, {"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.block_group"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 16960) / 16960 < 0.001 data_polygon_measure_tract,
abs((data->1->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_bg
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with one categorical
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.spielman_singleton_segments.X55"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' = 'Wealthy transplants displacing long-term local residents' data_point_categorical,
data->1->>'value' IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one categorical
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.spielman_singleton_segments.X55"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' = 'Hispanic Black mix multilingual, high poverty, renters, uses public transport' data_poly_categorical,
data->1->>'value' IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with one categorical and one measure
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.spielman_singleton_segments.X55"}, {"numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' = 'Hispanic Black mix multilingual, high poverty, renters, uses public transport' data_poly_categorical,
abs((data->1->>'value')::Numeric - 15787) / 15787 < 0.0001 valcol
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with polygons inside a polygon
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.block_group"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) is TRUE id,
count(distinct (data->0->>'value')::geometry) = 16 correct_num_geoms
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with polygons inside a polygon + one measure
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.block_group"}, {"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.block_group"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) is TRUE id,
count(distinct (data->0->>'value')::geometry) = 16 correct_num_geoms,
abs(sum((data->1->>'value')::numeric) - 15787) / 15787 < 0.001 correct_pop
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with polygons inside a polygon + one measure + one text
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.block_group"}, {"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.block_group"}, {"numer_id": "us.census.tiger.name", "geom_id": "us.census.tiger.block_group"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) is TRUE id,
count(distinct (data->0->>'value')::geometry) = 16 correct_num_geoms,
abs(sum((data->1->>'value')::numeric) - 15787) / 15787 < 0.001 correct_pop,
array_agg(distinct data->2->>'value') = '{"Block Group 1","Block Group 2","Block Group 3","Block Group 4","Block Group 5"}' correct_bg_names
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with points inside a polygon
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.pointlm_geom"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) AS id,
count(distinct (data->0->>'value')::geometry(point, 4326)) = 3 correct_num_points
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with points inside a polygon + one text
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.pointlm_geom"}, {"geom_id": "us.census.tiger.pointlm_geom", "numer_id": "us.census.tiger.fullname"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) AS id,
count(distinct (data->0->>'value')::geometry(point, 4326)) = 3 correct_num_points,
array_agg(data->1->>'value') = '{"Bushwick Yards","Edward Block Square","Bushwick Houses"}' pointgeom_names
FROM data;
-- OBS_GetData by id with one standard measure
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
(abs((data->0->>'value')::numeric) - 5578) / 5578 < 0.001 obs_getdata_by_id_one_measure_null
FROM data;
-- OBS_GetData by id with one standard measure, predenominated
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"normalization": "predenominated", "geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
(abs((data->0->>'value')::numeric) - 3241) / 3241 < 0.001 obs_getdata_by_id_one_measure_predenom
FROM data;
-- OBS_GetData/OBS_GetMeta by id with two standard measures
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.acs.B01003001"}, {"geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.acs.B01001002"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
(abs((data->0->>'value')::numeric) - 5578) / 5578 < 0.001 obs_getdata_by_id_one_measure_null,
(abs((data->1->>'value')::numeric) - 0.6053) / 0.6053 < 0.001 obs_getdata_by_id_two_measure_null
FROM data;
-- OBS_GetData/OBS_GetMeta by id with one categorical
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.spielman_singleton_segments.X55"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
data->0->>'value' = 'Wealthy transplants displacing long-term local residents' obs_getdata_by_id_categorical
FROM data;
-- OBS_GetData/OBS_GetMeta by id with one geometry
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.census_tract"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
ST_GeometryType((data->0->>'value')::geometry) = 'ST_MultiPolygon' obs_getdata_by_id_geometry
FROM data;
-- OBS_GetData with an API + geomvals, no args
SELECT (SELECT array_agg(json_array_elements::text) @> array['"us.census.tiger.census_tract"']
FROM json_array_elements(data->0->'value'))
AS OBS_GetData_API_geomvals_no_args
FROM cdb_observatory.obs_getdata(array[(cdb_observatory._testarea(), 1)::geomval],
'[{"numer_type": "text", "numer_colname": "boundary_id", "api_method": "obs_getavailableboundaries"}]');
-- OBS_GetData with an API + geomvals, args, numeric
SELECT json_typeof(data->0->'value') = 'array' ary_type,
json_typeof(data->0->'value'->0) = 'number'
AS OBS_GetData_API_geomvals_args_numer_return
FROM cdb_observatory.obs_getdata(array[(cdb_observatory._testarea(), 1)::geomval],
'[{"numer_type": "numeric", "numer_colname": "obs_getmeasure", "api_method": "obs_getmeasure", "api_args": ["us.census.acs.B01003001"]}]');
-- OBS_GetData with an API + geomvals, args, text
SELECT json_typeof(data->0->'value') = 'array' ary_type,
json_typeof(data->0->'value'->0) = 'string'
AS OBS_GetData_API_geomvals_args_string_return
FROM cdb_observatory.obs_getdata(array[(cdb_observatory._testarea(), 1)::geomval],
'[{"numer_type": "text", "numer_colname": "obs_getcategory", "api_method": "obs_getcategory", "api_args": ["us.census.spielman_singleton_segments.X55"]}]');
-- OBS_GetData with an API + geomrefs, args, numeric
SELECT json_typeof(data->0->'value') = 'array' ary_type,
json_typeof(data->0->'value'->0) = 'number'
AS OBS_GetData_API_geomrefs_args_numer_return
FROM cdb_observatory.obs_getdata(array['36047076200'],
'[{"numer_type": "numeric", "numer_colname": "obs_getmeasurebyid", "api_method": "obs_getmeasurebyid", "api_args": ["us.census.acs.B01003001", "us.census.tiger.census_tract"]}]');
-- OBS_GetData with an API + geomrefs, args, text
SELECT json_typeof(data->0->'value') = 'array' ary_type,
json_typeof(data->0->'value'->0) = 'string'
AS OBS_GetData_API_geomrefs_args_string_return
FROM cdb_observatory.obs_getdata(array['36047'],
'[{"numer_type": "text", "numer_colname": "obs_getboundarybyid", "api_method": "obs_getboundarybyid", "api_args": ["us.census.tiger.county"]}]');

View File

@@ -1,5 +1,6 @@
\i test/fixtures/load_fixtures.sql
\pset format unaligned
\set ECHO none
SET client_min_messages TO WARNING;
-- set up variables for use in testing
@@ -9,11 +10,11 @@
-- _OBS_SearchTables tests
SELECT
t.table_name = 'obs_1babf5a26a1ecda5fb74963e88408f71d0364b81' As _OBS_SearchTables_tables_match,
t.timespan = '2014' As _OBS_SearchTables_timespan_matches
t.table_name = 'obs_0310c639744a2014bb1af82709228f05b59e7d3d' As _OBS_SearchTables_tables_match,
t.timespan = '2015' As _OBS_SearchTables_timespan_matches
FROM cdb_observatory._OBS_SearchTables(
'us.census.tiger.county',
'2014'
'2015'
) As t(table_name, timespan);
-- _OBS_SearchTables tests
@@ -33,4 +34,496 @@ FROM cdb_observatory.OBS_GetAvailableBoundaries(
cdb_observatory._TestPoint()
) AS t(boundary_id, description, time_span, tablename);
\i test/fixtures/drop_fixtures.sql
--
-- OBS_GetAvailableNumerators tests
--
SELECT 'us.census.acs.B01003001' IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators())
AS _obs_getavailablenumerators_usa_pop_in_all;
SELECT 'us.census.acs.B01003001' IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailablenumerators_usa_pop_in_nyc_point;
SELECT 'us.census.acs.B01003001' IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakeEnvelope(
-169.8046875, 21.289374355860424,
-47.4609375, 72.0739114882038
), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailablenumerators_usa_pop_in_usa_extents;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(0, 0), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailablenumerators_no_usa_pop_not_in_zero_point;
SELECT 'us.census.acs.B01003001' IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
ARRAY['subsection/tags.age_gender']
))
AS _obs_getavailablenumerators_usa_pop_in_age_gender_subsection;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
ARRAY['subsection/tags.income']
))
AS _obs_getavailablenumerators_no_pop_in_income_subsection;
SELECT 'us.census.acs.B01001002' IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'us.census.acs.B01003001'
) WHERE valid_denom = True)
AS _obs_getavailablenumerators_male_pop_denom_by_total_pop;
SELECT 'us.census.acs.B19013001' NOT IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'us.census.acs.B01003001'
) WHERE valid_denom = True)
AS _obs_getavailablenumerators_no_income_denom_by_total_pop;
SELECT 'us.zillow.AllHomes_Zhvi' IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'us.census.tiger.zcta5'
) WHERE valid_geom = True)
AS _obs_getavailablenumerators_zillow_at_zcta5;
SELECT 'us.zillow.AllHomes_Zhvi' NOT IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'us.census.tiger.block_group'
) WHERE valid_geom = True)
AS _obs_getavailablenumerators_no_zillow_at_block_group;
SELECT 'us.census.acs.B01003001' IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, '2010 - 2014'
) WHERE valid_timespan = True)
AS _obs_getavailablenumerators_total_pop_2010_2014;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, '1996'
) WHERE valid_timespan = True)
AS _obs_getavailablenumerators_no_total_pop_1996;
--
-- OBS_GetAvailableDenominators tests
--
SELECT 'us.census.acs.B01003001' IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators())
AS _obs_getavailabledenominators_usa_pop_in_all;
SELECT 'us.census.acs.B01003001' IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailabledenominators_usa_pop_in_nyc_point;
SELECT 'us.census.acs.B01003001' IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakeEnvelope(
-169.8046875, 21.289374355860424,
-47.4609375, 72.0739114882038
), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailabledenominators_usa_pop_in_usa_extents;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(0, 0), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailabledenominators_no_usa_pop_not_in_zero_point;
SELECT 'us.census.acs.B01003001' IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
ARRAY['subsection/tags.age_gender']
))
AS _obs_getavailabledenominators_usa_pop_in_age_gender_subsection;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
ARRAY['subsection/tags.income']
))
AS _obs_getavailabledenominators_no_pop_in_income_subsection;
SELECT 'us.census.acs.B01003001' IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'us.census.acs.B01001002'
) WHERE valid_numer = True)
AS _obs_getavailabledenominators_male_pop_denom_by_total_pop;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'us.census.acs.B19013001'
) WHERE valid_numer = True)
AS _obs_getavailabledenominators_no_income_denom_by_total_pop;
SELECT 'us.census.acs.B01003001' IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'us.census.tiger.zcta5'
) WHERE valid_geom = True)
AS _obs_getavailabledenominators_at_zcta5;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'es.ine.the_geom'
) WHERE valid_geom = True)
AS _obs_getavailabledenominators_none_spanish_geom;
SELECT 'us.census.acs.B01003001' IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, '2010 - 2014'
) WHERE valid_timespan = True)
AS _obs_getavailabledenominators_total_pop_2010_2014;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, '1996'
) WHERE valid_timespan = True)
AS _obs_getavailabledenominators_no_total_pop_1996;
--
-- OBS_GetAvailableGeometries tests
--
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries())
AS _obs_getavailablegeometries_usa_bg_in_all;
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailablegeometries_usa_bg_in_nyc_point;
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakeEnvelope(
-169.8046875, 21.289374355860424,
-47.4609375, 72.0739114882038
), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailablegeometries_usa_bg_in_usa_extents;
SELECT 'us.census.tiger.block_group' NOT IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(0, 0), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailablegeometries_no_usa_bg_not_in_zero_point;
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
ARRAY['subsection/tags.boundary']
))
AS _obs_getavailablegeometries_usa_bg_in_boundary_subsection;
SELECT 'us.census.tiger.block_group' NOT IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
ARRAY['section/tags.uk']
))
AS _obs_getavailablegeometries_no_bg_in_uk_section;
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'us.census.acs.B01003001'
) WHERE valid_numer = True)
AS _obs_getavailablegeometries_total_pop_in_usa_bg;
SELECT 'us.census.tiger.block_group' NOT IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'foo.bar.baz'
) WHERE valid_numer = True)
AS _obs_getavailablegeometries_foobarbaz_not_in_usa_bg;
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'us.census.acs.B01003001'
) WHERE valid_denom = True)
AS _obs_getavailablegeometries_total_pop_denom_in_usa_bg;
SELECT 'us.census.tiger.block_group' NOT IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'foo.bar.baz'
) WHERE valid_denom = True)
AS _obs_getavailablegeometries_foobarbaz_denom_not_in_usa_bg;
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, '2015'
) WHERE valid_timespan = True)
AS _obs_getavailablegeometries_bg_2015;
SELECT 'us.census.tiger.block_group' NOT IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, '1996'
) WHERE valid_timespan = True)
AS _obs_getavailablegeometries_bg_not_1996;
--
-- OBS_GetAvailableTimespans tests
--
SELECT '2010 - 2014' IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans())
AS _obs_getavailabletimespans_2010_2014_in_all;
SELECT '2010 - 2014' IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailabletimespans_2010_2014_in_nyc_point;
SELECT '2010 - 2014' IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_SetSRID(ST_MakeEnvelope(
-169.8046875, 21.289374355860424,
-47.4609375, 72.0739114882038
), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailabletimespans_2010_2014_in_usa_extents;
SELECT '2010 - 2014' NOT IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_SetSRID(ST_MakePoint(0, 0), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailabletimespans_no_usa_bg_not_in_zero_point;
SELECT '2010 - 2014' IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'us.census.acs.B01003001'
) WHERE valid_numer = True)
AS _obs_getavailabletimespans_total_pop_in_2010_2014;
SELECT '2010 - 2014' NOT IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'foo.bar.baz'
) WHERE valid_numer = True)
AS _obs_getavailabletimespans_foobarbaz_not_in_2010_2014;
SELECT '2010 - 2014' IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'us.census.acs.B01003001'
) WHERE valid_denom = True)
AS _obs_getavailablegeometries_total_pop_denom_in_2010_2014;
SELECT '2010 - 2014' NOT IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'foo.bar.baz'
) WHERE valid_denom = True)
AS _obs_getavailablegeometries_foobarbaz_denom_not_in_2010_2014;
--
-- _OBS_GetGeometryScores tests
--
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.county', 'us.census.tiger.zcta5']
AS _obs_geometryscores_500m_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 500)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.county', 'us.census.tiger.zcta5'])
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']
AS _obs_geometryscores_5km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 5000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.county', 'us.census.tiger.zcta5'])
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.census_tract', 'us.census.tiger.block_group',
'us.census.tiger.zcta5', 'us.census.tiger.county']
AS _obs_geometryscores_50km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY[ 'us.census.tiger.zcta5', 'us.census.tiger.census_tract',
'us.census.tiger.county', 'us.census.tiger.block_group' ]
AS _obs_geometryscores_500km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 500000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.county', 'us.census.tiger.zcta5',
'us.census.tiger.census_tract', 'us.census.tiger.block_group']
AS _obs_geometryscores_2500km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 2500000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT JSON_Object_Agg(column_id, numgeoms::int ORDER BY numgeoms DESC)::Text
= '{ "us.census.tiger.block_group" : 9, "us.census.tiger.census_tract" : 3, "us.census.tiger.zcta5" : 0, "us.census.tiger.county" : 0 }'
AS _obs_geometryscores_numgeoms_500m_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 500)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT JSON_Object_Agg(column_id, numgeoms::int ORDER BY numgeoms DESC)::Text =
'{ "us.census.tiger.block_group" : 880, "us.census.tiger.census_tract" : 310, "us.census.tiger.zcta5" : 45, "us.census.tiger.county" : 1 }'
AS _obs_geometryscores_numgeoms_5km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 5000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT JSON_Object_Agg(column_id, numgeoms::int ORDER BY numgeoms DESC)::Text =
'{ "us.census.tiger.block_group" : 11531, "us.census.tiger.census_tract" : 3601, "us.census.tiger.zcta5" : 550, "us.census.tiger.county" : 14 }'
AS _obs_geometryscores_numgeoms_50km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT JSON_Object_Agg(column_id, numgeoms::int ORDER BY numgeoms DESC)::Text =
'{ "us.census.tiger.block_group" : 48917, "us.census.tiger.census_tract" : 15969, "us.census.tiger.zcta5" : 6534, "us.census.tiger.county" : 314 }'
AS _obs_geometryscores_numgeoms_500km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 500000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT JSON_Object_Agg(column_id, numgeoms::int ORDER BY numgeoms DESC)::Text =
'{ "us.census.tiger.block_group" : 169191, "us.census.tiger.census_tract" : 56469, "us.census.tiger.zcta5" : 26525, "us.census.tiger.county" : 2753 }'
AS _obs_geometryscores_numgeoms_2500km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 2500000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.county', 'us.census.tiger.zcta5',
'us.census.tiger.census_tract', 'us.census.tiger.block_group']
AS _obs_geometryscores_500km_buffer_50_geoms
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'], 50)
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC)
= ARRAY['us.census.tiger.zcta5', 'us.census.tiger.census_tract',
'us.census.tiger.county', 'us.census.tiger.block_group']
AS _obs_geometryscores_500km_buffer_500_geoms
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'], 500)
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.census_tract', 'us.census.tiger.block_group',
'us.census.tiger.zcta5', 'us.census.tiger.county']
AS _obs_geometryscores_500km_buffer_2500_geoms
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'], 2500)
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']
AS _obs_geometryscores_500km_buffer_25000_geoms
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'], 25000)
WHERE table_id LIKE '%2015%';
--
-- OBS_LegacyBuilderMetadata tests
--
SELECT 'us.census.acs.B01003001' IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata()
) AS _total_pop_in_legacy_builder_metadata;
SELECT 'us.census.acs.B19013001' IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata()
) AS _median_income_in_legacy_builder_metadata;
SELECT 'us.census.acs.B19083001' IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata()
) AS _gini_in_legacy_builder_metadata;
SELECT 'us.census.acs.B01003001' IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata('sum')
) AS _total_pop_in_legacy_builder_metadata_sums;
SELECT 'us.census.acs.B19013001' IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata('sum')
) AS _median_income_in_legacy_builder_metadata_sums;
SELECT 'us.census.acs.B19083001' NOT IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata('sum')
) AS _gini_not_in_legacy_builder_metadata_sums;
SELECT COUNT(*) = 0 _no_dupe_subsections_in_legacy_builder_metadata FROM (
SELECT name, subsection, count(*) FROM
(SELECT name, ((JSONB_Array_Elements(subsection))->'f1')->>'id' subsection
FROM cdb_observatory.obs_legacybuildermetadata()) foo
GROUP BY name, subsection
HAVING count(*) > 1
) bar;

View File

@@ -1,6 +1,6 @@
\pset format unaligned
\set ECHO all
\i test/fixtures/load_fixtures.sql
\set ECHO none
SET client_min_messages TO WARNING;
-- set up variables for use in testing
@@ -34,7 +34,7 @@ SELECT cdb_observatory.OBS_GetBoundary(
-- expect null geometry since there are no census tracts at null island
-- timespan implictly null
SELECT cdb_observatory.OBS_GetBoundary(
CDB_LatLng(0, 0),
ST_SetSRID(ST_MakePoint(0, 0), 4326),
'us.census.tiger.census_tract'
) IS NULL As OBS_GetBoundary_null_island_census_tract;
@@ -42,7 +42,7 @@ SELECT cdb_observatory.OBS_GetBoundary(
SELECT cdb_observatory.OBS_GetBoundary(
cdb_observatory._TestPoint(),
'us.census.tiger.census_tract',
'2014'
'2015'
) = :'cartodb_census_tract_geometry' As OBS_GetBoundary_year_census_tract;
-- should return null
@@ -65,7 +65,7 @@ SELECT cdb_observatory.OBS_GetBoundaryId(
SELECT cdb_observatory.OBS_GetBoundaryId(
cdb_observatory._TestPoint(),
'us.census.tiger.census_tract',
'2014'
'2015'
) = '36047048500'::text As OBS_GetBoundaryId_cartodb_census_tract_with_year;
-- should give back '36047', the geoid of cartodb's county (King's/
@@ -73,12 +73,12 @@ SELECT cdb_observatory.OBS_GetBoundaryId(
SELECT cdb_observatory.OBS_GetBoundaryId(
cdb_observatory._TestPoint(),
'us.census.tiger.county',
'2014'
'2015'
) = '36047'::text As OBS_GetBoundaryId_cartodb_county_with_year;
-- should give back null since there is not a census tract at null island
SELECT cdb_observatory.OBS_GetBoundaryId(
CDB_LatLng(0, 0),
ST_SetSRID(ST_MakePoint(0, 0), 4326),
'us.census.tiger.census_tract'
) IS NULL As OBS_GetBoundaryId_null_island;
@@ -104,7 +104,7 @@ SELECT cdb_observatory.OBS_GetBoundaryById(
SELECT cdb_observatory.OBS_GetBoundaryById(
'36047',
'us.census.tiger.county',
'2014'
'2015'
) = :'cartodb_county_geometry' OBS_GetBoundaryById_boundary_id_mismatch_geom_id;
-- should give null since boundary_id does not match geometry reference id
@@ -115,6 +115,34 @@ SELECT cdb_observatory.OBS_GetBoundaryById(
-- _OBS_GetBoundariesByGeometry
SELECT array_agg(geom_refs) = Array[ '1104486618765', '1104486642837',
'1104991798384', '1105044325367',
'1105089330200', '1105089331758']
As _OBS_GetBoundariesByGeometry_roads_around_cartodb
FROM (
SELECT *
FROM cdb_observatory._OBS_GetBoundariesByGeometry(
-- near CartoDB's office
ST_MakeEnvelope(-74,40.69,-73.99,40.7,
4326),
'us.census.tiger.prisecroads_geom')
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
SELECT
array_agg(geom_refs) = Array['1102654301684', '1102654307106',
'1102654326686', '1102654351507' ]
As _OBS_GetBoundariesByGeometry_points_around_cartodb
FROM (
SELECT *
FROM cdb_observatory._OBS_GetBoundariesByGeometry(
-- near CartoDB's office
ST_MakeEnvelope(-73.9452409744,40.6988851644,-73.9280319214,40.7101254524,
4326),
'us.census.tiger.pointlm_geom')
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
-- check that all census tracts intersecting with the geometry are returned
-- order them to ensure that the same values are returned
SELECT
@@ -270,7 +298,7 @@ FROM (
-73.9280319214,40.7101254524,
4326),
'us.census.tiger.census_tract',
'2014')
'2015')
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
@@ -313,7 +341,7 @@ FROM (
cdb_observatory._testpoint(),
500,
'us.census.tiger.census_tract',
'2014')
'2015')
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
@@ -330,21 +358,4 @@ FROM (
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
-- _OBS_GetGeometryMetadata
-- get metadata for census tracts
SELECT
geoid_colname = 'geoid' As geoid_name_matches,
target_table = 'obs_fc050f0b8673cfe3c6aa1040f749eb40975691b7' As table_name_matches,
geom_colname = 'the_geom' As geom_name_matches
FROM cdb_observatory._OBS_GetGeometryMetadata('us.census.tiger.census_tract')
As m(geoid_colname, target_table, geom_colname);
-- get metadata for boundaries with clipped geometries
SELECT
geoid_colname = 'geoid' As geoid_name_matches,
target_table = 'obs_fcd4e4f5610f6764973ef8c0c215b2e80bec8963' As table_name_matches,
geom_colname = 'the_geom' As geom_name_matches
FROM cdb_observatory._OBS_GetGeometryMetadata('us.census.tiger.census_tract_clipped') As m(geoid_colname, target_table, geom_colname);
\i test/fixtures/drop_fixtures.sql

View File

@@ -0,0 +1,4 @@
nose
nose-timer
nose_parameterized
psycopg2

14
src/python/test/README.md Normal file
View File

@@ -0,0 +1,14 @@
### Integration/performance tests
Tests here are meant to be run on a box with an Observatory meta/data dump
loaded and ready to be tested against the API.
The local Python needs the requirements in `src/python/requirements.txt`.
In order to find and access the correct database, the `PGUSER`, `PGPASSWORD`,
`PGHOST`, `PGPORT` and `PGDATABASE` env variables should be set.
Tests should be executed as follows:
nosetests test/autotest.py
nosetests -s test/perftest.py

372
src/python/test/autotest.py Normal file
View File

@@ -0,0 +1,372 @@
from nose.tools import assert_equal, assert_is_not_none
from nose.plugins.skip import SkipTest
from nose_parameterized import parameterized
from itertools import izip_longest
from util import query
from collections import OrderedDict
import json
def grouper(iterable, n, fillvalue=None):
"Collect data into fixed-length chunks or blocks"
# grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx
args = [iter(iterable)] * n
return izip_longest(fillvalue=fillvalue, *args)
USE_SCHEMA = True
SKIP_COLUMNS = set([
u'mx.inegi_columns.INDI18',
u'mx.inegi_columns.ECO40',
u'mx.inegi_columns.POB34',
u'mx.inegi_columns.POB63',
u'mx.inegi_columns.INDI7',
u'mx.inegi_columns.EDU28',
u'mx.inegi_columns.SCONY10',
u'mx.inegi_columns.EDU31',
u'mx.inegi_columns.POB7',
u'mx.inegi_columns.VIV30',
u'mx.inegi_columns.INDI12',
u'mx.inegi_columns.EDU13',
u'mx.inegi_columns.ECO43',
u'mx.inegi_columns.VIV9',
u'mx.inegi_columns.HOGAR25',
u'mx.inegi_columns.POB32',
u'mx.inegi_columns.ECO7',
u'mx.inegi_columns.INDI19',
u'mx.inegi_columns.INDI16',
u'mx.inegi_columns.POB65',
u'mx.inegi_columns.INDI3',
u'mx.inegi_columns.INDI9',
u'mx.inegi_columns.POB36',
u'mx.inegi_columns.POB33',
u'mx.inegi_columns.POB58',
u'mx.inegi_columns.DISC4',
u'mx.inegi_columns.VIV41',
u'mx.inegi_columns.VIV40',
u'mx.inegi_columns.VIV17',
u'mx.inegi_columns.VIV25',
u'mx.inegi_columns.EDU10',
u'whosonfirst.wof_disputed_name',
u'us.census.tiger.fullname',
u'whosonfirst.wof_marinearea_name',
u'us.census.tiger.mtfcc',
u'whosonfirst.wof_county_name',
u'whosonfirst.wof_region_name',
'fr.insee.P12_RP_CHOS', 'fr.insee.P12_RP_HABFOR'
, 'fr.insee.P12_RP_EAUCH', 'fr.insee.P12_RP_BDWC'
, 'fr.insee.P12_RP_MIDUR', 'fr.insee.P12_RP_CLIM'
, 'fr.insee.P12_RP_MIBOIS', 'fr.insee.P12_RP_CASE'
, 'fr.insee.P12_RP_TTEGOU', 'fr.insee.P12_RP_ELEC'
, 'fr.insee.P12_ACTOCC15P_ILT45D'
, 'fr.insee.P12_RP_CHOS', 'fr.insee.P12_RP_HABFOR'
, 'fr.insee.P12_RP_EAUCH', 'fr.insee.P12_RP_BDWC'
, 'fr.insee.P12_RP_MIDUR', 'fr.insee.P12_RP_CLIM'
, 'fr.insee.P12_RP_MIBOIS', 'fr.insee.P12_RP_CASE'
, 'fr.insee.P12_RP_TTEGOU', 'fr.insee.P12_RP_ELEC'
, 'fr.insee.P12_ACTOCC15P_ILT45D'
, 'uk.ons.LC3202WA0007'
, 'uk.ons.LC3202WA0010'
, 'uk.ons.LC3202WA0004'
, 'uk.ons.LC3204WA0004'
, 'uk.ons.LC3204WA0007'
, 'uk.ons.LC3204WA0010'
])
MEASURE_COLUMNS = query('''
SELECT ARRAY_AGG(DISTINCT numer_id) numer_ids,
numer_aggregate,
denom_reltype,
section_tags
FROM observatory.obs_meta
WHERE numer_weight > 0
AND numer_id NOT IN ('{skip}')
AND section_tags IS NOT NULL
AND subsection_tags IS NOT NULL
GROUP BY numer_aggregate, section_tags, denom_reltype
'''.format(skip="', '".join(SKIP_COLUMNS))).fetchall()
#CATEGORY_COLUMNS = query('''
#SELECT distinct numer_id
#FROM observatory.obs_meta
#WHERE numer_type ILIKE 'text'
#AND numer_weight > 0
#''').fetchall()
#
#BOUNDARY_COLUMNS = query('''
#SELECT id FROM observatory.obs_column
#WHERE type ILIKE 'geometry'
#AND weight > 0
#''').fetchall()
#
#US_CENSUS_MEASURE_COLUMNS = query('''
#SELECT distinct numer_name
#FROM observatory.obs_meta
#WHERE numer_type ILIKE 'numeric'
#AND 'us.census.acs' = ANY (subsection_tags)
#AND numer_weight > 0
#''').fetchall()
#def default_geometry_id(column_id):
# '''
# Returns default test point for the column_id.
# '''
# if column_id == 'whosonfirst.wof_disputed_geom':
# return 'ST_SetSRID(ST_MakePoint(76.57, 33.78), 4326)'
# elif column_id == 'whosonfirst.wof_marinearea_geom':
# return 'ST_SetSRID(ST_MakePoint(-68.47, 43.33), 4326)'
# elif column_id in ('us.census.tiger.school_district_elementary',
# 'us.census.tiger.school_district_secondary',
# 'us.census.tiger.school_district_elementary_clipped',
# 'us.census.tiger.school_district_secondary_clipped'):
# return 'ST_SetSRID(ST_MakePoint(-73.7067, 40.7025), 4326)'
# elif column_id.startswith('es.ine'):
# return 'ST_SetSRID(ST_MakePoint(-2.51141249535454, 42.8226119029222), 4326)'
# elif column_id.startswith('us.zillow'):
# return 'ST_SetSRID(ST_MakePoint(-81.3544048197256, 28.3305906291771), 4326)'
# elif column_id.startswith('ca.'):
# return ''
# else:
# return 'ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)'
def default_lonlat(column_id):
'''
Returns default test point for the column_id.
'''
if column_id == 'whosonfirst.wof_disputed_geom':
return (76.57, 33.78)
elif column_id == 'whosonfirst.wof_marinearea_geom':
return (-68.47, 43.33)
elif column_id in ('us.census.tiger.school_district_elementary',
'us.census.tiger.school_district_secondary',
'us.census.tiger.school_district_elementary_clipped',
'us.census.tiger.school_district_secondary_clipped'):
return (40.7025, -73.7067)
elif column_id.startswith('uk'):
if 'WA' in column_id:
return (51.46844551219723, -3.184833526611328)
else:
return (51.51461834694225, -0.08883476257324219)
elif column_id.startswith('es'):
return (42.8226119029222, -2.51141249535454)
elif column_id.startswith('us.zillow'):
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('mx.'):
return (19.41347699386547, -99.17019367218018)
elif column_id.startswith('th.'):
return (13.725377712079784, 100.49263000488281)
# cols for French Guyana only
#elif column_id in ('fr.insee.P12_RP_CHOS', 'fr.insee.P12_RP_HABFOR'
# , 'fr.insee.P12_RP_EAUCH', 'fr.insee.P12_RP_BDWC'
# , 'fr.insee.P12_RP_MIDUR', 'fr.insee.P12_RP_CLIM'
# , 'fr.insee.P12_RP_MIBOIS', 'fr.insee.P12_RP_CASE'
# , 'fr.insee.P12_RP_TTEGOU', 'fr.insee.P12_RP_ELEC'
# , 'fr.insee.P12_ACTOCC15P_ILT45D'
# , 'fr.insee.P12_RP_CHOS', 'fr.insee.P12_RP_HABFOR'
# , 'fr.insee.P12_RP_EAUCH', 'fr.insee.P12_RP_BDWC'
# , 'fr.insee.P12_RP_MIDUR', 'fr.insee.P12_RP_CLIM'
# , 'fr.insee.P12_RP_MIBOIS', 'fr.insee.P12_RP_CASE'
# , 'fr.insee.P12_RP_TTEGOU', 'fr.insee.P12_RP_ELEC'
# , 'fr.insee.P12_ACTOCC15P_ILT45D'):
# return (4.938408371206558, -52.32908248901367)
elif column_id.startswith('fr.'):
return (48.860875144709475, 2.3613739013671875)
elif column_id.startswith('ca.'):
return (43.65594991256823, -79.37965393066406)
elif column_id.startswith('us.census.'):
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('us.dma.'):
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('us.ihme.'):
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('us.bls.'):
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('us.qcew.'):
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('whosonfirst.'):
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('us.epa.'):
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('eu.'):
raise SkipTest('No tests for Eurostat!')
elif column_id.startswith('br.'):
return (-23.53, -46.63)
elif column_id.startswith('au.'):
return (-33.8806, 151.2131)
else:
raise Exception('No catalog point set for {}'.format(column_id))
def default_point(column_id):
lat, lng = default_lonlat(column_id)
return 'ST_SetSRID(ST_MakePoint({lng}, {lat}), 4326)'.format(
lat=lat, lng=lng)
def default_area(column_id):
'''
Returns default test area for the column_id
'''
point = default_point(column_id)
area = 'ST_Transform(ST_Buffer(ST_Transform({point}, 3857), 250), 4326)'.format(
point=point)
return area
#@parameterized(US_CENSUS_MEASURE_COLUMNS)
#def test_get_us_census_measure_points(name):
# resp = query('''
#SELECT * FROM {schema}OBS_GetUSCensusMeasure({point}, '{name}')
# '''.format(name=name.replace("'", "''"),
# schema='cdb_observatory.' if USE_SCHEMA else '',
# point=default_point('')))
# rows = resp.fetchall()
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
def grouped_measure_columns():
for numer_ids, numer_aggregate, denom_reltype, section_tags in MEASURE_COLUMNS:
for colgroup in grouper(numer_ids, 50):
yield [c for c in colgroup if c], numer_aggregate, denom_reltype, section_tags
@parameterized(grouped_measure_columns())
def test_get_measure_points(numer_ids, numer_aggregate, denom_reltype, section_tags):
_test_measures(numer_ids, numer_aggregate, section_tags, denom_reltype, default_point(numer_ids[0]))
@parameterized(grouped_measure_columns())
def test_get_measure_areas(numer_ids, numer_aggregate, denom_reltype, section_tags):
if numer_aggregate is None or numer_aggregate.lower() not in ('sum', 'median', 'average'):
return
if numer_aggregate.lower() in ('median', 'average') \
and (denom_reltype is None \
or denom_reltype.lower() != 'universe'):
return
_test_measures(numer_ids, numer_aggregate, section_tags, denom_reltype, default_area(numer_ids[0]))
def _test_measures(numer_ids, numer_aggregate, section_tags, denom_reltype, geom):
in_params = []
for numer_id in numer_ids:
in_params.append({
'numer_id': numer_id,
'normalization': 'predenominated'
})
params = query(u'''
SELECT {schema}OBS_GetMeta({geom}, '{in_params}')
'''.format(schema='cdb_observatory.' if USE_SCHEMA else '',
geom=geom,
in_params=json.dumps(in_params))).fetchone()[0]
# We can get duplicate IDs from multi-denominators, so for now we
# compress those measures into a single
params = OrderedDict([(p['id'], p) for p in params]).values()
assert_equal(len(params), len(in_params),
'Inconsistent out and in params for {}'.format(in_params))
q = u'''
SELECT * FROM {schema}OBS_GetData(ARRAY[({geom}, 1)::geomval], '{params}')
'''.format(schema='cdb_observatory.' if USE_SCHEMA else '',
geom=geom,
params=json.dumps(params).replace(u"'", "''"))
resp = query(q).fetchone()
assert_is_not_none(resp, 'NULL returned for {}'.format(in_params))
rawvals = resp[1]
vals = [v['value'] for v in rawvals]
assert_equal(len(vals), len(in_params))
for i, val in enumerate(vals):
assert_is_not_none(val, 'NULL for {}'.format(in_params[i]['numer_id']))
#@parameterized(CATEGORY_COLUMNS)
#def test_get_category_areas(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetCategory({area}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# area=default_area(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
#@parameterized(CATEGORY_COLUMNS)
#def test_get_category_points(column_id):
# if column_id in SKIP_COLUMNS:
# raise SkipTest('Column {} should be skipped'.format(column_id))
# resp = query('''
#SELECT * FROM {schema}OBS_GetCategory({point}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# point=default_point(column_id)))
# rows = resp.fetchall()
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundaries_by_geometry(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundariesByGeometry({area}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# area=default_area(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_points_by_geometry(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetPointsByGeometry({area}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# area=default_area(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundary_points(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundary({point}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# point=default_point(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundary_id(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundaryId({point}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# point=default_point(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundary_by_id(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundaryById({geometry_id}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# geometry_id=default_geometry_id(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])

352
src/python/test/perftest.py Normal file
View File

@@ -0,0 +1,352 @@
from nose.tools import assert_equal, assert_is_not_none
from nose_parameterized import parameterized
from util import query, commit
from time import time
import json
import os
USE_SCHEMA = True
for q in (
'DROP TABLE IF EXISTS obs_perftest_simple',
'''CREATE TABLE obs_perftest_simple (cartodb_id SERIAL PRIMARY KEY,
point GEOMETRY,
geom GEOMETRY,
offset_geom GEOMETRY,
name TEXT, measure NUMERIC, category TEXT)''',
'''INSERT INTO obs_perftest_simple (point, geom, offset_geom, name)
SELECT ST_PointOnSurface(the_geom) point,
the_geom geom,
ST_Translate(the_geom, -0.1, 0.1) offset_geom,
geom_refs AS name
FROM (SELECT * FROM {schema}OBS_GetBoundariesByGeometry(
st_makeenvelope(-74.1, 40.5,
-73.8, 40.9, 4326),
'us.census.tiger.census_tract_clipped')) foo
ORDER BY ST_NPoints(the_geom) ASC
LIMIT 1000''',
'DROP TABLE IF EXISTS obs_perftest_complex',
'''CREATE TABLE obs_perftest_complex (cartodb_id SERIAL PRIMARY KEY,
point GEOMETRY,
geom GEOMETRY,
offset_geom GEOMETRY,
name TEXT, measure NUMERIC, category TEXT)''',
'''INSERT INTO obs_perftest_complex (point, geom, offset_geom, name)
SELECT ST_PointOnSurface(the_geom) point,
the_geom geom,
ST_Translate(the_geom, -0.1, 0.1) offset_geom,
geom_refs AS name
FROM (SELECT * FROM {schema}OBS_GetBoundariesByGeometry(
st_makeenvelope(-75.05437469482422,40.66319159533881,
-73.81885528564453,41.745696344339564, 4326),
'us.census.tiger.county_clipped')) foo
ORDER BY ST_NPoints(the_geom) DESC
LIMIT 50;''',
'DROP TABLE IF EXISTS obs_perftest_country_simple',
'''CREATE TABLE obs_perftest_country_simple (cartodb_id SERIAL PRIMARY KEY,
geom GEOMETRY,
name TEXT) ''',
'''INSERT INTO obs_perftest_country_simple (geom, name)
SELECT the_geom geom,
geom_refs AS name
FROM (SELECT * FROM {schema}OBS_GetBoundariesByGeometry(
st_makeenvelope(-179,-89, 179,89, 4326),
'whosonfirst.wof_country_geom')) foo
ORDER BY ST_NPoints(the_geom) ASC
LIMIT 50;''',
'DROP TABLE IF EXISTS obs_perftest_country_complex',
'''CREATE TABLE obs_perftest_country_complex (cartodb_id SERIAL PRIMARY KEY,
geom GEOMETRY,
name TEXT) ''',
'''INSERT INTO obs_perftest_country_complex (geom, name)
SELECT the_geom geom,
geom_refs AS name
FROM (SELECT * FROM {schema}OBS_GetBoundariesByGeometry(
st_makeenvelope(-179,-89, 179,89, 4326),
'whosonfirst.wof_country_geom')) foo
ORDER BY ST_NPoints(the_geom) DESC
LIMIT 50;''',
#'''SET statement_timeout = 5000;'''
):
q_formatted = q.format(
schema='cdb_observatory.' if USE_SCHEMA else '',
)
start = time()
resp = query(q_formatted)
end = time()
print('{} for {}'.format(int(end - start), q_formatted))
if q.lower().startswith('insert'):
if resp.rowcount == 0:
raise Exception('''Performance fixture creation "{}" inserted 0 rows,
this will break tests. Check the query to determine
what is going wrong.'''.format(q_formatted))
commit()
ARGS = {
('OBS_GetMeasureByID', None): "name, 'us.census.acs.B01001002', '{}'",
('OBS_GetMeasure', 'predenominated'): "{}, 'us.census.acs.B01003001', null, {}",
('OBS_GetMeasure', 'area'): "{}, 'us.census.acs.B01001002', 'area', {}",
('OBS_GetMeasure', 'denominator'): "{}, 'us.census.acs.B01001002', 'denominator', {}",
('OBS_GetCategory', None): "{}, 'us.census.spielman_singleton_segments.X10', {}",
('_OBS_GetGeometryScores', None): "{}, NULL"
}
def record(params, results):
sha = os.environ['OBS_EXTENSION_SHA']
msg = os.environ.get('OBS_EXTENSION_MSG')
fpath = os.path.join(os.environ['OBS_PERFTEST_DIR'], sha + '.json')
if os.path.isfile(fpath):
tests = json.load(open(fpath, 'r'))
else:
tests = {}
with open(fpath, 'w') as fhandle:
tests[json.dumps(params)] = {
'params': params,
'results': results
}
json.dump(tests, fhandle)
@parameterized([
('simple', '_OBS_GetGeometryScores', 'NULL', 1),
('simple', '_OBS_GetGeometryScores', 'NULL', 500),
('simple', '_OBS_GetGeometryScores', 'NULL', 3000),
('complex', '_OBS_GetGeometryScores', 'NULL', 1),
('complex', '_OBS_GetGeometryScores', 'NULL', 500),
('complex', '_OBS_GetGeometryScores', 'NULL', 3000),
('country_simple', '_OBS_GetGeometryScores', 'NULL', 1),
('country_simple', '_OBS_GetGeometryScores', 'NULL', 500),
('country_simple', '_OBS_GetGeometryScores', 'NULL', 5000),
('country_complex', '_OBS_GetGeometryScores', 'NULL', 1),
('country_complex', '_OBS_GetGeometryScores', 'NULL', 500),
('country_complex', '_OBS_GetGeometryScores', 'NULL', 5000),
])
def test_getgeometryscores_performance(geom_complexity, api_method, filters, target_geoms):
print api_method, geom_complexity, filters, target_geoms
rownums = (1, 5, 10, ) if 'complex' in geom_complexity else (5, 25, 50,)
results = []
for rows in rownums:
stmt = '''SELECT {schema}{api_method}(geom, {filters}, {target_geoms})
FROM obs_perftest_{complexity}
WHERE cartodb_id <= {n}'''.format(
complexity=geom_complexity,
schema='cdb_observatory.' if USE_SCHEMA else '',
api_method=api_method,
filters=filters,
target_geoms=target_geoms,
n=rows)
start = time()
query(stmt)
end = time()
qps = (rows / (end - start))
results.append({
'rows': rows,
'qps': qps,
'stmt': stmt
})
print rows, ': ', qps, ' QPS'
if 'OBS_RECORD_TEST' in os.environ:
record({
'geom_complexity': geom_complexity,
'api_method': api_method,
'filters': filters,
'target_geoms': target_geoms
}, results)
@parameterized([
('simple', 'OBS_GetMeasureByID', None, 'us.census.tiger.census_tract', None),
('complex', 'OBS_GetMeasureByID', None, 'us.census.tiger.county', None),
('simple', 'OBS_GetMeasure', 'predenominated', 'point', 'NULL'),
('simple', 'OBS_GetMeasure', 'predenominated', 'geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'predenominated', 'offset_geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'area', 'point', 'NULL'),
('simple', 'OBS_GetMeasure', 'area', 'geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'area', 'offset_geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'denominator', 'point', 'NULL'),
('simple', 'OBS_GetMeasure', 'denominator', 'geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'denominator', 'offset_geom', 'NULL'),
('simple', 'OBS_GetCategory', None, 'point', 'NULL'),
('simple', 'OBS_GetCategory', None, 'geom', 'NULL'),
('simple', 'OBS_GetCategory', None, 'offset_geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'predenominated', 'point', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'predenominated', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'predenominated', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'area', 'point', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'area', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'area', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'denominator', 'point', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'denominator', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'denominator', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetCategory', None, 'point', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetCategory', None, 'geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetCategory', None, 'offset_geom', "'us.census.tiger.census_tract'"),
('complex', 'OBS_GetMeasure', 'predenominated', 'geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'predenominated', 'offset_geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'area', 'geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'area', 'offset_geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'denominator', 'geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'denominator', 'offset_geom', 'NULL'),
('complex', 'OBS_GetCategory', None, 'geom', 'NULL'),
('complex', 'OBS_GetCategory', None, 'offset_geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'predenominated', 'geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'predenominated', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'area', 'geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'area', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'denominator', 'geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'denominator', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetCategory', None, 'geom', "'us.census.tiger.census_tract'"),
('complex', 'OBS_GetCategory', None, 'offset_geom', "'us.census.tiger.census_tract'"),
])
def test_getmeasure_performance(geom_complexity, api_method, normalization, geom, boundary):
print api_method, geom_complexity, normalization, geom, boundary
col = 'measure' if 'measure' in api_method.lower() else 'category'
results = []
rownums = (1, 5, 10, ) if geom_complexity == 'complex' else (5, 25, 50, )
for rows in rownums:
stmt = '''UPDATE obs_perftest_{complexity}
SET {col} = {schema}{api_method}({args})
WHERE cartodb_id <= {n}'''.format(
col=col,
complexity=geom_complexity,
schema='cdb_observatory.' if USE_SCHEMA else '',
api_method=api_method,
args=ARGS[api_method, normalization].format(geom, boundary),
n=rows)
start = time()
query(stmt)
end = time()
qps = (rows / (end - start))
results.append({
'rows': rows,
'qps': qps,
'stmt': stmt
})
print rows, ': ', qps, ' QPS'
if 'OBS_RECORD_TEST' in os.environ:
record({
'geom_complexity': geom_complexity,
'api_method': api_method,
'normalization': normalization,
'boundary': boundary,
'geom': geom
}, results)
@parameterized([
('simple', 'predenominated', 'point', 'null'),
('simple', 'predenominated', 'geom', 'null'),
('simple', 'predenominated', 'offset_geom', 'null'),
('simple', 'area', 'point', 'null'),
('simple', 'area', 'geom', 'null'),
('simple', 'area', 'offset_geom', 'null'),
('simple', 'denominator', 'point', 'null'),
('simple', 'denominator', 'geom', 'null'),
('simple', 'denominator', 'offset_geom', 'null'),
('simple', 'predenominated', 'point', "'us.census.tiger.census_tract'"),
('simple', 'predenominated', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'predenominated', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'area', 'point', "'us.census.tiger.census_tract'"),
('simple', 'area', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'area', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'denominator', 'point', "'us.census.tiger.census_tract'"),
('simple', 'denominator', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'denominator', 'offset_geom', "'us.census.tiger.census_tract'"),
('complex', 'predenominated', 'geom', 'null'),
('complex', 'predenominated', 'offset_geom', 'null'),
('complex', 'area', 'geom', 'null'),
('complex', 'area', 'offset_geom', 'null'),
('complex', 'denominator', 'geom', 'null'),
('complex', 'denominator', 'offset_geom', 'null'),
('complex', 'predenominated', 'geom', "'us.census.tiger.county'"),
('complex', 'predenominated', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'area', 'geom', "'us.census.tiger.county'"),
('complex', 'area', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'denominator', 'geom', "'us.census.tiger.county'"),
('complex', 'denominator', 'offset_geom', "'us.census.tiger.county'"),
])
def test_getdata_performance(geom_complexity, normalization, geom, boundary):
print geom_complexity, normalization, geom, boundary
cols = ['us.census.acs.B01001002',
'us.census.acs.B01001003',
'us.census.acs.B01001004',
'us.census.acs.B01001005',
'us.census.acs.B01001006',
'us.census.acs.B01001007',
'us.census.acs.B01001008',
'us.census.acs.B01001009',
'us.census.acs.B01001010',
'us.census.acs.B01001011', ]
in_meta = [{"numer_id": col,
"normalization": normalization,
"geom_id": None if boundary.lower() == 'null' else boundary.replace("'", '')}
for col in cols]
rownums = (1, 5, 10, ) if geom_complexity == 'complex' else (10, 50, 100)
for num_meta in (1, 10, ):
results = []
for rows in rownums:
stmt = '''
with data as (
SELECT id, data FROM {schema}OBS_GetData(
(SELECT array_agg(({geom}, cartodb_id)::geomval)
FROM obs_perftest_{complexity}
WHERE cartodb_id <= {n}),
(SELECT {schema}OBS_GetMeta(
(SELECT st_setsrid(st_extent({geom}), 4326)
FROM obs_perftest_{complexity}
WHERE cartodb_id <= {n}),
'{in_meta}'::JSON
))
))
UPDATE obs_perftest_{complexity}
SET measure = (data->0->>'value')::Numeric
FROM data
WHERE obs_perftest_{complexity}.cartodb_id = data.id
;
'''.format(
point_or_poly='point' if geom == 'point' else 'polygon',
complexity=geom_complexity,
schema='cdb_observatory.' if USE_SCHEMA else '',
geom=geom,
in_meta=json.dumps(in_meta[0:num_meta]),
n=rows)
start = time()
query(stmt)
end = time()
qps = (rows / (end - start))
results.append({
'rows': rows,
'qps': qps,
'stmt': stmt
})
print rows, ': ', qps, ' QPS'
if 'OBS_RECORD_TEST' in os.environ:
record({
'geom_complexity': geom_complexity,
'api_method': 'OBS_GetData',
'normalization': normalization,
'boundary': boundary,
'geom': geom,
'num_meta': str(num_meta)
}, results)

31
src/python/test/util.py Normal file
View File

@@ -0,0 +1,31 @@
import os
import psycopg2
DB_CONN = psycopg2.connect('postgres://{user}:{password}@{host}:{port}/{database}'.format(
user=os.environ.get('PGUSER', 'postgres'),
password=os.environ.get('PGPASSWORD', ''),
host=os.environ.get('PGHOST', 'localhost'),
port=os.environ.get('PGPORT', '5432'),
database=os.environ.get('PGDATABASE', 'postgres'),
))
CURSOR = DB_CONN.cursor()
def query(q):
'''
Query the database.
'''
try:
CURSOR.execute(q)
return CURSOR
except:
DB_CONN.rollback()
raise
def commit():
try:
DB_CONN.commit()
except:
DB_CONN.rollback()
raise