187 Commits
1.0.3 ... 1.3.1

Author SHA1 Message Date
John Krauss
f0efa1e2eb release v1.3.1 2017-03-01 16:33:35 +00:00
John Krauss
bcbd8a2be4 change OBS_GetLegacyMetadata to return median/average measures too when called for polygons 2017-03-01 16:03:14 +00:00
John Krauss
71d891c067 handle blank aggregates 2017-02-16 17:53:38 +00:00
John Krauss
01b56fbfcc update fixtures 2017-02-16 17:38:18 +00:00
John Krauss
6215f6585c update NEWS.md 2017-02-16 17:23:47 +00:00
John Krauss
9bda063148 Merge branch 'nonsum-interpolation' into release-v-1.3.1 2017-02-16 17:20:38 +00:00
John Krauss
4a97689705 add point for au 2017-02-16 16:50:40 +00:00
John Krauss
2edb850a45 estimate average and median across arbitrary areas if universe is provided, otherwise return null and raise a notice. fixes #252 2017-02-10 01:08:10 +00:00
Mario de Frutos
79c450f63f Merge pull request #247 from CartoDB/develop
Release 1.3.0
2017-01-31 10:14:52 +01:00
Mario de Frutos
c8dd9e417b Release 1.3.0 artifact 2017-01-26 12:19:23 +01:00
Mario de Frutos
2717ecdc8b Merge pull request #246 from CartoDB/release-v-1.3.0
Observatory Release v 1.3.0
2017-01-26 12:18:15 +01:00
Mario de Frutos
0f372604db Remove fdw utilities 2017-01-26 11:57:24 +01:00
Mario de Frutos
c5a715f7b5 Delete empty sql file used for plpython code 2017-01-25 19:03:51 +01:00
John Krauss
e4b38413cd skip a few autotests that are failing, but not meaningfully exposed in interfaces 2017-01-25 17:23:36 +00:00
John Krauss
ee84604ced empty file to clear out artifacts from built extension 2017-01-25 17:09:38 +00:00
John Krauss
5e7bffae6a remove plpython and python code for now. also removed mistaken installation of postgres_fdw in tests 2017-01-25 16:59:37 +00:00
John Krauss
aa807eb65b fix hang generating fixtures 2017-01-18 23:28:46 +00:00
John Krauss
80277ba065 optimizations for cases where small amounts of metadata passed into obs_getmeta 2017-01-18 23:15:27 +00:00
John Krauss
0e4a514753 use simplification in obs_getdata for very complex geoms 2017-01-18 21:44:02 +00:00
John Krauss
fc74529a04 ensure fixture creation worked or do not run tests 2017-01-18 21:16:53 +00:00
John Krauss
a18d88a85f Merge branch 'overpass' into release-v-1.3.0 2017-01-18 18:28:53 +00:00
John Krauss
8ea972f4a0 update NEWS.md for 1.3.0 2017-01-18 18:27:50 +00:00
John Krauss
0e99e62eb2 remove unused table-level functions and dependencies 2017-01-17 22:51:30 +00:00
John Krauss
3db98fb522 full testing suite for obs_getdata and obs_getmeta 2017-01-17 22:49:29 +00:00
John Krauss
c18f16ed6d handle cases with mixed geometries in obs_getdata correctly 2017-01-17 22:49:04 +00:00
John Krauss
fa82c1bb4f Merge branch 'release-v-1.2.1' into overpass 2017-01-17 15:42:39 +00:00
John Krauss
00825e4ba1 update NEWS.md 2017-01-17 15:42:30 +00:00
John Krauss
afe4c27dd5 obs_getdata takes api_method and api_args in both forms, and handles them correctly; cleanup to getdata, added more tests 2017-01-14 01:14:42 +00:00
John Krauss
c2dc4fb8b9 add test for third-party call 2017-01-10 21:55:48 +00:00
John Krauss
bc4f1b5909 support use of dynamic tables (API-generated) in obs_getdata 2017-01-10 21:44:49 +00:00
John Krauss
267af19911 fix perftest to work with renamed core functions 2017-01-10 16:03:12 +00:00
John Krauss
7c093741dc major refactor of internals 2017-01-10 02:28:38 +00:00
John Krauss
4886222776 adaptation of obs_getmeasuredatamulti that can return geoms from a boundingbox 2017-01-04 21:18:56 +00:00
John Krauss
ddbe1b6763 return shops as part of POI for OSM 2017-01-04 18:23:52 +00:00
John Krauss
218840bfa8 first-pass function for overpass working 2017-01-04 16:59:48 +00:00
John Krauss
000a440417 resolve issues in build and with code, now returning geometries and data as expected from obs_getoverpass 2017-01-03 16:37:16 +00:00
John Krauss
ff50c5e2bf first pass on overpass api, still getting an error with columns 2017-01-03 15:39:01 +00:00
John Krauss
d7552031f6 support obtaining text measures with obs_getmeasuredatamulti 2016-12-29 23:01:48 +00:00
John Krauss
39eb031316 support POINT and LINESTRING types from obs_getboundaries 2016-12-29 17:07:38 +00:00
John Krauss
7adbad602e updating NEWS 2016-12-28 20:04:26 +00:00
john krauss
3233cb527e Merge pull request #241 from CartoDB/obs_getmeasure_res_bypass
Obs getmeasure res bypass
2016-12-28 14:44:01 -05:00
John Krauss
5bdcb59df3 remove commented code 2016-12-28 19:34:37 +00:00
John Krauss
6e475cf210 fix uppercase NULL in tests 2016-12-28 19:17:57 +00:00
John Krauss
eb508c5d16 Revert "subdivide complex geoms in obs_getmeasure"
This reverts commit d44887b2b3.
2016-12-28 18:40:01 +00:00
John Krauss
bbd0cc0938 capture boundary in multi, capture message from env 2016-12-28 16:54:16 +00:00
John Krauss
d44887b2b3 subdivide complex geoms in obs_getmeasure 2016-12-28 16:19:13 +00:00
John Krauss
fa96de5aa9 remove notices from getgeometryscores 2016-12-28 15:57:56 +00:00
John Krauss
b7943ad8d2 fix divide by zero issues for denominated 2016-12-21 23:22:31 +00:00
John Krauss
6b071db588 remove notices 2016-12-21 23:18:25 +00:00
John Krauss
fbf13be62a unit tests passing with 2015 geoms included, fixes to obs_getmeasure 2016-12-21 23:17:03 +00:00
John Krauss
fc3fcbec4e fix broken polygon area normalization 2016-12-21 22:41:53 +00:00
John Krauss
d3a57e637c keep track of table_id in obs_meta and geometryscores, use obs_getmeasure*multi for obs_getmeasure 2016-12-21 21:53:53 +00:00
John Krauss
24587b7e03 switch over to multi for the "split" test 2016-12-19 16:49:50 +00:00
John Krauss
2398b0268f major performance speedup for obs_getmeasuremeta 2016-12-16 21:54:42 +00:00
John Krauss
4c6d854e81 Merge branch 'release-v-1.1.7' into obs_getmeasure_res_bypass 2016-12-16 18:01:17 +00:00
John Krauss
fd32f962f2 remove failing MX test 2016-12-15 20:19:12 +00:00
John Krauss
462eed1d61 update NEWS.md and PULL_REQUEST_TEMPLATE.md 2016-12-15 19:56:42 +00:00
John Krauss
5a5d5a9386 tests pass, although obs_getmeasure performance suffers 2016-12-14 22:58:22 +00:00
John Krauss
88d1145c12 fix issue with NULL being passed into obs_getmeasure, add tests for obs_getmeasuremeta and obs_getmeasuredata 2016-12-13 15:43:04 +00:00
csobier
8455468ad0 Merge pull request #238 from CartoDB/csobier-patch-1
missed tool name in docs
2016-12-13 07:17:40 -05:00
John Krauss
9567f52a36 minor tweaks to obs_getmeasuremeta and obs_getmeasuredata, good behavior for geometryscores even when null is passed as desired_num_geoms 2016-12-13 00:14:19 +00:00
John Krauss
fad7bb991b split obs_getmeasuremeta and obs_getmeasuredata 2016-12-12 23:10:12 +00:00
John Krauss
d17b865648 add test that takes out the geom component 2016-12-12 21:49:00 +00:00
John Krauss
d4e6e7ac95 use obs_column_table_tile_raster with simpler bands for faster performance 2016-12-12 21:25:59 +00:00
csobier
e77ebe7bb1 missed tool
Totally missed mention of Editor here, changed to Builder.
2016-12-12 13:50:59 -05:00
John Krauss
82137d5679 Merge branch 'develop' into raster-simplification-experiments 2016-12-12 17:36:12 +00:00
Mario de Frutos
d745f07cac Merge pull request #237 from CartoDB/develop
Version 1.1.6 release artifacts
2016-12-12 16:45:08 +01:00
Mario de Frutos
aa3e0ed76b Version 1.1.6 release artifacts 2016-12-12 16:44:36 +01:00
Mario de Frutos
f378e75d4c Merge pull request #236 from CartoDB/develop
Release 1.1.6
2016-12-12 16:24:31 +01:00
Mario de Frutos
f97482f3fb Merge pull request #234 from CartoDB/release-v-1.1.6
Release v 1.1.6
2016-12-12 16:23:09 +01:00
Mario de Frutos
36f1c1974a Merge pull request #235 from CartoDB/develop
Docs update
2016-12-12 09:36:36 +01:00
John Krauss
21b108d32c move redundant aggregates to CTE 2016-12-09 22:31:29 +00:00
John Krauss
9f640f0c35 use simple envelope for very complex geometries in obs_getgetgeometryscores 2016-12-09 21:47:30 +00:00
John Krauss
95b6cba085 remove some unnecessary calculations from obs_getgeometryscores, yields QPS improvement from about 20 to 30 2016-12-09 21:06:42 +00:00
John Krauss
6a6d1bc3e4 Merge branch 'release-v-1.1.6' into raster-simplification-experiments 2016-12-09 19:38:12 +00:00
John Krauss
99166d1b4e update NEWS.md 2016-12-08 21:59:32 +00:00
John Krauss
e33bcae964 add several ignored MX measures likely due to new geometry scoring 2016-12-08 03:21:04 +00:00
John Krauss
48a8df8b98 switch brazil testpoint 2016-12-08 03:13:55 +00:00
John Krauss
4b9ba06b42 fix lat/lng switch for brazil 2016-12-08 02:55:53 +00:00
john krauss
209832e38d Merge pull request #233 from CartoDB/fix-area-getmeasure-denom-zerodiv
fix divide-by-zero condition with obs_getmeasure(area) using denominator
2016-12-07 21:28:41 -05:00
John Krauss
7373794c30 fix divide-by-zero condition with obs_getmeasure(area) using denominator 2016-12-08 02:32:03 +00:00
John Krauss
1a2e1dd8c9 Merge branch 'remove-format-literals' into release-v-1.1.6 2016-12-08 02:29:21 +00:00
John Krauss
14b82a0e09 Merge remote-tracking branch 'origin/release-v-1.1.6' into release-v-1.1.6 2016-12-08 02:29:06 +00:00
John Krauss
7e20a200c1 Merge branch 'complex-geom-perf-improvements' into release-v-1.1.6 2016-12-08 02:28:53 +00:00
John Krauss
39473db14b Merge branch 'improve-perftest' into complex-geom-perf-improvements 2016-12-08 02:21:29 +00:00
John Krauss
4d7fb145eb Merge branch 'improve-perftest' into remove-format-literals 2016-12-08 02:21:12 +00:00
john krauss
8e51d33e4a Merge pull request #232 from CartoDB/complex-geom-perf-improvements
Complex geom perf improvements
2016-12-07 21:20:29 -05:00
John Krauss
b7ee3a6d67 perftest updates, adding BR test point 2016-12-08 02:17:38 +00:00
csobier
d4dcb7f4ba Merge pull request #228 from CartoDB/docs-1149-update-catalog-link
edited default tool, and updated link to html catalog
2016-12-07 12:11:37 -05:00
csobier
401317738f edited default tool, and updated link to html catalog 2016-12-07 11:51:13 -05:00
John Krauss
1aca5b5ff0 Merge branch 'improve-perftest' into complex-geom-perf-improvements 2016-12-05 22:57:03 +00:00
John Krauss
521fcf9059 Merge branch 'improve-perftest' into remove-format-literals 2016-12-05 22:56:30 +00:00
John Krauss
255f8dc18e support peristence of test results to JSON 2016-12-05 22:55:14 +00:00
John Krauss
463db99222 add perf tests for different geometry complexities as well as all code branches for getmeasure 2016-12-05 18:51:58 +00:00
John Krauss
59857355c7 simplifying raster experiments 2016-12-02 19:33:16 +00:00
John Krauss
44932be1f5 improvements to scoring, fixing oversimplification and removing some premature optimization 2016-12-01 21:50:39 +00:00
John Krauss
4ce1648550 score rasters with lots of missing space lower 2016-11-30 23:16:18 +00:00
John Krauss
ff0f6ea6e0 use st_subdivide to deal with more complex geometries 2016-11-30 23:15:30 +00:00
John Krauss
34a3aab323 remove redundant area checks from other polygon-based getmeasure branches 2016-11-30 17:24:45 +00:00
John Krauss
f32cc60d61 remove redundant area check 2016-11-30 17:15:39 +00:00
John Krauss
81c8fc316b remove almost all %L formats, including all where geoms were dropped in 2016-11-30 16:53:22 +00:00
Mario de Frutos
cbe7b6dd15 Merge pull request #225 from CartoDB/develop
Release 1.1.5
2016-11-29 17:58:08 +01:00
John Krauss
70f4807139 update NEWS 2016-11-29 16:45:10 +00:00
Mario de Frutos
603d26c674 Version 1.1.5 artifacts 2016-11-29 17:43:28 +01:00
Mario de Frutos
355f6281e5 Merge pull request #224 from CartoDB/release-v-1.1.5
Release v 1.1.5
2016-11-29 17:40:53 +01:00
john krauss
84794124fd Merge pull request #223 from CartoDB/fix-getmeasure-exc-out-of-bounds
return NULL when there is no data for a measure at a geometry according to raster
2016-11-29 11:35:19 -05:00
John Krauss
6c08681446 return NULL when there is no data for a measure at a geometry according to our raster. Fixes #220 2016-11-29 16:41:44 +00:00
Mario de Frutos
e5e0b39595 Merge pull request #219 from CartoDB/develop
Release 1.1.4
2016-11-22 11:11:17 +01:00
Mario de Frutos
713aacf535 Version 1.1.4 artifact 2016-11-22 10:03:22 +01:00
Mario de Frutos
9bf4b07be7 Merge pull request #218 from CartoDB/release-v-1.1.4
Release v 1.1.4
2016-11-22 10:01:35 +01:00
John Krauss
aaf580baca update NEWS 2016-11-21 22:32:14 +00:00
john krauss
6845d4361d Merge pull request #217 from CartoDB/fix-legacy-metadata-dupes
Fix legacy metadata dupes
2016-11-21 16:59:05 -05:00
John Krauss
fa778f4eb0 test for #216 2016-11-21 22:03:31 +00:00
John Krauss
22a413102b Fixes bug where multiple subsections returned from OBS_LegacyBuilderMetadata, #216 2016-11-21 21:50:56 +00:00
Mario de Frutos
08980f47a7 Merge pull request #215 from CartoDB/develop
Release 1.1.3
2016-11-17 20:08:00 +01:00
Mario de Frutos
54d512d4fb Release 1.1.3 artifact 2016-11-17 20:03:50 +01:00
Mario de Frutos
2a0ff6a541 Merge pull request #214 from CartoDB/release-v-1.1.3
release v1.1.3
2016-11-17 19:58:56 +01:00
John Krauss
62e13086e1 release v1.1.3 2016-11-15 18:36:53 +00:00
Mario de Frutos
60b723de92 Merge pull request #212 from CartoDB/develop
Release 1.1.2
2016-11-11 17:09:56 +01:00
Mario de Frutos
7e04c38c3a Release 1.1.2 artifact 2016-11-11 17:08:04 +01:00
Mario de Frutos
45dea25ec0 Merge pull request #211 from CartoDB/release-v-1.1.2
Release v 1.1.2
2016-11-11 17:05:28 +01:00
John Krauss
39836ea321 update NEWS.md 2016-11-09 22:11:20 +00:00
john krauss
17d343a756 Merge pull request #209 from CartoDB/use-rasters
Use rasters
2016-11-09 16:58:25 -05:00
john krauss
c7c8a6676a Merge pull request #210 from CartoDB/eu-epa-testpoints
add test points for EU and EPA, make it easier to work with meta.py
2016-11-09 16:47:14 -05:00
John Krauss
be4b5abbfa use highest ranked geom for obs_getmeasure, simplify scoring 2016-11-07 23:57:33 +00:00
John Krauss
8dad88a6b3 fix minor bug in _obs_getgeometryscores with FIRST, add tests 2016-11-07 21:26:44 +00:00
John Krauss
7e6489f2a1 add test points for EU and EPA, make it easier to work with meta.py 2016-11-07 16:50:00 +00:00
John Krauss
9fdca9161c minor stylistic fix 2016-11-04 15:32:25 +00:00
John Krauss
785a5eed29 obs_getgeometryscores and usage by obs_getavailablegeometries 2016-11-02 21:11:38 +00:00
Mario de Frutos
c91fcab28c Merge pull request #208 from CartoDB/develop
Release 1.1.1
2016-10-21 12:09:59 +02:00
Mario de Frutos
174ee65f46 Release 1.1.1 artifact 2016-10-21 12:08:49 +02:00
Mario de Frutos
4aac696963 Merge pull request #205 from CartoDB/release-v-1.1.1
Release v 1.1.1
2016-10-21 12:06:01 +02:00
John Krauss
5c5b587495 Merge remote-tracking branch 'origin/release-v-1.1.1' into release-v-1.1.1 2016-10-14 20:18:01 +00:00
John Krauss
dccae1ed8b NEWS for 1.1.1 2016-10-14 20:17:46 +00:00
john krauss
1e02593fae Merge pull request #204 from CartoDB/fr-ca-testpoints
adding testpoints for FR, Guayane, and CA
2016-10-14 16:09:39 -04:00
John Krauss
89d10ff993 do not skip canada tests 2016-10-14 18:39:47 +00:00
John Krauss
e35b7825ce adding testpoints for FR, Guayane, and CA 2016-10-07 20:27:04 +00:00
Javier Goizueta
ff613f7c12 Merge pull request #203 from CartoDB/develop
Release v1.1.0
2016-10-05 16:48:44 +02:00
Javier Goizueta
06e0b5bcf8 Release 1.1.0 2016-10-05 16:24:55 +02:00
Javier Goizueta
efae735324 Merge pull request #202 from CartoDB/release-v-1.1.0
Release v 1.1.0
2016-10-05 16:16:36 +02:00
John Krauss
7bf87faba1 adding NEWS for 1.1.0 2016-10-04 22:35:48 +00:00
john krauss
0b7e794fb9 Merge pull request #201 from CartoDB/builder-api-func
Builder api func
2016-10-04 18:29:43 -04:00
John Krauss
017b404264 make bounds optional for dimensional queries, add all tests 2016-10-04 22:21:05 +00:00
John Krauss
50b745227b working obs_getavailablenumerators tests 2016-10-04 20:10:24 +00:00
John Krauss
2171cb83c7 add tests for builder legacy func 2016-10-04 19:46:37 +00:00
John Krauss
0d9f0e4996 allow null geom to be passed in for the obs_get* functions, add in convenience legacy builder metadata function 2016-10-04 19:16:32 +00:00
John Krauss
b473ffe307 updated fixtures generation from local postgres, fixed a few tests that broke 2016-10-03 20:36:14 +00:00
John Krauss
2a1598d491 first pass on generating new metadata from local 2016-09-30 20:44:03 +00:00
John Krauss
827104756e another test stub 2016-09-30 17:39:25 +00:00
John Krauss
3602aab804 remove table defintions, stub in tests 2016-09-29 20:53:12 +00:00
John Krauss
48221fc358 Merge branch 'develop' into builder-api-func 2016-09-29 20:23:08 +00:00
Carla
5629bdf035 Merge pull request #197 from CartoDB/develop
Release v1.0.7
2016-09-21 12:02:04 +02:00
Carla Iriberri
f4113eaea3 Release 1.0.7 2016-09-21 11:24:29 +02:00
Carla
86fac2a600 Merge pull request #196 from CartoDB/release-v-1.0.7
Release v 1.0.7
2016-09-21 11:12:22 +02:00
John Krauss
2d753cd758 Skip bad MX measure, smaller buffer for faster tests, updated NEWS.md 2016-09-20 17:56:23 +00:00
john krauss
96a98c3bce Merge pull request #194 from CartoDB/null-resilience
Resolve #178
2016-09-20 13:38:11 -04:00
john krauss
d58263935d Merge pull request #195 from CartoDB/ca-testing
Add point to make sure CA data is present
2016-09-20 12:27:02 -04:00
John Krauss
104608c6d3 Add point to make sure CA data is present 2016-09-20 16:31:15 +00:00
John Krauss
c67fe12111 return NULL in cases when NULL is passed as input geometry or geometry ID. resolves #178 2016-09-20 16:26:13 +00:00
John Krauss
18cfdc60d0 tmp commit 2016-09-19 16:08:37 +00:00
Carla
d63934bfc5 Merge pull request #191 from CartoDB/develop
Release 1.0.6 with table level framework improvements
2016-09-08 13:52:36 +02:00
Carla Iriberri
860290595c Release 1.0.6 2016-09-08 10:37:37 +02:00
Carla
bf4ade2fa0 Merge pull request #186 from CartoDB/measure_release
Use explicit functions for query construction and metadata
2016-09-08 09:58:25 +02:00
Carla
32d37a74b3 Remove cascades and quote conveniently 2016-09-02 12:04:03 +02:00
Mario de Frutos
da877e4ef0 Modify PR template to include the update of NEWS.md 2016-08-25 14:36:07 +02:00
Mario de Frutos
15de07ca33 Modify PR template 2016-08-25 14:30:42 +02:00
Mario de Frutos
8af3e22661 Merge pull request #188 from CartoDB/pr_template
Added PR template
2016-08-25 14:27:14 +02:00
Mario de Frutos
fdd591b159 Added PR template 2016-08-25 11:28:01 +02:00
Carla Iriberri
5eb4ede219 Fix 2016-08-23 17:20:48 +02:00
Carla Iriberri
dd5f560359 Separate functions between files 2016-08-19 16:39:30 +02:00
Carla Iriberri
62c2693553 Avoid function check to dispatch 2016-08-19 13:04:54 +02:00
Carla Iriberri
48d1bfdb13 Remove JSON manipulation to use json functions 2016-08-19 12:45:38 +02:00
Carla Iriberri
30f27e5b58 Check function name and use param names instead of 2016-08-18 15:43:03 +02:00
Carla Iriberri
26b22a9bf4 Use explicit functions for query construction and metadata 2016-08-18 15:36:32 +02:00
Mario de Frutos
c9e809c061 Merge pull request #185 from CartoDB/develop
Release 1.0.5
2016-08-18 15:06:50 +02:00
Mario de Frutos
43e83751ae Release 1.0.5 artifact 2016-08-18 15:05:38 +02:00
Mario de Frutos
4c13434b9a Merge pull request #182 from CartoDB/sql-tests
SQL Integration and Performance Tests
2016-08-18 14:54:53 +02:00
Mario de Frutos
8785639ece Merge pull request #154 from CartoDB/iriberri-patch-1
Use 6432 for connections from server
2016-08-18 11:10:02 +02:00
John Krauss
f991f5a1e6 docs and NEWS for the new tests 2016-08-12 18:56:06 +00:00
John Krauss
e4b4ebf72d Adapted autotest to to work with SQL directly instead of over HTTP SQL API 2016-08-12 18:48:31 +00:00
Mario de Frutos
20f56c98de Merge pull request #179 from CartoDB/develop
Release 1.0.4
2016-08-10 16:20:00 +02:00
Mario de Frutos
e4ea90835a Release 1.0.4 artifact 2016-08-10 16:18:59 +02:00
Mario de Frutos
8f2c8f571c Merge pull request #175 from CartoDB/release-v-1.0.4
Release v 1.0.4
2016-08-10 16:15:56 +02:00
John Krauss
e9857e89fb release-v-1.0.4 increment and news 2016-07-26 13:08:28 +00:00
john krauss
8ed2135a7f Merge pull request #174 from CartoDB/all-null-defaults
Always default to NULL, fixes #173
2016-07-26 09:03:53 -04:00
John Krauss
af69b44f25 Always default to NULL, fixes #173 2016-07-26 13:05:40 +00:00
Carla
bfa57f4971 Use 6432 for connections from server 2016-07-19 17:54:08 +02:00
44 changed files with 51687 additions and 27091 deletions

23
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@@ -0,0 +1,23 @@
## Request for a new Data observatory extension deploy
I'd like to request a new data observatory extension deploy: dump + extension
## Performance comparison to last deployment
Please include link here to comparison perftests:
http://52.71.151.140/perftest/#oldsha..newsha
## Dump database id to be deployed
Please put here the dump id to be deployed: <dump_id>
## Data Observatory extension PRs included.
*Please update the NEWS.md*
Add down here the PR links to be added and deployed:
-
// @CartoDB/dataservices

View File

@@ -18,7 +18,7 @@ test: ## Run the tests for the development version of the extension
$(MAKE) -C $(EXT_DIR) test
# Generate a new release into release
release: ## Generate a new release of the extension. Only for telease manager
release: ## Generate a new release of the extension. Only for release manager
$(MAKE) -C $(EXT_DIR) release
# Install the current release.

196
NEWS.md
View File

@@ -1,3 +1,199 @@
1.3.1 (2017-02-16)
__Improvements__
* It is now possible to obtain measures that are averages or medians over
arbitrary polygons ([#254](https://github.com/CartoDB/observatory-extension/pull/254).
* Added test point for Australian data
* `OBS_GetLegacyMetadata` now returns median and averages in cases where it is
called for measures for polygons
1.3.0 (2017-01-17)
__API Changes__
* `OBS_GetMeasureDataMulti()` is now called `OBS_GetData()`
* `OBS_GetMeasureMetaMulti()` is now called `OBS_GetMeta()`
* Additional signature for `OBS_GetData` which can take an array of `TEXT`,
mimicking functionality of `OBS_GetMeasureByID`
__Improvements__
* Generate fixtures from `obs_meta`
* Remove unused table-level code
* Refactor all augmentation and geometry functions to obtain data from
`OBS_GetMeta()` and `OBS_GetData()`.
* Improvements to `OBS_GetMeta()` so it can still fill in metadata in cases
where only a geometry is being requested.
* `OBS_GetData()` returns two-column table instead of anonymous record.
* `OBS_GetData()` can return categorical (text) and geometries
__Bugfixes__
* Remove unnecessary dependency on `postgres_fdw`
* `OBS_GetData()` now aggregates measures with mixed geoms correctly
__API Changes__
1.2.1 (2017-01-17)
__Improvements__
* Support Point/LineString in responses from `OBS_GetBoundary`.
([#243](https://github.com/CartoDB/observatory-extension/pull/233))
1.2.0 (2016-12-28)
__API Changes__
* Added `OBS_GetMeasureDataMulti`, which takes an array of geomvals and
parameters as JSON, and returns a set of RECORDs keyed by the vals of the
geomvals.
* Added `OBS_GetMeasureMetaMulti`, which takes sparse metadata as JSON (for
example, the measure ID) and returns a filled-out version of the metadata
sufficient for use with `OBS_GetMeasureDataMulti`.
__Improvements__
* Move tests to 2015
* Fixes to `_OBS_GetGeometryScores` to avoid spamming NOTICEs about all pixels
for a band being NULL
* Tests for `_OBS_GetGeometryScores` with complex geometries
* Performance tests for `OBS_GetMeasureDataMulti`
* Return both `table_id` and `column_id` from `_OBS_GetGeometryScores`
1.1.7 (2016-12-15)
__Improvements__
* Use simpler raster table and simplified `_OBSGetGeometryScores` functions to
improve performance
* In cases where geometry passed into geometry scoring function has greater
than 10K points, simply use its buffer instead
* Add `IMMUTABLE` to `_OBSGetGeometryScores`
* Add tests explicitly for `_OBSGetGeometryScores` in perftest.py
* Yields a ~50% improvement in performance for `_OBSGetGeomeryScores`.
1.1.6 (2016-12-08)
__Bugfixes__
* Fix divide by zero condition in "denominator" branch of `OBS_GetMeasure`
when passing in a polygon ([#233](https://github.com/CartoDB/observatory-extension/pull/233)).
__Improvements__
* Use `ST_Subdivide` to improve performance when functions are called on very
complex geometries (with many points) ([#232](https://github.com/CartoDB/observatory-extension/pull/232))
* Improve raster scoring to more heavily weight boundaries with nearer to
correct number of points, and penalize boundaries with lots of blank space
([#232](https://github.com/CartoDB/observatory-extension/pull/232))
* Remove some redundant area calculations in `OBS_GetMeasure`
([#232](https://github.com/CartoDB/observatory-extension/pull/232))
* Replace use of `format('%L', var)` with proper use of `EXECUTE` and `$1` etc.
variables ([#231](https://github.com/CartoDB/observatory-extension/pull/231))
* Add test point for Brazil
([#229](https://github.com/CartoDB/observatory-extension/pull/229))
* Improvements to performance tests
([#229](https://github.com/CartoDB/observatory-extension/pull/229))
- Support simple and complex geometries
- Handle all code branches
- Add ability to persist results to JSON for graph visualization later
1.1.5 (2016-11-29)
__Bugfixes__
* Return `NULL` instead of raising an exception when a measure is requested for
a geometry where it does not exist ([#220](https://github.com/CartoDB/observatory-extension/issues/220)).
1.1.4 (2016-11-21)
__Bugfixes__
* Fix duplicate subsections with only a partial set of measures appearing from
`OBS_GetLegacyMetadata` ([#216](https://github.com/CartoDB/observatory-extension/issues/216)).
1.1.3 (2016-11-15)
* Temporarily ignore EU data for the sake of testing
1.1.2 (2016-11-09)
__Improvements__
* Update public `OBS_GetMeasure` to use highest ranked boundary, aiming for 500
geoms. ([#190](https://github.com/CartoDB/observatory-extension/issues/190))
* Update test generation to capture our raster tiles
* Standardize the way we generate our test points for `autotest.py`
* Add points for epa and eurostat
* Should support database dump generated 20161109
__API Changes (Internal)__
* Add internal `_OBS_GetGeometryScores`
1.1.1 (2016-10-14)
__Improvements__
* Test points for Canada and France ([#204](https://github.com/CartoDB/observatory-extension/issues/120))
1.1.0 (2016-10-04)
__Bugfixes__
* Fixed some minor errors in test suite
__Improvements__
* We now generate test fixtures from local data instead of remote server
([#120](https://github.com/CartoDB/observatory-extension/issues/120))
__API Changes__
* New function, `OBS_LegacyBuilderMetadata`, which resolves
([#133]( https://github.com/CartoDB/observatory-extension/issues/133))
* Creates "dimensional" metadata grabbing functions
(`OBS_GetAvailableNumerators`, `OBS_GetAvailableDenominators`,
`OBS_GetAvailableGeometries`, `OBS_GetAvailableTimespans`) which will be
used for obtaining metadata in the replacement for the Data Library
([CartoDB/design#104](https://github.com/CartoDB/design/issues/104)). This
is also referred to here ([CartoDB/design#68](https://github.com/CartoDB/design/issues/68)).
1.0.7 (2016-09-20)
__Bugfixes__
* `NULL` geometries or geometry IDs no longer result in an exception from any
augmentation functions ([#178](https://github.com/CartoDB/observatory-extension/issues/178))
__Improvements__
* Automatic tests work for Canada and Thailand
1.0.6 (2016-09-08)
__Improvements__
* New function structure for Table-level functions which allows to separate the
framework logic from the observatory measure functions.
1.0.5 (2016-08-12)
__Improvements__
* Integration tests moved to `src/python/test/`, and can be run without hitting
any HTTP SQL API.
1.0.4 (2016-07-26)
__Bugfixes__
* Always default arguments to `NULL`, which prevents duplication & overwrite by
dataservices-api
([#173](https://github.com/CartoDB/observatory-extension/issues/173))
1.0.3 (2016-07-25)
__Bugfixes__

View File

@@ -2,7 +2,7 @@
Use the following functions to retrieve [Boundary](https://carto.com/docs/carto-engine/data/overview/#boundary-data) data. Data ranges from small areas (e.g. US Census Block Groups) to large areas (e.g. Countries). You can access boundaries by point location lookup, bounding box lookup, direct ID access and several other methods described below.
You can [access](https://carto.com/docs/carto-engine/data/accessing) boundaries through the CARTO Editor. The same methods will work if you are using the CARTO Engine to develop your application. We [encourage you](http://docs/carto-engine/data/accessing/#best-practices) to use table modifying methods (UPDATE and INSERT) over dynamic methods (SELECT).
You can [access](https://carto.com/docs/carto-engine/data/accessing) boundaries through CARTO Builder. The same methods will work if you are using the CARTO Engine to develop your application. We [encourage you](http://docs/carto-engine/data/accessing/#best-practices) to use table modifying methods (UPDATE and INSERT) over dynamic methods (SELECT).
## OBS_GetBoundariesByGeometry(polygon geometry, geometry_id text)

View File

@@ -2,9 +2,9 @@
[Data Observatory Measures](https://carto.com/docs/carto-engine/data/overview/#measures-methods) are the numerical location data you can access. The measure functions allow you to access individual measures to augment your own data or integrate in your analysis workflows. Measures are used by sending an identifier or a geometry (point or polygon) and receiving back a measure (an absolute value) for that location.
There are hundreds of measures and the list is growing with each release. You can currently discover and learn about measures contained in the Data Observatory by downloading our [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf).
There are hundreds of measures and the list is growing with each release. You can currently discover and learn about measures contained in the Data Observatory by downloading our [Data Catalog](https://cartodb.github.io/bigmetadata/index.html).
You can [access](https://carto.com/docs/carto-engine/data/accessing) measures through the CARTO Editor. The same methods will work if you are using the CARTO Engine to develop your application. We [encourage you](https://carto.com/docs/carto-engine/data/accessing/#best-practices) to use table modifying methods (UPDATE and INSERT) over dynamic methods (SELECT).
You can [access](https://carto.com/docs/carto-engine/data/accessing) measures through CARTO Builder. The same methods will work if you are using the CARTO Engine to develop your application. We [encourage you](https://carto.com/docs/carto-engine/data/accessing/#best-practices) to use table modifying methods (UPDATE and INSERT) over dynamic methods (SELECT).
## OBS_GetUSCensusMeasure(point geometry, measure_name text)
@@ -16,7 +16,7 @@ Name |Description
--- | ---
point | a WGS84 point geometry (the_geom)
measure_name | a human readable name of a US Census variable. The list of measure_names is [available in the Glossary](https://carto.com/docs/carto-engine/data/glossary/#obsgetuscensusmeasure-names-table).
normalize | for measures that are are **sums** (e.g. population) the default normalization is 'area' and response comes back as a rate per square kilometer. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf) (optional)
normalize | for measures that are are **sums** (e.g. population) the default normalization is 'area' and response comes back as a rate per square kilometer. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](https://cartodb.github.io/bigmetadata/index.html) (optional)
boundary_id | source of geometries to pull measure from (e.g., 'us.census.tiger.census_tract')
time_span | time span of interest (e.g., 2010 - 2014)
@@ -47,7 +47,7 @@ Name |Description
--- | ---
polygon | a WGS84 polygon geometry (the_geom)
measure_name | a human readable string name of a US Census variable. The list of measure_names is [available in the Glossary](https://carto.com/docs/carto-engine/data/glossary/#obsgetuscensusmeasure-names-table).
normalize | for measures that are **sums** (e.g. population) the default normalization is 'none' and response comes back as a raw value. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf) (optional)
normalize | for measures that are **sums** (e.g. population) the default normalization is 'none' and response comes back as a raw value. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](https://cartodb.github.io/bigmetadata/index.html) (optional)
boundary_id | source of geometries to pull measure from (e.g., 'us.census.tiger.census_tract')
time_span | time span of interest (e.g., 2010 - 2014)
@@ -70,7 +70,7 @@ SET local_male_population = OBS_GetUSCensusMeasure(the_geom, 'Male Population')
## OBS_GetMeasure(point geometry, measure_id text)
The ```OBS_GetMeasure(point, measure_id)``` function returns any Data Observatory measure at a point location. You can browse all available Measures in the [Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf).
The ```OBS_GetMeasure(point, measure_id)``` function returns any Data Observatory measure at a point location. You can browse all available Measures in the [Catalog](https://cartodb.github.io/bigmetadata/index.html).
#### Arguments
@@ -78,7 +78,7 @@ Name |Description
--- | ---
point | a WGS84 point geometry (the_geom)
measure_id | a measure identifier from the Data Observatory ([see available measures](https://cartodb.github.io/bigmetadata/observatory.pdf)). It is important to note that these are different than 'measure_name' used in the Census based functions above.
normalize | for measures that are are **sums** (e.g. population) the default normalization is 'area' and response comes back as a rate per square kilometer. The other option is 'denominator', which will use the denominator specified in the [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf). (optional)
normalize | for measures that are are **sums** (e.g. population) the default normalization is 'area' and response comes back as a rate per square kilometer. The other option is 'denominator', which will use the denominator specified in the [Data Catalog](https://cartodb.github.io/bigmetadata/index.html). (optional)
boundary_id | source of geometries to pull measure from (e.g., 'us.census.tiger.census_tract')
time_span | time span of interest (e.g., 2010 - 2014)
@@ -109,7 +109,7 @@ Name |Description
--- | ---
polygon_geometry | a WGS84 polygon geometry (the_geom)
measure_id | a measure identifier from the Data Observatory ([see available measures](https://cartodb.github.io/bigmetadata/observatory.pdf))
normalize | for measures that are are **sums** (e.g. population) the default normalization is 'none' and response comes back as a raw value. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf) (optional)
normalize | for measures that are are **sums** (e.g. population) the default normalization is 'none' and response comes back as a raw value. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](https://cartodb.github.io/bigmetadata/index.html) (optional)
boundary_id | source of geometries to pull measure from (e.g., 'us.census.tiger.census_tract')
time_span | time span of interest (e.g., 2010 - 2014)
@@ -170,7 +170,7 @@ SET household_count = OBS_GetMeasureById(geoid_column, 'us.census.acs.B11001001'
## OBS_GetCategory(point geometry, category_id text)
The ```OBS_GetCategory(point, category_id)``` function returns any Data Observatory Category value at a point location. The Categories available are currently limited to Segmentation categories. See the Segmentation section of the [Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf) for more detail.
The ```OBS_GetCategory(point, category_id)``` function returns any Data Observatory Category value at a point location. The Categories available are currently limited to Segmentation categories. See the Segmentation section of the [Catalog](https://cartodb.github.io/bigmetadata/index.html) for more detail.
#### Arguments

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1,5 +1,5 @@
comment = 'CartoDB Observatory backend extension'
default_version = '1.0.3'
requires = 'postgis, postgres_fdw'
default_version = '1.3.1'
requires = 'postgis'
superuser = true
schema = cdb_observatory

View File

@@ -1,240 +0,0 @@
from nose.tools import assert_equal, assert_is_not_none
from nose_parameterized import parameterized
import os
import re
import requests
HOSTNAME = os.environ['OBS_HOSTNAME']
API_KEY = os.environ['OBS_API_KEY']
META_HOSTNAME = os.environ.get('OBS_META_HOSTNAME', HOSTNAME)
META_API_KEY = os.environ.get('OBS_META_API_KEY', API_KEY)
USE_SCHEMA = 'OBS_USE_SCHEMA' in os.environ
def query(q, is_meta=False, **options):
'''
Query the account. Returned is the response, wrapped by the requests
library.
'''
url = 'https://{hostname}/api/v2/sql'.format(
hostname=META_HOSTNAME if is_meta else HOSTNAME)
params = options.copy()
params['q'] = re.sub(r'\s+', ' ', q)
params['api_key'] = META_API_KEY if is_meta else API_KEY
return requests.get(url, params=params)
MEASURE_COLUMNS = [(r['numer_id'], r['point_only'], ) for r in query('''
SELECT distinct numer_id, numer_aggregate NOT ILIKE 'sum' as point_only
FROM obs_meta
WHERE numer_type ILIKE 'numeric'
AND numer_weight > 0
''', is_meta=True).json()['rows']]
CATEGORY_COLUMNS = [(r['numer_id'], ) for r in query('''
SELECT distinct numer_id
FROM obs_meta
WHERE numer_type ILIKE 'text'
AND numer_weight > 0
''', is_meta=True).json()['rows']]
BOUNDARY_COLUMNS = [(r['id'], ) for r in query('''
SELECT id FROM obs_column
WHERE type ILIKE 'geometry'
AND weight > 0
''', is_meta=True).json()['rows']]
US_CENSUS_MEASURE_COLUMNS = [(r['numer_name'], ) for r in query('''
SELECT distinct numer_name
FROM obs_meta
WHERE numer_type ILIKE 'numeric'
AND 'us.census.acs.acs' = ANY (subsection_tags)
AND numer_weight > 0
''', is_meta=True).json()['rows']]
def default_geometry_id(column_id):
'''
Returns default test point for the column_id.
'''
if column_id == 'whosonfirst.wof_disputed_geom':
return 'CDB_LatLng(33.78, 76.57)'
elif column_id == 'whosonfirst.wof_marinearea_geom':
return 'CDB_LatLng(43.33, -68.47)'
elif column_id in ('us.census.tiger.school_district_elementary',
'us.census.tiger.school_district_secondary',
'us.census.tiger.school_district_elementary_clipped',
'us.census.tiger.school_district_secondary_clipped'):
return 'CDB_LatLng(40.7025, -73.7067)'
elif column_id.startswith('es.ine'):
return 'CDB_LatLng(42.8226119029222, -2.51141249535454)'
elif column_id.startswith('us.zillow'):
return 'CDB_LatLng(28.3305906291771, -81.3544048197256)'
else:
return 'CDB_LatLng(40.7, -73.9)'
def default_point(column_id):
'''
Returns default test point for the column_id.
'''
if column_id == 'whosonfirst.wof_disputed_geom':
return 'CDB_LatLng(33.78, 76.57)'
elif column_id == 'whosonfirst.wof_marinearea_geom':
return 'CDB_LatLng(43.33, -68.47)'
elif column_id in ('us.census.tiger.school_district_elementary',
'us.census.tiger.school_district_secondary',
'us.census.tiger.school_district_elementary_clipped',
'us.census.tiger.school_district_secondary_clipped'):
return 'CDB_LatLng(40.7025, -73.7067)'
elif column_id.startswith('uk'):
if 'WA' in column_id:
return 'CDB_LatLng(51.46844551219723, -3.184833526611328)'
else:
return 'CDB_LatLng(51.51461834694225, -0.08883476257324219)'
elif column_id.startswith('es'):
return 'CDB_LatLng(42.8226119029222, -2.51141249535454)'
elif column_id.startswith('us.zillow'):
return 'CDB_LatLng(28.3305906291771, -81.3544048197256)'
elif column_id.startswith('mx.'):
return 'CDB_LatLng(19.41347699386547, -99.17019367218018)'
else:
return 'CDB_LatLng(40.7, -73.9)'
def default_area(column_id):
'''
Returns default test area for the column_id
'''
point = default_point(column_id)
area = 'ST_Transform(ST_Buffer(ST_Transform({point}, 3857), 1000), 4326)'.format(
point=point)
return area
@parameterized(US_CENSUS_MEASURE_COLUMNS)
def test_get_us_census_measure_points(name):
print 'test_get_us_census_measure_points, ', name
resp = query('''
SELECT * FROM {schema}OBS_GetUSCensusMeasure({point}, '{name}')
'''.format(name=name.replace("'", "''"),
schema='cdb_observatory.' if USE_SCHEMA else '',
point=default_point('')))
assert_equal(resp.status_code, 200)
rows = resp.json()['rows']
assert_equal(1, len(rows))
assert_is_not_none(rows[0].values()[0])
@parameterized(MEASURE_COLUMNS)
def test_get_measure_areas(column_id, point_only):
print 'test_get_measure_areas, ', column_id, point_only
if point_only:
return
resp = query('''
SELECT * FROM {schema}OBS_GetMeasure({area}, '{column_id}')
'''.format(column_id=column_id,
schema='cdb_observatory.' if USE_SCHEMA else '',
area=default_area(column_id)))
assert_equal(resp.status_code, 200)
rows = resp.json()['rows']
assert_equal(1, len(rows))
assert_is_not_none(rows[0].values()[0])
@parameterized(MEASURE_COLUMNS)
def test_get_measure_points(column_id, point_only):
print 'test_get_measure_points, ', column_id, point_only
resp = query('''
SELECT * FROM {schema}OBS_GetMeasure({point}, '{column_id}')
'''.format(column_id=column_id,
schema='cdb_observatory.' if USE_SCHEMA else '',
point=default_point(column_id)))
assert_equal(resp.status_code, 200)
rows = resp.json()['rows']
assert_equal(1, len(rows))
assert_is_not_none(rows[0].values()[0])
#@parameterized(CATEGORY_COLUMNS)
#def test_get_category_areas(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetCategory({area}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# area=default_area(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0].values()[0])
@parameterized(CATEGORY_COLUMNS)
def test_get_category_points(column_id):
print 'test_get_category_points, ', column_id
resp = query('''
SELECT * FROM {schema}OBS_GetCategory({point}, '{column_id}')
'''.format(column_id=column_id,
schema='cdb_observatory.' if USE_SCHEMA else '',
point=default_point(column_id)))
assert_equal(resp.status_code, 200)
rows = resp.json()['rows']
assert_equal(1, len(rows))
assert_is_not_none(rows[0].values()[0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundaries_by_geometry(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundariesByGeometry({area}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# area=default_area(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0].values()[0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_points_by_geometry(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetPointsByGeometry({area}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# area=default_area(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0].values()[0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundary_points(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundary({point}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# point=default_point(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0].values()[0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundary_id(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundaryId({point}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# point=default_point(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0].values()[0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundary_by_id(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundaryById({geometry_id}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# geometry_id=default_geometry_id(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0].values()[0])

View File

@@ -1,213 +1,370 @@
import os
import psycopg2
import subprocess
DB_CONN = psycopg2.connect('postgres://{user}:{password}@{host}:{port}/{database}'.format(
user=os.environ.get('PGUSER', 'postgres'),
password=os.environ.get('PGPASSWORD', ''),
host=os.environ.get('PGHOST', 'localhost'),
port=os.environ.get('PGPORT', '5432'),
database=os.environ.get('PGDATABASE', 'postgres'),
))
CURSOR = DB_CONN.cursor()
def query(q):
'''
Query the database.
'''
try:
CURSOR.execute(q)
return CURSOR
except:
DB_CONN.rollback()
raise
def commit():
try:
DB_CONN.commit()
except:
DB_CONN.rollback()
raise
from sqldumpr import Dumpr
def get_tablename_query(column_id, boundary_id, timespan):
"""
given a column_id, boundary-id (us.census.tiger.block_group), and
timespan, give back the current table hash from the data observatory
"""
q = """
SELECT t.tablename, geoid_ct.colname colname
FROM obs_table t,
obs_column_table geoid_ct,
obs_column_table data_ct
WHERE
t.id = geoid_ct.table_id AND
t.id = data_ct.table_id AND
geoid_ct.column_id =
(SELECT source_id
FROM obs_column_to_column
WHERE target_id = '{boundary_id}'
AND reltype = 'geom_ref'
) AND
data_ct.column_id = '{column_id}' AND
timespan = '{timespan}'
""".replace('\n','')
return """
SELECT numer_tablename, numer_geomref_colname, numer_tid,
geom_tablename, geom_geomref_colname, geom_tid
FROM observatory.obs_meta
WHERE numer_id = '{numer_id}' AND
geom_id = '{geom_id}' AND
numer_timespan = '{numer_timespan}'
""".format(numer_id=column_id,
geom_id=boundary_id,
numer_timespan=timespan)
return q.format(column_id=column_id,
boundary_id=boundary_id,
timespan=timespan)
def select_star(tablename):
return "SELECT * FROM {}".format(tablename)
METADATA_TABLES = ['obs_table', 'obs_column_table', 'obs_column', 'obs_column_tag',
'obs_tag', 'obs_column_to_column', 'obs_dump_version', 'obs_meta',
'obs_meta_numer', 'obs_meta_denom', 'obs_meta_geom',
'obs_meta_timespan', 'obs_column_table_tile',
'obs_column_table_tile_simple']
cdb = Dumpr('observatory.cartodb.com','')
metadata = ['obs_table', 'obs_column_table', 'obs_column', 'obs_column_tag',
'obs_tag', 'obs_column_to_column', 'obs_dump_version', ]
fixtures = [
('us.census.tiger.census_tract', 'us.census.tiger.census_tract', '2014'),
('us.census.tiger.block_group', 'us.census.tiger.block_group', '2014'),
('us.census.tiger.zcta5', 'us.census.tiger.zcta5', '2014'),
('us.census.tiger.county', 'us.census.tiger.county', '2014'),
('us.census.acs.B01003001', 'us.census.tiger.census_tract', '2010 - 2014'),
FIXTURES = [
('us.census.acs.B01003001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01001002_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01001026_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01002001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002003_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002004_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002006_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002012_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B05001006_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006002_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08301010_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006009_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006011_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006015_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006017_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B09001001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B11001001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B14001001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B14001002_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B14001005_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B14001006_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B14001007_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B14001008_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003017_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003022_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003023_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B16001001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B16001002_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B16001003_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B17001001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B17001002_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19013001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19083001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19301001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25001001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25002003_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25004002_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25004004_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25058001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25071001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25075001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25075025_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01003001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B01001002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B01001026', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B01002001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002003', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002004', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002006', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002012', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002005', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002008', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002009', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B03002002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B11001001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003017', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003019', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003020', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003021', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003022', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003023', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19013001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19301001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25001001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25002003', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25004002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25004004', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25058001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25071001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25075001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25075025', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25081002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08134001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08134002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001003', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001004', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001005', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001006', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001007', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001008', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001009', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001010', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001011', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001012', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001013', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001014', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001015', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001016', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001017', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B01001002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B01003001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01001002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01001026', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01002001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002003', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002004', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002006', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002012', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002005', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002008', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002009', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B11001001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003017', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003019', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003020', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003021', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003022', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003023', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19013001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19083001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19301001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25001001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25002003', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25004002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25004004', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25058001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25071001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25075001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25075025', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25081002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134008', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134008', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134010', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001003', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001004', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001005', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001006', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001007', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001008', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001009', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001010', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001011', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001012', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001013', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001014', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001015', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001016', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001017', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.spielman_singleton_segments.X10', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.spielman_singleton_segments.X55', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.zillow.AllHomes_Zhvi', 'us.census.tiger.zcta5', '2014-01'),
('us.zillow.AllHomes_Zhvi', 'us.census.tiger.zcta5', '2016-03'),
('whosonfirst.wof_country_geom', 'whosonfirst.wof_country_geom', '2016'),
('us.census.tiger.zcta5_clipped', 'us.census.tiger.zcta5_clipped', '2014'),
('us.census.tiger.block_group_clipped', 'us.census.tiger.block_group_clipped', '2014'),
('us.zillow.AllHomes_Zhvi', 'us.census.tiger.zcta5', '2016-06'),
('whosonfirst.wof_country_name', 'whosonfirst.wof_country_geom', '2016'),
('us.census.acs.B01003001', 'us.census.tiger.zcta5_clipped', '2010 - 2014'),
('us.census.acs.B01003001', 'us.census.tiger.block_group_clipped', '2010 - 2014'),
('us.census.acs.B01003001', 'us.census.tiger.census_tract_clipped', '2010 - 2014'),
('us.census.tiger.fullname', 'us.census.tiger.pointlm_geom', '2016'),
('us.census.tiger.fullname', 'us.census.tiger.prisecroads_geom', '2016'),
('us.census.tiger.name', 'us.census.tiger.county', '2015'),
('us.census.tiger.name', 'us.census.tiger.block_group', '2015'),
]
unique_tables = set()
OUTFILE_PATH = os.path.join(os.path.dirname(__file__), '..',
'src/pg/test/fixtures/load_fixtures.sql')
DROPFILE_PATH = os.path.join(os.path.dirname(__file__), '..',
'src/pg/test/fixtures/drop_fixtures.sql')
for f in fixtures:
column_id, boundary_id, timespan = f
tablename_query = get_tablename_query(*f)
resp = cdb.query(tablename_query).json()['rows'][0]
tablename = resp['tablename']
colname = resp['colname']
table_colname = (tablename, colname, boundary_id, )
if table_colname not in unique_tables:
print table_colname
unique_tables.add(table_colname)
def dump(cols, tablename, where=''):
print unique_tables
with open(DROPFILE_PATH, 'a') as dropfile:
dropfile.write('DROP TABLE IF EXISTS observatory.{tablename};\n'.format(
tablename=tablename,
))
with open('src/pg/test/fixtures/load_fixtures.sql', 'w') as outfile:
with open('src/pg/test/fixtures/drop_fixtures.sql', 'w') as dropfiles:
outfile.write('SET client_min_messages TO WARNING;\n\set ECHO none\n')
dropfiles.write('SET client_min_messages TO WARNING;\n\set ECHO none\n')
for tablename in metadata:
cdb.dump(select_star(tablename), tablename, outfile, schema='observatory')
dropfiles.write('DROP TABLE IF EXISTS observatory.{};\n'.format(tablename))
print tablename
subprocess.check_call('pg_dump -x --section=pre-data -t observatory.{tablename} '
' | sed "s:SET search_path.*::" '
' | sed "s:CREATE TABLE :CREATE TABLE observatory.:" '
' | sed "s:ALTER TABLE.*OWNER.*::" '
' | sed "s:SET idle_in_transaction_session_timeout.*::" '
' >> {outfile}'.format(
tablename=tablename,
outfile=OUTFILE_PATH,
), shell=True)
for tablename, colname, boundary_id in unique_tables:
if 'zcta5' in boundary_id:
where = '\'11%\''
compare = 'LIKE'
elif 'whosonfirst' in boundary_id:
where = '(\'85632785\',\'85633051\',\'85633111\',\'85633147\',\'85633253\',\'85633267\')'
compare = 'IN'
else:
where = '\'36047%\''
compare = 'LIKE'
print ' '.join([select_star(tablename), "WHERE {}::text {} {}".format(colname, compare, where)])
cdb.dump(' '.join([select_star(tablename), "WHERE {}::text {} {}".format(colname, compare, where)]),
tablename, outfile, schema='observatory')
dropfiles.write('DROP TABLE IF EXISTS observatory.{};\n'.format(tablename))
with open(OUTFILE_PATH, 'a') as outfile:
outfile.write('COPY observatory."{}" FROM stdin WITH CSV HEADER;\n'.format(tablename))
subprocess.check_call('''
psql -c "COPY (SELECT {cols} \
FROM observatory.{tablename} {where}) \
TO STDOUT WITH CSV HEADER" >> {outfile}'''.format(
cols=cols,
tablename=tablename,
where=where,
outfile=OUTFILE_PATH,
), shell=True)
with open(OUTFILE_PATH, 'a') as outfile:
outfile.write('\\.\n\n')
outfile.write('''
ALTER TABLE observatory.obs_table
ADD PRIMARY KEY (id);
ALTER TABLE observatory.obs_column_table
ADD PRIMARY KEY (column_id, table_id);
CREATE UNIQUE INDEX ON observatory.obs_column_table (table_id, column_id);
CREATE UNIQUE INDEX ON observatory.obs_column_table (table_id, colname);
ALTER TABLE observatory.obs_column
ADD PRIMARY KEY (id);
ALTER TABLE observatory.obs_column_to_column
ADD PRIMARY KEY (source_id, target_id, reltype);
CREATE UNIQUE INDEX ON observatory.obs_column_to_column (target_id, source_id, reltype);
CREATE INDEX ON observatory.obs_column_to_column (reltype);
ALTER TABLE observatory.obs_column_tag
ADD PRIMARY KEY (column_id, tag_id);
CREATE UNIQUE INDEX ON observatory.obs_column_tag (tag_id, column_id);
ALTER TABLE observatory.obs_tag
ADD PRIMARY KEY (id);
CREATE INDEX ON observatory.obs_tag (type);
def main():
unique_tables = set()
VACUUM ANALYZE observatory.obs_table;
VACUUM ANALYZE observatory.obs_column_table;
VACUUM ANALYZE observatory.obs_column;
VACUUM ANALYZE observatory.obs_column_to_column;
VACUUM ANALYZE observatory.obs_column_tag;
VACUUM ANALYZE observatory.obs_tag;
for f in FIXTURES:
column_id, boundary_id, timespan = f
tablename_query = get_tablename_query(column_id, boundary_id, timespan)
resp = query(tablename_query).fetchone()
if resp:
numer_tablename, numer_colname, numer_table_id = resp[0:3]
geom_tablename, geom_colname, geom_table_id = resp[3:6]
else:
raise Exception("Could not find table for {}, {}, {}".format(
column_id, boundary_id, timespan))
numer = (numer_tablename, numer_colname, numer_table_id, )
geom = (geom_tablename, geom_colname, geom_table_id, )
if numer not in unique_tables:
print(numer)
unique_tables.add(numer)
if geom not in unique_tables:
print(geom)
unique_tables.add(geom)
CREATE TABLE observatory.obs_meta AS
SELECT numer_c.id numer_id,
denom_c.id denom_id,
geom_c.id geom_id,
MAX(numer_c.name) numer_name,
MAX(denom_c.name) denom_name,
MAX(geom_c.name) geom_name,
MAX(numer_c.description) numer_description,
MAX(denom_c.description) denom_description,
MAX(geom_c.description) geom_description,
MAX(numer_c.aggregate) numer_aggregate,
MAX(denom_c.aggregate) denom_aggregate,
MAX(geom_c.aggregate) geom_aggregate,
MAX(numer_c.type) numer_type,
MAX(denom_c.type) denom_type,
MAX(geom_c.type) geom_type,
MAX(numer_data_ct.colname) numer_colname,
MAX(denom_data_ct.colname) denom_colname,
MAX(geom_geom_ct.colname) geom_colname,
MAX(numer_geomref_ct.colname) numer_geomref_colname,
MAX(denom_geomref_ct.colname) denom_geomref_colname,
MAX(geom_geomref_ct.colname) geom_geomref_colname,
MAX(numer_t.tablename) numer_tablename,
MAX(denom_t.tablename) denom_tablename,
MAX(geom_t.tablename) geom_tablename,
MAX(numer_t.timespan) numer_timespan,
MAX(denom_t.timespan) denom_timespan,
MAX(numer_c.weight) numer_weight,
MAX(denom_c.weight) denom_weight,
MAX(geom_c.weight) geom_weight,
MAX(geom_t.timespan) geom_timespan,
MAX(geom_t.the_geom_webmercator)::geometry AS the_geom_webmercator,
ARRAY_AGG(DISTINCT s_tag.id) section_tags,
ARRAY_AGG(DISTINCT ss_tag.id) subsection_tags,
ARRAY_AGG(DISTINCT unit_tag.id) unit_tags
FROM observatory.obs_column_table numer_data_ct,
observatory.obs_table numer_t,
observatory.obs_column_table numer_geomref_ct,
observatory.obs_column geomref_c,
observatory.obs_column_to_column geomref_c2c,
observatory.obs_column geom_c,
observatory.obs_column_table geom_geom_ct,
observatory.obs_column_table geom_geomref_ct,
observatory.obs_table geom_t,
observatory.obs_column_tag ss_ctag,
observatory.obs_tag ss_tag,
observatory.obs_column_tag s_ctag,
observatory.obs_tag s_tag,
observatory.obs_column_tag unit_ctag,
observatory.obs_tag unit_tag,
observatory.obs_column numer_c
LEFT JOIN (
observatory.obs_column_to_column denom_c2c
JOIN observatory.obs_column denom_c ON denom_c2c.target_id = denom_c.id
JOIN observatory.obs_column_table denom_data_ct ON denom_data_ct.column_id = denom_c.id
JOIN observatory.obs_table denom_t ON denom_data_ct.table_id = denom_t.id
JOIN observatory.obs_column_table denom_geomref_ct ON denom_geomref_ct.table_id = denom_t.id
) ON denom_c2c.source_id = numer_c.id
WHERE numer_c.id = numer_data_ct.column_id
AND numer_data_ct.table_id = numer_t.id
AND numer_t.id = numer_geomref_ct.table_id
AND numer_geomref_ct.column_id = geomref_c.id
AND geomref_c2c.reltype = 'geom_ref'
AND geomref_c.id = geomref_c2c.source_id
AND geom_c.id = geomref_c2c.target_id
AND geom_geomref_ct.column_id = geomref_c.id
AND geom_geomref_ct.table_id = geom_t.id
AND geom_geom_ct.column_id = geom_c.id
AND geom_geom_ct.table_id = geom_t.id
AND geom_c.type ILIKE 'geometry'
AND numer_c.type NOT ILIKE 'geometry'
AND numer_t.id != geom_t.id
AND numer_c.id != geomref_c.id
AND unit_tag.type = 'unit'
AND ss_tag.type = 'subsection'
AND s_tag.type = 'section'
AND unit_ctag.column_id = numer_c.id
AND unit_ctag.tag_id = unit_tag.id
AND ss_ctag.column_id = numer_c.id
AND ss_ctag.tag_id = ss_tag.id
AND s_ctag.column_id = numer_c.id
AND s_ctag.tag_id = s_tag.id
AND (denom_c2c.reltype = 'denominator' OR denom_c2c.reltype IS NULL)
AND (denom_geomref_ct.column_id = geomref_c.id OR denom_geomref_ct.column_id IS NULL)
AND (denom_t.timespan = numer_t.timespan OR denom_t.timespan IS NULL)
GROUP BY numer_c.id, denom_c.id, geom_c.id,
numer_t.id, denom_t.id, geom_t.id;
''')
print unique_tables
dropfiles.write('''
DROP TABLE IF EXISTS observatory.obs_meta;
''')
with open(OUTFILE_PATH, 'w') as outfile:
outfile.write('SET client_min_messages TO WARNING;\n\\set ECHO none\n')
outfile.write('CREATE SCHEMA IF NOT EXISTS observatory;\n\n')
with open(DROPFILE_PATH, 'w') as dropfile:
dropfile.write('SET client_min_messages TO WARNING;\n\\set ECHO none\n')
for tablename in METADATA_TABLES:
print(tablename)
if tablename == 'obs_meta':
where = "WHERE " + " OR ".join([
"(numer_id, geom_id, numer_timespan) = ('{}', '{}', '{}')".format(
numer_id, geom_id, timespan)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename == 'obs_meta_numer':
where = "WHERE " + " OR ".join([
"numer_id IN ('{}', '{}')".format(numer_id, geom_id)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename == 'obs_meta_denom':
where = "WHERE " + " OR ".join([
"denom_id IN ('{}', '{}')".format(numer_id, geom_id)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename == 'obs_meta_geom':
where = "WHERE " + " OR ".join([
"geom_id IN ('{}', '{}')".format(numer_id, geom_id)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename == 'obs_meta_timespan':
where = "WHERE " + " OR ".join([
"timespan_id = ('{}')".format(timespan)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename == 'obs_column':
where = "WHERE " + " OR ".join([
"id IN ('{}', '{}')".format(numer_id, geom_id)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename == 'obs_column_tag':
where = "WHERE " + " OR ".join([
"column_id IN ('{}', '{}')".format(numer_id, geom_id)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename in ('obs_column_table', 'obs_column_table_tile',
'obs_column_table_tile_simple'):
where = '''WHERE table_id IN ({table_ids}) AND
(column_id IN ({numer_ids}) OR column_id IN ({geom_ids}))
'''.format(
numer_ids=','.join(["'{}'".format(x) for x, _, _ in FIXTURES]),
geom_ids=','.join(["'{}'".format(x) for _, x, _ in FIXTURES]),
table_ids=','.join(["'{}'".format(x) for _, _, x in unique_tables])
)
elif tablename == 'obs_column_to_column':
where = "WHERE " + " OR ".join([
"source_id IN ('{}', '{}') OR target_id IN ('{}', '{}')".format(
numer_id, geom_id, numer_id, geom_id)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename == 'obs_table':
where = 'WHERE timespan IN ({timespans}) ' \
'OR id IN ({table_ids}) '.format(
timespans=','.join(["'{}'".format(x) for _, _, x in FIXTURES]),
table_ids=','.join(["'{}'".format(x) for _, _, x in unique_tables])
)
else:
where = ''
dump('*', tablename, where)
for tablename, colname, table_id in unique_tables:
if 'zcta5' in table_id or 'zillow_zip' in table_id:
where = '\'11%\''
compare = 'LIKE'
elif 'pri_sec_roads' in table_id or 'point_landmark' in table_id:
dump('*', tablename, 'WHERE geom && ST_MakeEnvelope(-74,40.69,-73.9,40.72, 4326)')
continue
elif 'whosonfirst' in table_id:
where = '(\'85632785\',\'85633051\',\'85633111\',\'85633147\',\'85633253\',\'85633267\')'
compare = 'IN'
else:
where = '\'36047%\''
compare = 'LIKE'
print ' '.join(['*', tablename, "WHERE {}::text {} {}".format(colname, compare, where)])
dump('*', tablename, "WHERE {}::text {} {}".format(colname, compare, where))
if __name__ == '__main__':
main()

View File

@@ -1,5 +1,5 @@
comment = 'CartoDB Observatory backend extension'
default_version = '1.0.3'
requires = 'postgis, postgres_fdw'
default_version = '1.3.1'
requires = 'postgis'
superuser = true
schema = cdb_observatory

View File

@@ -1,67 +0,0 @@
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_ConnectRemoteTable(fdw_name text, schema_name text, user_dbname text, user_hostname text, username text, user_tablename text, user_schema text)
RETURNS void
AS $$
DECLARE
row record;
option record;
connection_str json;
BEGIN
-- Build connection string
connection_str := '{"server":{"extensions":"postgis", "dbname":"'
|| user_dbname ||'", "host":"' || user_hostname ||'", "port":"5432"}, "users":{"public"'
|| ':{"user":"' || username ||'", "password":""} } }';
-- This function tries to be as idempotent as possible, by not creating anything more than once
-- (not even using IF NOT EXIST to avoid throwing warnings)
IF NOT EXISTS ( SELECT * FROM pg_extension WHERE extname = 'postgres_fdw') THEN
CREATE EXTENSION postgres_fdw;
END IF;
-- Create FDW first if it does not exist
IF NOT EXISTS ( SELECT * FROM pg_foreign_server WHERE srvname = fdw_name)
THEN
EXECUTE FORMAT('CREATE SERVER %I FOREIGN DATA WRAPPER postgres_fdw', fdw_name);
END IF;
-- Set FDW settings
FOR row IN SELECT p.key, p.value from lateral json_each_text(connection_str->'server') p
LOOP
IF NOT EXISTS (WITH a AS (select split_part(unnest(srvoptions), '=', 1) as options from pg_foreign_server where srvname=fdw_name) SELECT * from a where options = row.key)
THEN
EXECUTE FORMAT('ALTER SERVER %I OPTIONS (ADD %I %L)', fdw_name, row.key, row.value);
ELSE
EXECUTE FORMAT('ALTER SERVER %I OPTIONS (SET %I %L)', fdw_name, row.key, row.value);
END IF;
END LOOP;
-- Create user mappings
FOR row IN SELECT p.key, p.value from lateral json_each(connection_str->'users') p LOOP
-- Check if entry on pg_user_mappings exists
IF NOT EXISTS ( SELECT * FROM pg_user_mappings WHERE srvname = fdw_name AND usename = row.key ) THEN
EXECUTE FORMAT ('CREATE USER MAPPING FOR %I SERVER %I', row.key, fdw_name);
END IF;
-- Update user mapping settings
FOR option IN SELECT o.key, o.value from lateral json_each_text(row.value) o LOOP
IF NOT EXISTS (WITH a AS (select split_part(unnest(umoptions), '=', 1) as options from pg_user_mappings WHERE srvname = fdw_name AND usename = row.key) SELECT * from a where options = option.key) THEN
EXECUTE FORMAT('ALTER USER MAPPING FOR %I SERVER %I OPTIONS (ADD %I %L)', row.key, fdw_name, option.key, option.value);
ELSE
EXECUTE FORMAT('ALTER USER MAPPING FOR %I SERVER %I OPTIONS (SET %I %L)', row.key, fdw_name, option.key, option.value);
END IF;
END LOOP;
END LOOP;
-- Create schema if it does not exist.
IF NOT EXISTS ( SELECT * from pg_namespace WHERE nspname=fdw_name) THEN
EXECUTE FORMAT ('CREATE SCHEMA %I', fdw_name);
END IF;
-- Bring the remote cdb_tablemetadata
IF NOT EXISTS ( SELECT * FROM PG_CLASS WHERE relnamespace = (SELECT oid FROM pg_namespace WHERE nspname=fdw_name) and relname='cdb_tablemetadata') THEN
EXECUTE FORMAT ('CREATE FOREIGN TABLE %I.cdb_tablemetadata (tabname text, updated_at timestamp with time zone) SERVER %I OPTIONS (table_name ''cdb_tablemetadata_text'', schema_name ''public'', updatable ''false'')', fdw_name, fdw_name);
END IF;
-- Import target table
EXECUTE FORMAT ('IMPORT FOREIGN SCHEMA %I LIMIT TO (%I) from SERVER %I INTO %I', user_schema, user_tablename, fdw_name, schema_name);
END;
$$ LANGUAGE PLPGSQL;

View File

@@ -203,3 +203,31 @@ BEGIN
RETURN result;
END;
$$ LANGUAGE plpgsql;
-- Function we can call to raise an exception in the midst of a SQL statement
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_RaiseNotice(
message TEXT
) RETURNS TEXT
AS $$
BEGIN
RAISE NOTICE '%', message;
RETURN NULL;
END;
$$ LANGUAGE plpgsql;
-- Create a function that always returns the first non-NULL item
CREATE OR REPLACE FUNCTION cdb_observatory.first_agg ( anyelement, anyelement )
RETURNS anyelement LANGUAGE SQL IMMUTABLE STRICT AS $$
SELECT $1;
$$;
DROP AGGREGATE IF EXISTS cdb_observatory.FIRST (anyelement);
-- And then wrap an aggregate around it
CREATE AGGREGATE cdb_observatory.FIRST (
sfunc = cdb_observatory.first_agg,
basetype = anyelement,
stype = anyelement
);

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,4 @@
-- return a table that contains a string match based on input
-- TODO: implement search for timespan
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_SearchTables(
@@ -120,3 +120,377 @@ BEGIN
RETURN;
END
$$ LANGUAGE plpgsql;
-- Functions the interface works from to identify available numerators,
-- denominators, geometries, and timespans
CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetAvailableNumerators(
bounds GEOMETRY DEFAULT NULL,
filter_tags TEXT[] DEFAULT NULL,
denom_id TEXT DEFAULT NULL,
geom_id TEXT DEFAULT NULL,
timespan TEXT DEFAULT NULL
) RETURNS TABLE (
numer_id TEXT,
numer_name TEXT,
numer_description TEXT,
numer_weight NUMERIC,
numer_license TEXT,
numer_source TEXT,
numer_type TEXT,
numer_aggregate TEXT,
numer_extra JSONB,
numer_tags JSONB,
valid_denom BOOLEAN,
valid_geom BOOLEAN,
valid_timespan BOOLEAN
) AS $$
DECLARE
geom_clause TEXT;
BEGIN
filter_tags := COALESCE(filter_tags, (ARRAY[])::TEXT[]);
denom_id := COALESCE(denom_id, '');
geom_id := COALESCE(geom_id, '');
timespan := COALESCE(timespan, '');
IF bounds IS NULL THEN
geom_clause := '';
ELSE
geom_clause := 'ST_Intersects(the_geom, $5) AND';
END IF;
RETURN QUERY
EXECUTE
format($string$
SELECT numer_id::TEXT,
numer_name::TEXT,
numer_description::TEXT,
numer_weight::NUMERIC,
NULL::TEXT license,
NULL::TEXT source,
numer_type numer_type,
numer_aggregate numer_aggregate,
numer_extra::JSONB numer_extra,
numer_tags numer_tags,
$1 = ANY(denoms) valid_denom,
$2 = ANY(geoms) valid_geom,
$3 = ANY(timespans) valid_timespan
FROM observatory.obs_meta_numer
WHERE %s (numer_tags ?& $4 OR CARDINALITY($4) = 0)
$string$, geom_clause)
USING denom_id, geom_id, timespan, filter_tags, bounds;
RETURN;
END
$$ LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetAvailableDenominators(
bounds GEOMETRY DEFAULT NULL,
filter_tags TEXT[] DEFAULT NULL,
numer_id TEXT DEFAULT NULL,
geom_id TEXT DEFAULT NULL,
timespan TEXT DEFAULT NULL
) RETURNS TABLE (
denom_id TEXT,
denom_name TEXT,
denom_description TEXT,
denom_weight NUMERIC,
denom_license TEXT,
denom_source TEXT,
denom_type TEXT,
denom_aggregate TEXT,
denom_extra JSONB,
denom_tags JSONB,
valid_numer BOOLEAN,
valid_geom BOOLEAN,
valid_timespan BOOLEAN
) AS $$
DECLARE
geom_clause TEXT;
BEGIN
filter_tags := COALESCE(filter_tags, (ARRAY[])::TEXT[]);
numer_id := COALESCE(numer_id, '');
geom_id := COALESCE(geom_id, '');
timespan := COALESCE(timespan, '');
IF bounds IS NULL THEN
geom_clause := '';
ELSE
geom_clause := 'ST_Intersects(the_geom, $5) AND';
END IF;
RETURN QUERY
EXECUTE
format($string$
SELECT denom_id::TEXT,
denom_name::TEXT,
denom_description::TEXT,
denom_weight::NUMERIC,
NULL::TEXT license,
NULL::TEXT source,
denom_type::TEXT,
denom_aggregate::TEXT,
denom_extra::JSONB,
denom_tags::JSONB,
$1 = ANY(numers) valid_numer,
$2 = ANY(geoms) valid_geom,
$3 = ANY(timespans) valid_timespan
FROM observatory.obs_meta_denom
WHERE %s (denom_tags ?& $4 OR CARDINALITY($4) = 0)
$string$, geom_clause)
USING numer_id, geom_id, timespan, filter_tags, bounds;
RETURN;
END
$$ LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetAvailableGeometries(
bounds GEOMETRY DEFAULT NULL,
filter_tags TEXT[] DEFAULT NULL,
numer_id TEXT DEFAULT NULL,
denom_id TEXT DEFAULT NULL,
timespan TEXT DEFAULT NULL
) RETURNS TABLE (
geom_id TEXT,
geom_name TEXT,
geom_description TEXT,
geom_weight NUMERIC,
geom_aggregate TEXT,
geom_license TEXT,
geom_source TEXT,
valid_numer BOOLEAN,
valid_denom BOOLEAN,
valid_timespan BOOLEAN,
score NUMERIC,
numtiles BIGINT,
notnull_percent NUMERIC,
numgeoms NUMERIC,
percentfill NUMERIC,
estnumgeoms NUMERIC,
meanmediansize NUMERIC
) AS $$
DECLARE
geom_clause TEXT;
BEGIN
filter_tags := COALESCE(filter_tags, (ARRAY[])::TEXT[]);
numer_id := COALESCE(numer_id, '');
denom_id := COALESCE(denom_id, '');
timespan := COALESCE(timespan, '');
IF bounds IS NULL THEN
geom_clause := '';
ELSE
geom_clause := 'ST_Intersects(the_geom, $5) AND';
END IF;
RETURN QUERY
EXECUTE
format($string$
WITH available_geoms AS (
SELECT geom_id::TEXT,
geom_name::TEXT,
geom_description::TEXT,
geom_weight::NUMERIC,
NULL::TEXT geom_aggregate,
NULL::TEXT license,
NULL::TEXT source,
$1 = ANY(numers) valid_numer,
$2 = ANY(denoms) valid_denom,
$3 = ANY(timespans) valid_timespan
FROM observatory.obs_meta_geom
WHERE %s (geom_tags ?& $4 OR CARDINALITY($4) = 0)
), scores AS (
SELECT * FROM cdb_observatory._OBS_GetGeometryScores($5,
(SELECT ARRAY_AGG(geom_id) FROM available_geoms)
)
) SELECT available_geoms.*, score, numtiles, notnull_percent, numgeoms,
percentfill, estnumgeoms, meanmediansize
FROM available_geoms, scores
WHERE available_geoms.geom_id = scores.column_id
$string$, geom_clause)
USING numer_id, denom_id, timespan, filter_tags, bounds;
RETURN;
END
$$ LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetAvailableTimespans(
bounds GEOMETRY DEFAULT NULL,
filter_tags TEXT[] DEFAULT NULL,
numer_id TEXT DEFAULT NULL,
denom_id TEXT DEFAULT NULL,
geom_id TEXT DEFAULT NULL
) RETURNS TABLE (
timespan_id TEXT,
timespan_name TEXT,
timespan_description TEXT,
timespan_weight NUMERIC,
timespan_aggregate TEXT,
timespan_license TEXT,
timespan_source TEXT,
valid_numer BOOLEAN,
valid_denom BOOLEAN,
valid_geom BOOLEAN
) AS $$
DECLARE
geom_clause TEXT;
BEGIN
filter_tags := COALESCE(filter_tags, (ARRAY[])::TEXT[]);
numer_id := COALESCE(numer_id, '');
denom_id := COALESCE(denom_id, '');
geom_id := COALESCE(geom_id, '');
IF bounds IS NULL THEN
geom_clause := '';
ELSE
geom_clause := 'ST_Intersects(the_geom, $5) AND';
END IF;
RETURN QUERY
EXECUTE
format($string$
SELECT timespan_id::TEXT,
timespan_name::TEXT,
timespan_description::TEXT,
timespan_weight::NUMERIC,
NULL::TEXT timespan_aggregate,
NULL::TEXT license,
NULL::TEXT source,
$1 = ANY(numers) valid_numer,
$2 = ANY(denoms) valid_denom,
$3 = ANY(geoms) valid_geom_id
FROM observatory.obs_meta_timespan
WHERE %s (timespan_tags ?& $4 OR CARDINALITY($4) = 0)
$string$, geom_clause)
USING numer_id, denom_id, geom_id, filter_tags, bounds;
RETURN;
END
$$ LANGUAGE plpgsql;
-- Function below should replace SQL in
-- https://github.com/CartoDB/cartodb/blob/ab465cb2918c917940e955963b0cd8a050c06600/lib/assets/javascripts/cartodb3/editor/layers/layer-content-views/analyses/data-observatory-metadata.js
CREATE OR REPLACE FUNCTION cdb_observatory.OBS_LegacyBuilderMetadata(
aggregate_type TEXT DEFAULT NULL
)
RETURNS TABLE (
name TEXT,
subsection JSONB
) AS $$
DECLARE
aggregate_condition TEXT DEFAULT '';
BEGIN
IF LOWER(aggregate_type) ILIKE 'sum' THEN
aggregate_condition := ' AND numer_aggregate IN (''sum'', ''median'', ''average'') ';
ELSIF aggregate_type IS NOT NULL THEN
aggregate_condition := format(' AND numer_aggregate ILIKE %L ', aggregate_type);
END IF;
RETURN QUERY
EXECUTE format($string$
WITH expanded AS (
SELECT JSONB_Build_Object('id', numer_id, 'name', numer_name) "column",
SUBSTR((sections).key, 9) section_id, (sections).value section_name,
SUBSTR((subsections).key, 12) subsection_id, (subsections).value subsection_name
FROM (
SELECT numer_id, numer_name,
jsonb_each_text(numer_tags) as sections,
jsonb_each_text as subsections
FROM (SELECT numer_id, numer_name, numer_tags,
jsonb_each_text(numer_tags)
FROM cdb_observatory.obs_getavailablenumerators()
WHERE numer_weight > 0 %s
) foo
) bar
WHERE (sections).key LIKE 'section/%%'
AND (subsections).key LIKE 'subsection/%%'
), grouped_by_subsections AS (
SELECT JSONB_Agg(JSONB_Build_Object('f1', "column")) AS columns,
section_id, section_name, subsection_id, subsection_name
FROM expanded
GROUP BY section_id, section_name, subsection_id, subsection_name
)
SELECT section_name as name, JSONB_Agg(
JSONB_Build_Object(
'f1', JSONB_Build_Object(
'name', subsection_name,
'id', subsection_id,
'columns', columns
)
)
) as subsection
FROM grouped_by_subsections
GROUP BY section_name
$string$, aggregate_condition);
RETURN;
END
$$ LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetGeometryScores(
bounds Geometry(Geometry, 4326) DEFAULT NULL,
filter_geom_ids TEXT[] DEFAULT NULL,
desired_num_geoms INTEGER DEFAULT NULL
) RETURNS TABLE (
score NUMERIC,
numtiles BIGINT,
table_id TEXT,
column_id TEXT,
notnull_percent NUMERIC,
numgeoms NUMERIC,
percentfill NUMERIC,
estnumgeoms NUMERIC,
meanmediansize NUMERIC
) AS $$
BEGIN
IF desired_num_geoms IS NULL THEN
desired_num_geoms := 3000;
END IF;
filter_geom_ids := COALESCE(filter_geom_ids, (ARRAY[])::TEXT[]);
-- Very complex geometries simply fail. For a boundary check, we can
-- comfortably get away with the simplicity of an envelope
IF ST_Npoints(bounds) > 10000 THEN
bounds := ST_Envelope(bounds);
END IF;
RETURN QUERY
EXECUTE $string$
WITH clipped_geom AS (
SELECT column_id, table_id
, CASE WHEN $1 IS NOT NULL THEN ST_Clip(tile, $1, True) -- -20
ELSE tile END clipped_tile
, tile
FROM observatory.obs_column_table_tile_simple
WHERE ($1 IS NULL OR ST_Intersects($1, tile))
AND (column_id = ANY($2) OR cardinality($2) = 0)
), clipped_geom_countagg AS (
SELECT column_id, table_id
, BOOL_AND(ST_BandIsNoData(clipped_tile, 1)) nodata
, ST_CountAgg(clipped_tile, 1, False)::Numeric pixels -- -10
FROM clipped_geom
GROUP BY column_id, table_id
), clipped_geom_reagg AS (
SELECT COUNT(*)::BIGINT cnt, a.column_id, a.table_id,
cdb_observatory.FIRST(nodata) first_nodata,
cdb_observatory.FIRST(pixels) first_pixel,
cdb_observatory.FIRST(tile) first_tile,
(ST_SummaryStatsAgg(clipped_tile, 1, False)).sum::Numeric sum_geoms, -- ND
(ST_SummaryStatsAgg(clipped_tile, 2, False)).mean::Numeric / 255 mean_fill --ND
FROM clipped_geom_countagg a, clipped_geom b
WHERE a.table_id = b.table_id
AND a.column_id = b.column_id
GROUP BY a.column_id, a.table_id
), final AS (
SELECT
cnt, table_id, column_id
, NULL::Numeric AS notnull_percent
, (CASE WHEN first_nodata IS FALSE
THEN sum_geoms
ELSE COALESCE(ST_Value(first_tile, 1, ST_PointOnSurface($1)), 0)
* (ST_Area($1) / ST_Area(ST_PixelAsPolygon(first_tile, 0, 0))
* first_pixel) -- -20
END)::Numeric
AS numgeoms
, (CASE WHEN first_nodata IS FALSE
THEN mean_fill
ELSE COALESCE(ST_Value(first_tile, 2, ST_PointOnSurface($1))::Numeric / 255, 0) -- -2
END)::Numeric
AS percentfill
, null::numeric estnumgeoms
, null::numeric meanmediansize
FROM clipped_geom_reagg
) SELECT
((100.0 / (1+abs(log(0.0001 + $3) - log(0.0001 + numgeoms::Numeric)))) * percentfill)::Numeric
AS score, *
FROM final
$string$ USING bounds, filter_geom_ids, desired_num_geoms;
RETURN;
END
$$ LANGUAGE plpgsql IMMUTABLE;

View File

@@ -40,44 +40,11 @@ BEGIN
RAISE EXCEPTION 'Invalid geometry type (%), expecting ''ST_Point''', ST_GeometryType(geom);
END IF;
-- choose appropriate table based on time_span
IF time_span IS NULL
THEN
SELECT x.target_tables INTO target_table
FROM cdb_observatory._OBS_SearchTables(boundary_id,
time_span) As x(target_tables,
timespans)
ORDER BY x.timespans DESC
LIMIT 1;
ELSE
-- TODO: modify for only one table returned instead of arbitrarily choosing
-- one with LIMIT 1 (could be conflict between clipped vs non-clipped
-- boundaries in the metadata tables)
SELECT x.target_tables INTO target_table
FROM cdb_observatory._OBS_SearchTables(boundary_id,
time_span) As x(target_tables,
timespans)
WHERE x.timespans = time_span
LIMIT 1;
END IF;
-- if no tables are found, raise notice and return null
IF target_table IS NULL
THEN
--RAISE NOTICE 'No boundaries found for ''%'' in ''%''', ST_AsText(geom), boundary_id;
RETURN NULL::geometry;
END IF;
--RAISE NOTICE 'target_table: %', target_table;
-- return the first boundary in intersections
EXECUTE format(
'SELECT the_geom
FROM observatory.%I
WHERE ST_Intersects($1, the_geom)
LIMIT 1', target_table)
INTO boundary
USING geom;
EXECUTE $query$
SELECT * FROM cdb_observatory._OBS_GetBoundariesByGeometry($1, $2, $3) LIMIT 1
$query$ INTO boundary
USING geom, boundary_id, time_span;
RETURN boundary;
@@ -111,67 +78,17 @@ CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundaryId(
RETURNS text
AS $$
DECLARE
output_id text;
target_table text;
geoid_colname text;
result TEXT;
BEGIN
-- If not point, raise error
IF ST_GeometryType(geom) != 'ST_Point'
THEN
RAISE EXCEPTION 'Invalid geometry type (%), expecting ''ST_Point''', ST_GeometryType(geom);
END IF;
-- choose appropriate table based on time_span
IF time_span IS NULL
THEN
SELECT x.target_tables INTO target_table
FROM cdb_observatory._OBS_SearchTables(boundary_id,
time_span) As x(target_tables,
timespans)
ORDER BY x.timespans DESC
LIMIT 1;
ELSE
SELECT x.target_tables INTO target_table
FROM cdb_observatory._OBS_SearchTables(boundary_id,
time_span) As x(target_tables,
timespans)
WHERE x.timespans = time_span
LIMIT 1;
END IF;
-- if no tables are found, raise notice and return null
IF target_table IS NULL
THEN
--RAISE NOTICE 'Warning: No boundaries found for ''%''', boundary_id;
RETURN NULL::text;
END IF;
EXECUTE
format('SELECT ct.colname
FROM observatory.obs_column_to_column c2c,
observatory.obs_column_table ct,
observatory.obs_table t
WHERE c2c.reltype = ''geom_ref''
AND ct.column_id = c2c.source_id
AND ct.table_id = t.id
AND t.tablename = %L'
, target_table)
INTO geoid_colname;
--RAISE NOTICE 'target_table: %, geoid_colname: %', target_table, geoid_colname;
-- return geometry id column value
EXECUTE format(
'SELECT %I::text
FROM observatory.%I
WHERE ST_Intersects($1, the_geom)
LIMIT 1', geoid_colname, target_table)
INTO output_id
USING geom;
RETURN output_id;
EXECUTE $query$
SELECT geom_refs FROM cdb_observatory._OBS_GetBoundariesByGeometry(
$1, $2, $3) LIMIT 1
$query$
INTO result
USING geom, boundary_id, time_span;
RETURN result;
END;
$$ LANGUAGE plpgsql;
@@ -203,35 +120,21 @@ CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundaryById(
RETURNS geometry(geometry, 4326)
AS $$
DECLARE
boundary geometry(geometry, 4326);
target_table text;
geoid_colname text;
geom_colname text;
result GEOMETRY;
BEGIN
SELECT * INTO geoid_colname, target_table, geom_colname
FROM cdb_observatory._OBS_GetGeometryMetadata(boundary_id);
--RAISE NOTICE '%', target_table;
IF target_table IS NULL
THEN
--RAISE NOTICE 'No geometries found';
RETURN NULL::geometry;
END IF;
-- retrieve boundary
EXECUTE
format(
'SELECT %I
FROM observatory.%I
WHERE %I = $1
LIMIT 1', geom_colname, target_table, geoid_colname)
INTO boundary
USING geometry_id;
RETURN boundary;
EXECUTE $query$
SELECT (data->0->>'value')::Geometry
FROM cdb_observatory.OBS_GetData(
ARRAY[$1],
cdb_observatory.OBS_GetMeta(
ST_MakeEnvelope(-180, -90, 180, 90, 4326),
('[{"geom_id": "' || $2 || '"}]')::JSON))
$query$
INTO result
USING geometry_id, boundary_id;
RETURN result;
END;
$$ LANGUAGE plpgsql;
@@ -244,49 +147,41 @@ CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetBoundariesByGeometry(
geom geometry(Geometry, 4326),
boundary_id text,
time_span text DEFAULT NULL,
overlap_type text DEFAULT 'intersects')
RETURNS TABLE(the_geom geometry, geom_refs text)
AS $$
overlap_type text DEFAULT NULL)
RETURNS TABLE (
the_geom geometry,
geom_refs text
) AS $$
DECLARE
boundary geometry(Geometry, 4326);
geom_colname text;
geoid_colname text;
target_table text;
meta JSON;
BEGIN
overlap_type := COALESCE(overlap_type, 'intersects');
-- check inputs
IF lower(overlap_type) NOT IN ('contains', 'intersects', 'within')
THEN
-- recognized overlap type (map to ST_Contains, ST_Intersects, and ST_Within)
RAISE EXCEPTION 'Overlap type ''%'' is not an accepted type (choose intersects, within, or contains)', overlap_type;
ELSIF ST_GeometryType(geom) NOT IN ('ST_Polygon', 'ST_MultiPolygon')
THEN
RAISE EXCEPTION 'Invalid geometry type (%), expecting ''ST_MultiPolygon'' or ''ST_Polygon''', ST_GeometryType(geom);
END IF;
-- TODO: add timespan in search
-- TODO: add overlap info in search
SELECT * INTO geoid_colname, target_table, geom_colname
FROM cdb_observatory._OBS_GetGeometryMetadata(boundary_id);
EXECUTE $query$
SELECT cdb_observatory.OBS_GetMeta($1, JSON_Build_Array(JSON_Build_Object(
'geom_id', $2, 'geom_timespan', $3)))
$query$
INTO meta
USING geom, boundary_id, time_span;
-- if no tables are found, raise notice and return null
IF target_table IS NULL
THEN
--RAISE NOTICE 'No boundaries found for bounding box ''%'' in ''%''', ST_AsText(geom), boundary_id;
RETURN QUERY SELECT NULL::geometry, NULL::text;
IF meta->0->>'geom_id' IS NULL THEN
RETURN QUERY EXECUTE 'SELECT NULL::Geometry, NULL::Text LIMIT 0';
RETURN;
END IF;
--RAISE NOTICE 'target_table: %', target_table;
-- return first boundary in intersections
RETURN QUERY
EXECUTE format(
'SELECT %I, %I::text
FROM observatory.%I
WHERE ST_%s($1, the_geom)
', geom_colname, geoid_colname, target_table, overlap_type)
USING geom;
RETURN QUERY EXECUTE $query$
SELECT (data->0->>'value')::Geometry the_geom, data->0->>'geomref' geom_refs
FROM cdb_observatory.OBS_GetData(
ARRAY[($1, 1)::geomval], $2, False
)
$query$ USING geom, meta;
RETURN;
END;
@@ -318,7 +213,7 @@ CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundariesByGeometry(
geom geometry(Geometry, 4326),
boundary_id text,
time_span text DEFAULT NULL,
overlap_type text DEFAULT 'intersects')
overlap_type text DEFAULT NULL)
RETURNS TABLE(the_geom geometry, geom_refs text)
AS $$
BEGIN
@@ -364,7 +259,7 @@ CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundariesByPointAndRadius(
radius numeric, -- radius in meters
boundary_id text,
time_span text DEFAULT NULL,
overlap_type text DEFAULT 'intersects')
overlap_type text DEFAULT NULL)
RETURNS TABLE(the_geom geometry, geom_refs text)
AS $$
DECLARE
@@ -382,7 +277,8 @@ BEGIN
FROM cdb_observatory._OBS_GetBoundariesByGeometry(
circle_boundary,
boundary_id,
time_span);
time_span,
overlap_type);
RETURN;
END;
$$ LANGUAGE plpgsql;
@@ -394,7 +290,7 @@ CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetPointsByGeometry(
geom geometry(Geometry, 4326),
boundary_id text,
time_span text DEFAULT NULL,
overlap_type text DEFAULT 'intersects')
overlap_type text DEFAULT NULL)
RETURNS TABLE(the_geom geometry, geom_refs text)
AS $$
DECLARE
@@ -403,6 +299,7 @@ DECLARE
geoid_colname text;
target_table text;
BEGIN
overlap_type := COALESCE(overlap_type, 'intersects');
IF lower(overlap_type) NOT IN ('contains', 'within', 'intersects')
THEN
@@ -412,27 +309,11 @@ BEGIN
RAISE EXCEPTION 'Invalid geometry type (%), expecting ''ST_MultiPolygon'' or ''ST_Polygon''', ST_GeometryType(geom);
END IF;
SELECT * INTO geoid_colname, target_table, geom_colname
FROM cdb_observatory._OBS_GetGeometryMetadata(boundary_id);
-- if no tables are found, raise notice and return null
IF target_table IS NULL
THEN
--RAISE NOTICE 'No boundaries found for bounding box ''%'' in ''%''', ST_AsText(geom), boundary_id;
RETURN QUERY SELECT NULL::geometry, NULL::text;
RETURN;
END IF;
--RAISE NOTICE 'target_table: %', target_table;
-- return first boundary in intersections
RETURN QUERY
EXECUTE format(
'SELECT ST_PointOnSurface(%I) As %s, %I::text
FROM observatory.%I
WHERE ST_%s($1, the_geom)
', geom_colname, geom_colname, geoid_colname, target_table, overlap_type)
USING geom;
RETURN QUERY EXECUTE $query$
SELECT ST_PointOnSurface(the_geom), geom_refs
FROM cdb_observatory._OBS_GetBoundariesByGeometry($1, $2)
$query$ USING geom, boundary_id;
RETURN;
END;
@@ -464,7 +345,7 @@ CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetPointsByGeometry(
geom geometry(Geometry, 4326),
boundary_id text,
time_span text DEFAULT NULL,
overlap_type text DEFAULT 'intersects')
overlap_type text DEFAULT NULL)
RETURNS TABLE(the_geom geometry, geom_refs text)
AS $$
BEGIN
@@ -509,7 +390,7 @@ CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetPointsByPointAndRadius(
radius numeric, -- radius in meters
boundary_id text,
time_span text DEFAULT NULL,
overlap_type text DEFAULT 'intersects')
overlap_type text DEFAULT NULL)
RETURNS TABLE(the_geom geometry, geom_refs text)
AS $$
DECLARE
@@ -532,44 +413,3 @@ BEGIN
RETURN;
END;
$$ LANGUAGE plpgsql;
-- _OBS_GetGeometryMetadata()
-- TODO: add timespan in search
-- TODO: add choice of clipped versus not clipped
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetGeometryMetadata(boundary_id text)
RETURNS table(geoid_colname text, target_table text, geom_colname text)
AS $$
BEGIN
RETURN QUERY
EXECUTE
format($string$
SELECT geoid_ct.colname::text As geoid_colname,
tablename::text,
geom_ct.colname::text As geom_colname
FROM observatory.obs_column_table As geoid_ct,
observatory.obs_table As geom_t,
observatory.obs_column_table As geom_ct,
observatory.obs_column As geom_c
WHERE geoid_ct.column_id
IN (
SELECT source_id
FROM observatory.obs_column_to_column
WHERE reltype = 'geom_ref'
AND target_id = '%s'
)
AND geoid_ct.table_id = geom_t.id AND
geom_t.id = geom_ct.table_id AND
geom_ct.column_id = geom_c.id AND
geom_c.type ILIKE 'geometry' AND
geom_c.id = '%s'
$string$, boundary_id, boundary_id);
RETURN;
-- AND geom_t.timespan = '%s' <-- put in requested year
-- TODO: filter by clipped vs. not so appropriate tablename are unique
-- so the limit 1 can be removed
RETURN;
END;
$$ LANGUAGE plpgsql;

View File

@@ -1,119 +0,0 @@
CREATE TYPE cdb_observatory.ds_fdw_metadata as (schemaname text, tabname text, servername text);
CREATE TYPE cdb_observatory.ds_return_metadata as (colnames text[], coltypes text[]);
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_ConnectUserTable(username text, orgname text, user_db_role text, input_schema text, dbname text, host_addr text, table_name text)
RETURNS cdb_observatory.ds_fdw_metadata
AS $$
DECLARE
fdw_server text;
fdw_import_schema text;
connection_str json;
import_foreign_schema_q text;
epoch_timestamp text;
BEGIN
SELECT extract(epoch from now() at time zone 'utc')::int INTO epoch_timestamp;
fdw_server := 'fdw_server_' || username || '_' || epoch_timestamp;
fdw_import_schema:= fdw_server;
-- Import foreign table
EXECUTE FORMAT ('SELECT cdb_observatory._OBS_ConnectRemoteTable(%L, %L, %L, %L, %L, %L, %L)', fdw_server, fdw_import_schema, dbname, host_addr, user_db_role, table_name, input_schema);
RETURN (fdw_import_schema::text, table_name::text, fdw_server::text);
EXCEPTION
WHEN others THEN
-- Disconnect user imported table. Delete schema and FDW server.
EXECUTE 'DROP FOREIGN TABLE IF EXISTS ' || fdw_import_schema || '.' || table_name;
EXECUTE 'DROP SCHEMA IF EXISTS ' || fdw_import_schema || ' CASCADE';
EXECUTE 'DROP SERVER IF EXISTS ' || fdw_server || ' CASCADE;';
RETURN (null, null, null);
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetReturnMetadata(username text, orgname text, function_name text, params json)
RETURNS cdb_observatory.ds_return_metadata
AS $$
DECLARE
colnames text[];
coltypes text[];
requested_measures text[];
measure text;
BEGIN
-- Simple mock, there should be real logic in here.
IF $3 NOT ILIKE 'GetMeasure' OR $3 IS NULL THEN
RAISE 'This function is not supported yet: %', $3;
END IF;
SELECT translate($4::json->>'tag_name','[]', '{}')::text[] INTO requested_measures;
FOREACH measure IN ARRAY requested_measures
LOOP
IF NOT measure ILIKE ANY (Array['total_pop', 'pop_16_over']::text[]) THEN
RAISE 'This measure is not supported yet: %', measure;
END IF;
SELECT array_append(colnames, measure) INTO colnames;
SELECT array_append(coltypes, 'double precision'::text) INTO coltypes;
END LOOP;
RETURN (colnames::text[], coltypes::text[]);
END;
$$ LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_FetchJoinFdwTableData(username text, orgname text, table_schema text, table_name text, function_name text, params json)
RETURNS SETOF record
AS $$
DECLARE
data_query text;
tag_name text[];
tag text;
tags_list text;
tags_query text;
rec RECORD;
BEGIN
SELECT translate($6::json->>'tag_name','[]', '{}')::text[] INTO tag_name;
SELECT array_to_string(tag_name, ',') INTO tags_list;
tags_query := '';
FOREACH tag IN ARRAY tag_name
LOOP
SELECT tags_query || ' sum(' || tag || '/fraction)::double precision as ' || tag || ', ' INTO tags_query;
END LOOP;
-- Simple mock, there should be real logic in here.
data_query := '(WITH _areas AS(SELECT ST_Area(a.the_geom::geography)'
|| '/ (1000 * 1000) as fraction, a.geoid, b.cartodb_id FROM '
|| 'observatory.obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308 as a, '
|| table_schema || '.' || table_name || ' AS b '
|| 'WHERE b.the_geom && a.the_geom ), values AS (SELECT geoid, '
|| tags_list
|| ' FROM observatory.obs_1a098da56badf5f32e336002b0a81708c40d29cd ) '
|| 'SELECT '
|| tags_query
|| ' cartodb_id::int FROM _areas, values '
|| 'WHERE values.geoid = _areas.geoid GROUP BY cartodb_id);';
FOR rec IN EXECUTE data_query
LOOP
RETURN NEXT rec;
END LOOP;
RETURN;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_DisconnectUserTable(username text, orgname text, table_schema text, table_name text, servername text)
RETURNS boolean
AS $$
BEGIN
EXECUTE 'DROP FOREIGN TABLE IF EXISTS "' || table_schema || '".' || table_name;
EXECUTE 'DROP SCHEMA IF EXISTS ' || table_schema || ' CASCADE';
EXECUTE 'DROP SERVER IF EXISTS ' || servername || ' CASCADE;';
RETURN true;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

View File

@@ -1,5 +1,4 @@
-- Install dependencies
CREATE EXTENSION postgis;
CREATE EXTENSION postgres_fdw;
-- Install the extension
CREATE EXTENSION observatory VERSION 'dev';

View File

@@ -3,36 +3,12 @@
obs_getdemographicsnapshot_test_no_returns
t
(1 row)
obs_get_median_income_at_test_point
t
(1 row)
obs_get_median_income_at_null_island
t
(1 row)
obs_getpoints_for_test_point_value|obs_getpoints_for_test_point_name|obs_getpoints_for_test_point_tablename|obs_getpoints_for_test_point_aggregate|obs_getpoints_for_test_point_type|obs_getpoints_for_test_point_description
t|t|t|t|t|t
(1 row)
obs_getpoints_for_null_island
t
(1 row)
obs_getpolygons_for_test_point
t
(1 row)
obs_getpolygons_for_null_island
t
(1 row)
test_point_segmentation
t
(1 row)
null_island_segmentation
t
(1 row)
getcategories_at_test_point_1
t
(1 row)
getcategories_at_null_island
t
(1 row)
obs_getmeasure_zhvi_point_test
t
(1 row)
@@ -66,12 +42,30 @@ t
obs_getmeasure_bad_geometry
t
(1 row)
obs_getmeasure_null_geometry
t
(1 row)
obs_getmeasure_out_of_bounds_geometry
t
(1 row)
obs_getmeasure_estimate_for_blank_aggregate
t
(1 row)
obs_getmeasure_per_capita_income_average
t
(1 row)
obs_getmeasure_median_capita_income_average
t
(1 row)
obs_getcategory_point
t
(1 row)
obs_getcategory_polygon
t
(1 row)
obs_getcategory_null
t
(1 row)
obs_getpopulation
t
(1 row)
@@ -81,6 +75,9 @@ t
obs_getpopulation_polygon_null_test
t
(1 row)
obs_getpopulation_polygon_null_geom_test
t
(1 row)
obs_getuscensusmeasure_point_male_pop
t
(1 row)
@@ -90,12 +87,18 @@ t
obs_getuscensusmeasure_null
t
(1 row)
obs_getuscensusmeasure_null_geom
t
(1 row)
obs_getuscensuscategory_point
t
(1 row)
obs_getuscensuscategory_polygon
t
(1 row)
obs_getuscensuscategory_null
t
(1 row)
obs_getmeasurebyid_cartodb_census_tract
t
(1 row)
@@ -108,3 +111,147 @@ t
obs_getmeasurebyid_nulls
t
(1 row)
obs_getmeasurebyid_null_id
t
(1 row)
obs_getmeta_null_null_is_null
t
(1 row)
obs_getmeta_null_empty_is_null
t
(1 row)
obs_getmeta_nullisland_null_is_null
t
(1 row)
obs_getmeta_nullisland_empty_is_null
t
(1 row)
obs_getmeta_nullisland_us_measure_is_null
t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization|id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t|t|t|t|t
(1 row)
obs_getmeta_conflicting_metadata
t
(1 row)
obs_getdata_geomval_empty_null
t
(1 row)
obs_getdata_text_empty_null
t
(1 row)
obs_getdata_geomval_empty_one_measure
t
(1 row)
id|data_point_measure_null|nullcol
t|t|t
(1 row)
id|data_polygon_measure_null|nullcol
t|t|t
(1 row)
id|data_point_measure_area|nullcol
t|t|t
(1 row)
id|data_polygon_measure_area|nullcol
t|t|t
(1 row)
id|data_point_measure_predenominated|nullcol
t|t|t
(1 row)
id|data_polygon_measure_predenominated|nullcol
t|t|t
(1 row)
id|data_point_measure_impossible_denominated|nullcol
t|t|t
(1 row)
id|data_polygon_measure_impossible_denominated|nullcol
t|t|t
(1 row)
id|data_point_measure_denominated|nullcol
t|t|t
(1 row)
id|data_polygon_measure_denominated|nullcol
t|t|t
(1 row)
id|data_polygon_measure_one_null|data_polygon_measure_two_null
t|t|t
(1 row)
id|data_polygon_measure_one_predenom|data_polygon_measure_two_predenom
t|t|t
(1 row)
id|data_polygon_measure_one_area|data_polygon_measure_two_area
t|t|t
(1 row)
id|data_polygon_measure_tract|data_polygon_measure_bg
t|t|t
(1 row)
id|data_point_categorical|nullcol
t|t|t
(1 row)
id|data_poly_categorical|nullcol
t|t|t
(1 row)
id|data_poly_categorical|valcol
t|t|t
(1 row)
id|correct_num_geoms
t|t
(1 row)
id|correct_num_geoms|correct_pop
t|t|t
(1 row)
id|correct_num_geoms|correct_pop|correct_bg_names
t|t|t|t
(1 row)
id|correct_num_points
t|t
(1 row)
id|correct_num_points|pointgeom_names
t|t|t
(1 row)
id|obs_getdata_by_id_one_measure_null
t|t
(1 row)
id|obs_getdata_by_id_one_measure_predenom
t|t
(1 row)
id|obs_getdata_by_id_one_measure_null|obs_getdata_by_id_two_measure_null
t|t|t
(1 row)
id|obs_getdata_by_id_categorical
t|t
(1 row)
id|obs_getdata_by_id_geometry
t|t
(1 row)
obs_getdata_api_geomvals_no_args
t
(1 row)
obs_getdata_api_geomvals_args_numer_return
t
(1 row)
obs_getdata_api_geomvals_args_string_return
t
(1 row)
obs_getdata_api_geomrefs_args_numer_return
t
(1 row)
obs_getdata_api_geomrefs_args_string_return
t
(1 row)

View File

@@ -12,3 +12,198 @@ t
_obs_getavailableboundariesexist
t
(1 row)
_obs_getavailablenumerators_usa_pop_in_all
t
(1 row)
_obs_getavailablenumerators_usa_pop_in_nyc_point
t
(1 row)
_obs_getavailablenumerators_usa_pop_in_usa_extents
t
(1 row)
_obs_getavailablenumerators_no_usa_pop_not_in_zero_point
t
(1 row)
_obs_getavailablenumerators_usa_pop_in_age_gender_subsection
t
(1 row)
_obs_getavailablenumerators_no_pop_in_income_subsection
t
(1 row)
_obs_getavailablenumerators_male_pop_denom_by_total_pop
t
(1 row)
_obs_getavailablenumerators_no_income_denom_by_total_pop
t
(1 row)
_obs_getavailablenumerators_zillow_at_zcta5
t
(1 row)
_obs_getavailablenumerators_no_zillow_at_block_group
t
(1 row)
_obs_getavailablenumerators_total_pop_2010_2014
t
(1 row)
_obs_getavailablenumerators_no_total_pop_1996
t
(1 row)
_obs_getavailabledenominators_usa_pop_in_all
t
(1 row)
_obs_getavailabledenominators_usa_pop_in_nyc_point
t
(1 row)
_obs_getavailabledenominators_usa_pop_in_usa_extents
t
(1 row)
_obs_getavailabledenominators_no_usa_pop_not_in_zero_point
t
(1 row)
_obs_getavailabledenominators_usa_pop_in_age_gender_subsection
t
(1 row)
_obs_getavailabledenominators_no_pop_in_income_subsection
t
(1 row)
_obs_getavailabledenominators_male_pop_denom_by_total_pop
t
(1 row)
_obs_getavailabledenominators_no_income_denom_by_total_pop
t
(1 row)
_obs_getavailabledenominators_at_zcta5
t
(1 row)
_obs_getavailabledenominators_none_spanish_geom
t
(1 row)
_obs_getavailabledenominators_total_pop_2010_2014
t
(1 row)
_obs_getavailabledenominators_no_total_pop_1996
t
(1 row)
_obs_getavailablegeometries_usa_bg_in_all
t
(1 row)
_obs_getavailablegeometries_usa_bg_in_nyc_point
t
(1 row)
_obs_getavailablegeometries_usa_bg_in_usa_extents
t
(1 row)
_obs_getavailablegeometries_no_usa_bg_not_in_zero_point
t
(1 row)
_obs_getavailablegeometries_usa_bg_in_boundary_subsection
t
(1 row)
_obs_getavailablegeometries_no_bg_in_uk_section
t
(1 row)
_obs_getavailablegeometries_total_pop_in_usa_bg
t
(1 row)
_obs_getavailablegeometries_foobarbaz_not_in_usa_bg
t
(1 row)
_obs_getavailablegeometries_total_pop_denom_in_usa_bg
t
(1 row)
_obs_getavailablegeometries_foobarbaz_denom_not_in_usa_bg
t
(1 row)
_obs_getavailablegeometries_bg_2015
t
(1 row)
_obs_getavailablegeometries_bg_not_1996
t
(1 row)
_obs_getavailabletimespans_2010_2014_in_all
t
(1 row)
_obs_getavailabletimespans_2010_2014_in_nyc_point
t
(1 row)
_obs_getavailabletimespans_2010_2014_in_usa_extents
t
(1 row)
_obs_getavailabletimespans_no_usa_bg_not_in_zero_point
t
(1 row)
_obs_getavailabletimespans_total_pop_in_2010_2014
t
(1 row)
_obs_getavailabletimespans_foobarbaz_not_in_2010_2014
t
(1 row)
_obs_getavailablegeometries_total_pop_denom_in_2010_2014
t
(1 row)
_obs_getavailablegeometries_foobarbaz_denom_not_in_2010_2014
t
(1 row)
_obs_geometryscores_500m_buffer
t
(1 row)
_obs_geometryscores_5km_buffer
t
(1 row)
_obs_geometryscores_50km_buffer
t
(1 row)
_obs_geometryscores_500km_buffer
t
(1 row)
_obs_geometryscores_2500km_buffer
t
(1 row)
_obs_geometryscores_numgeoms_500m_buffer
t
(1 row)
_obs_geometryscores_numgeoms_5km_buffer
t
(1 row)
_obs_geometryscores_numgeoms_50km_buffer
t
(1 row)
_obs_geometryscores_numgeoms_500km_buffer
t
(1 row)
_obs_geometryscores_numgeoms_2500km_buffer
t
(1 row)
_obs_geometryscores_500km_buffer_50_geoms
t
(1 row)
_obs_geometryscores_500km_buffer_500_geoms
t
(1 row)
_obs_geometryscores_500km_buffer_2500_geoms
t
(1 row)
_obs_geometryscores_500km_buffer_25000_geoms
t
(1 row)
_total_pop_in_legacy_builder_metadata
t
(1 row)
_median_income_in_legacy_builder_metadata
t
(1 row)
_gini_in_legacy_builder_metadata
t
(1 row)
_total_pop_in_legacy_builder_metadata_sums
t
(1 row)
_median_income_in_legacy_builder_metadata_sums
t
(1 row)
_gini_not_in_legacy_builder_metadata_sums
t
(1 row)
_no_dupe_subsections_in_legacy_builder_metadata
t
(1 row)

View File

@@ -42,6 +42,12 @@ t
obs_getboundarybyid_boundary_id_mismatch_geom_id
t
(1 row)
_obs_getboundariesbygeometry_roads_around_cartodb
t
(1 row)
_obs_getboundariesbygeometry_points_around_cartodb
t
(1 row)
_obs_getboundariesbygeometry_tracts_around_cartodb
t
(1 row)
@@ -87,9 +93,3 @@ t
obs_getpointsbypointandradius_around_null_island
t
(1 row)
geoid_name_matches|table_name_matches|geom_name_matches
t|t|t
(1 row)
geoid_name_matches|table_name_matches|geom_name_matches
t|t|t
(1 row)

View File

@@ -7,18 +7,27 @@ DROP TABLE IF EXISTS observatory.obs_column_tag;
DROP TABLE IF EXISTS observatory.obs_tag;
DROP TABLE IF EXISTS observatory.obs_column_to_column;
DROP TABLE IF EXISTS observatory.obs_dump_version;
DROP TABLE IF EXISTS observatory.obs_meta;
DROP TABLE IF EXISTS observatory.obs_meta_numer;
DROP TABLE IF EXISTS observatory.obs_meta_denom;
DROP TABLE IF EXISTS observatory.obs_meta_geom;
DROP TABLE IF EXISTS observatory.obs_meta_timespan;
DROP TABLE IF EXISTS observatory.obs_column_table_tile;
DROP TABLE IF EXISTS observatory.obs_column_table_tile_simple;
DROP TABLE IF EXISTS observatory.obs_78fb6c1d6ff6505225175922c2c389ce48d7632c;
DROP TABLE IF EXISTS observatory.obs_65f29658e096ca1485bf683f65fdbc9f05ec3c5d;
DROP TABLE IF EXISTS observatory.obs_1746e37b7cd28cb131971ea4187d42d71f09c5f3;
DROP TABLE IF EXISTS observatory.obs_fcd4e4f5610f6764973ef8c0c215b2e80bec8963;
DROP TABLE IF EXISTS observatory.obs_c4411eba732408d47d73281772dbf03d60645dec;
DROP TABLE IF EXISTS observatory.obs_1a098da56badf5f32e336002b0a81708c40d29cd;
DROP TABLE IF EXISTS observatory.obs_7615e8622a68bfc5fe37c69c9880edfb40250103;
DROP TABLE IF EXISTS observatory.obs_1babf5a26a1ecda5fb74963e88408f71d0364b81;
DROP TABLE IF EXISTS observatory.obs_8764a6b439a4f8714f54d4b3a157bc5e36519066;
DROP TABLE IF EXISTS observatory.obs_b393b5b88c6adda634b2071a8005b03c551b609a;
DROP TABLE IF EXISTS observatory.obs_1ea93bbc109c87c676b3270789dacf7a1430db6c;
DROP TABLE IF EXISTS observatory.obs_fc050f0b8673cfe3c6aa1040f749eb40975691b7;
DROP TABLE IF EXISTS observatory.obs_a01cd5d8ccaa6531cef715071e9307e6b1987ec3;
DROP TABLE IF EXISTS observatory.obs_6c1309a64d8f3e6986061f4d1ca7b57743e75e74;
DROP TABLE IF EXISTS observatory.obs_0310c639744a2014bb1af82709228f05b59e7d3d;
DROP TABLE IF EXISTS observatory.obs_87a814e485deabe3b12545a537f693d16ca702c2;
DROP TABLE IF EXISTS observatory.obs_e32f8e59c7c8861ee5ee4029b3ace2af9a5c9caf;
DROP TABLE IF EXISTS observatory.obs_1ea93bbc109c87c676b3270789dacf7a1430db6c;
DROP TABLE IF EXISTS observatory.obs_b393b5b88c6adda634b2071a8005b03c551b609a;
DROP TABLE IF EXISTS observatory.obs_8e30e6b3792430b410ba5b9e49cdc6a0d404d48f;
DROP TABLE IF EXISTS observatory.obs_08025e1287e3af2b5de571d06562ba8d3bdb48e9;
DROP TABLE IF EXISTS observatory.obs_d39f7fe5959891c8296490d83c22ded31c54af13;
DROP TABLE IF EXISTS observatory.obs_144e8b4f906885b2e057ac4842644a553ae49c6e;
DROP TABLE IF EXISTS observatory.obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308;
DROP TABLE IF EXISTS observatory.obs_meta;

File diff suppressed because one or more lines are too long

View File

@@ -1,6 +1,5 @@
-- Install dependencies
CREATE EXTENSION postgis;
CREATE EXTENSION postgres_fdw;
-- Install the extension
CREATE EXTENSION observatory VERSION 'dev';

View File

@@ -11,8 +11,8 @@ SELECT
cdb_observatory._OBS_GeomTable(
ST_SetSRID(ST_Point(-74.0059, 40.7128), 4326),
'us.census.tiger.census_tract',
'2014'
) = 'obs_fc050f0b8673cfe3c6aa1040f749eb40975691b7' As _obs_geomtable_with_returned_table;
'2015'
) = 'obs_87a814e485deabe3b12545a537f693d16ca702c2' As _obs_geomtable_with_returned_table;
-- get null for unknown geometry_id
-- should give back null

View File

@@ -5,139 +5,32 @@ SET client_min_messages TO WARNING;
--
WITH result as(
Select count(coalesce(OBS_GetDemographicSnapshot->>'value', 'foo')) expected_columns
FROM cdb_observatory.OBS_GetDemographicSnapshot(cdb_observatory._TestPoint())
FROM cdb_observatory.OBS_GetDemographicSnapshot(cdb_observatory._TestPoint(), '2010 - 2014')
) select expected_columns = 52 as OBS_GetDemographicSnapshot_test_no_returns
FROM result;
WITH result as (
SELECT _OBS_Get::text as expected FROM
cdb_observatory._OBS_Get(
cdb_observatory._TestPoint(),
Array['us.census.acs.B19013001']::text[],
'2010 - 2014',
'us.census.tiger.block_group'
)
) SELECT expected = '{"value":79292,"name":"Median Household Income in the past 12 Months","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"median","type":"Numeric","description":"Within a geographic area, the median income received by every household on a regular basis before payments for personal income taxes, social security, union dues, medicare deductions, etc. It includes income received from wages, salary, commissions, bonuses, and tips; self-employment income from own nonfarm or farm businesses, including proprietorships and partnerships; interest, dividends, net rental income, royalty income, or income from estates and trusts; Social Security or Railroad Retirement income; Supplemental Security Income (SSI); any cash public assistance or welfare payments from the state or local welfare office; retirement, survivor, or disability benefits; and any other sources of income received regularly such as Veterans'' (VA) payments, unemployment and/or worker''s compensation, child support, and alimony."}'
As OBS_Get_median_income_at_test_point
FROM result;
-- median income at null island
WITH result as (
SELECT count(_OBS_Get) as expected FROM
cdb_observatory._OBS_Get(
ST_SetSRID(ST_Point(0, 0), 4326),
Array['us.census.acs.B19013001']::text[],
'2010 - 2014',
'us.census.tiger.block_group'
)
) select expected = 0 as OBS_Get_median_income_at_null_island
from result;
-- OBS_GetPoints
-- obs_getpoints
-- --------------------
-- {4809.33511352425}
-- SELECT
-- (cdb_observatory._OBS_GetPoints(
-- cdb_observatory._TestPoint(),
-- 'obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308'::text, -- block groups (see _obs_geomtable)
-- (Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json])
-- ))[1]::text = '{"value":10923.093200390833950,"name":"Total Population","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'
-- as OBS_GetPoints_for_test_point;
WITH cte As (
SELECT
(cdb_observatory._OBS_GetPoints(
cdb_observatory._TestPoint(),
'obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308'::text, -- block groups (see _obs_geomtable)
(Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json])
))[1]
as OBS_GetPoints_for_test_point)
SELECT
(abs((OBS_GetPoints_for_test_point ->> 'value')::numeric - 10923.093200390833950) / 10923.093200390833950) < 0.001 As OBS_GetPoints_for_test_point_value,
(OBS_GetPoints_for_test_point ->> 'name') = 'Total Population' As OBS_GetPoints_for_test_point_name,
(OBS_GetPoints_for_test_point ->> 'tablename') = 'obs_1a098da56badf5f32e336002b0a81708c40d29cd' As OBS_GetPoints_for_test_point_tablename,
(OBS_GetPoints_for_test_point ->> 'aggregate') = 'sum' As OBS_GetPoints_for_test_point_aggregate,
(OBS_GetPoints_for_test_point ->> 'type') = 'Numeric' As OBS_GetPoints_for_test_point_type,
(OBS_GetPoints_for_test_point ->> 'description') = 'The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates.' As OBS_GetPoints_for_test_point_description
FROM cte;
-- what happens at null island
SELECT
(cdb_observatory._OBS_GetPoints(
ST_SetSRID(ST_Point(0, 0), 4326),
'obs_1a098da56badf5f32e336002b0a81708c40d29cd'::text, -- see example in obs_geomtable
(Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json])
))[1]::text is null
as OBS_GetPoints_for_null_island;
-- OBS_GetPolygons
-- obs_getpolygons
-- --------------------
-- {12996.8172420752}
SELECT
(cdb_observatory._OBS_GetPolygons(
cdb_observatory._TestArea(),
'obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308'::text, -- see example in obs_geomtable
Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json]
))[1]::text = '{"value":12327.3133495107,"name":"Total Population","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'
as OBS_GetPolygons_for_test_point;
-- see what happens around null island
SELECT
((cdb_observatory._OBS_GetPolygons(
ST_Buffer(ST_SetSRID(ST_Point(0, 0), 4326)::geography, 500)::geometry,
'obs_1a098da56badf5f32e336002b0a81708c40d29cd'::text, -- see example in obs_geomtable
Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json])
)[1]->>'value') is null
as OBS_GetPolygons_for_null_island;
SELECT cdb_observatory.OBS_GetSegmentSnapshot(
cdb_observatory._TestPoint(),
'us.census.tiger.census_tract'
)::text =
'{"x10_segment":"Wealthy, urban without Kids","x55_segment":"Wealthy transplants displacing long-term local residents","us.census.acs.B01003001_quantile":"0.3235","us.census.acs.B01001002_quantile":"0.494716216216216","us.census.acs.B01001026_quantile":"0.183756756756757","us.census.acs.B01002001_quantile":"0.0752837837837838","us.census.acs.B03002003_quantile":"0.293162162162162","us.census.acs.B03002004_quantile":"0.455527027027027","us.census.acs.B03002006_quantile":"0.656405405405405","us.census.acs.B03002012_quantile":"0.840081081081081","us.census.acs.B05001006_quantile":"0.727135135135135","us.census.acs.B08006001_quantile":"0.688635135135135","us.census.acs.B08006002_quantile":"0.0204459459459459","us.census.acs.B08006008_quantile":"0.679324324324324","us.census.acs.B08006009_quantile":"0.996716216216216","us.census.acs.B08006011_quantile":"0.967418918918919","us.census.acs.B08006015_quantile":"0.512945945945946","us.census.acs.B08006017_quantile":"0.0504864864864865","us.census.acs.B09001001_quantile":"0.192405405405405","us.census.acs.B11001001_quantile":"0.331702702702703","us.census.acs.B14001001_quantile":"0.296283783783784","us.census.acs.B14001002_quantile":"0.045472972972973","us.census.acs.B14001005_quantile":"0.0442702702702703","us.census.acs.B14001006_quantile":"0.0829054054054054","us.census.acs.B14001007_quantile":"0.701135135135135","us.census.acs.B14001008_quantile":"0.404527027027027","us.census.acs.B15003001_quantile":"0.191824324324324","us.census.acs.B15003017_quantile":"0.864162162162162","us.census.acs.B15003022_quantile":"0.754297297297297","us.census.acs.B15003023_quantile":"0.350054054054054","us.census.acs.B16001001_quantile":"0.217635135135135","us.census.acs.B16001002_quantile":"0.85972972972973","us.census.acs.B16001003_quantile":"0.342851351351351","us.census.acs.B17001001_quantile":"0.51204054054054","us.census.acs.B17001002_quantile":"0.813540540540541","us.census.acs.B19013001_quantile":"0.0948648648648649","us.census.acs.B19083001_quantile":"0.678351351351351","us.census.acs.B19301001_quantile":"0.146108108108108","us.census.acs.B25001001_quantile":"0.149067567567568","us.census.acs.B25002003_quantile":"0","us.census.acs.B25004002_quantile":"0","us.census.acs.B25004004_quantile":"0.944554054054054","us.census.acs.B25058001_quantile":"0.398040540540541","us.census.acs.B25071001_quantile":"0.0596081081081081","us.census.acs.B25075001_quantile":"0","us.census.acs.B25075025_quantile":null}' as test_point_segmentation;
)::JSONB =
'{"x10_segment": "Wealthy, urban without Kids", "x55_segment": "Wealthy transplants displacing long-term local residents", "us.census.acs.B01001002_quantile": "0.494716216216216", "us.census.acs.B01001026_quantile": "0.183756756756757", "us.census.acs.B01002001_quantile": "0.0752837837837838", "us.census.acs.B01003001_quantile": "0.3235", "us.census.acs.B03002003_quantile": "0.293162162162162", "us.census.acs.B03002004_quantile": "0.455527027027027", "us.census.acs.B03002006_quantile": "0.656405405405405", "us.census.acs.B03002012_quantile": "0.840081081081081", "us.census.acs.B05001006_quantile": "0.727135135135135", "us.census.acs.B08006001_quantile": "0.688635135135135", "us.census.acs.B08006002_quantile": "0.0204459459459459", "us.census.acs.B08006009_quantile": "0.679324324324324", "us.census.acs.B08006011_quantile": "0.996716216216216", "us.census.acs.B08006015_quantile": "0.967418918918919", "us.census.acs.B08006017_quantile": "0.512945945945946", "us.census.acs.B08301010_quantile": "0.994743243243243", "us.census.acs.B09001001_quantile": "0.0504864864864865", "us.census.acs.B11001001_quantile": "0.192405405405405", "us.census.acs.B14001001_quantile": "0.331702702702703", "us.census.acs.B14001002_quantile": "0.296283783783784", "us.census.acs.B14001005_quantile": "0.045472972972973", "us.census.acs.B14001006_quantile": "0.0442702702702703", "us.census.acs.B14001007_quantile": "0.0829054054054054", "us.census.acs.B14001008_quantile": "0.701135135135135", "us.census.acs.B15003001_quantile": "0.404527027027027", "us.census.acs.B15003017_quantile": "0.191824324324324", "us.census.acs.B15003022_quantile": "0.864162162162162", "us.census.acs.B15003023_quantile": "0.754297297297297", "us.census.acs.B16001001_quantile": "0.350054054054054", "us.census.acs.B16001002_quantile": "0.217635135135135", "us.census.acs.B16001003_quantile": "0.85972972972973", "us.census.acs.B17001001_quantile": "0.342851351351351", "us.census.acs.B17001002_quantile": "0.51204054054054", "us.census.acs.B19013001_quantile": "0.813540540540541", "us.census.acs.B19083001_quantile": "0.0948648648648649", "us.census.acs.B19301001_quantile": "0.678351351351351", "us.census.acs.B25001001_quantile": "0.146108108108108", "us.census.acs.B25002003_quantile": "0.149067567567568", "us.census.acs.B25004002_quantile": "0", "us.census.acs.B25004004_quantile": "0", "us.census.acs.B25058001_quantile": "0.944554054054054", "us.census.acs.B25071001_quantile": "0.398040540540541", "us.census.acs.B25075001_quantile": "0.0596081081081081", "us.census.acs.B25075025_quantile": "0"}'::JSONB as test_point_segmentation;
-- segmentation around null island
SELECT cdb_observatory.OBS_GetSegmentSnapshot(
ST_SetSRID(ST_Point(0, 0), 4326),
'us.census.tiger.census_tract'
)::text = '{"x10_segment":null,"x55_segment":null,"us.census.acs.B01003001_quantile":null,"us.census.acs.B01001002_quantile":null,"us.census.acs.B01001026_quantile":null,"us.census.acs.B01002001_quantile":null,"us.census.acs.B03002003_quantile":null,"us.census.acs.B03002004_quantile":null,"us.census.acs.B03002006_quantile":null,"us.census.acs.B03002012_quantile":null,"us.census.acs.B05001006_quantile":null,"us.census.acs.B08006001_quantile":null,"us.census.acs.B08006002_quantile":null,"us.census.acs.B08006008_quantile":null,"us.census.acs.B08006009_quantile":null,"us.census.acs.B08006011_quantile":null,"us.census.acs.B08006015_quantile":null,"us.census.acs.B08006017_quantile":null,"us.census.acs.B09001001_quantile":null,"us.census.acs.B11001001_quantile":null,"us.census.acs.B14001001_quantile":null,"us.census.acs.B14001002_quantile":null,"us.census.acs.B14001005_quantile":null,"us.census.acs.B14001006_quantile":null,"us.census.acs.B14001007_quantile":null,"us.census.acs.B14001008_quantile":null,"us.census.acs.B15003001_quantile":null,"us.census.acs.B15003017_quantile":null,"us.census.acs.B15003022_quantile":null,"us.census.acs.B15003023_quantile":null,"us.census.acs.B16001001_quantile":null,"us.census.acs.B16001002_quantile":null,"us.census.acs.B16001003_quantile":null,"us.census.acs.B17001001_quantile":null,"us.census.acs.B17001002_quantile":null,"us.census.acs.B19013001_quantile":null,"us.census.acs.B19083001_quantile":null,"us.census.acs.B19301001_quantile":null,"us.census.acs.B25001001_quantile":null,"us.census.acs.B25002003_quantile":null,"us.census.acs.B25004002_quantile":null,"us.census.acs.B25004004_quantile":null,"us.census.acs.B25058001_quantile":null,"us.census.acs.B25071001_quantile":null,"us.census.acs.B25075001_quantile":null,"us.census.acs.B25075025_quantile":null}' as null_island_segmentation;
WITH result as (
SELECT array_agg(_OBS_GetCategories) as expected FROM
cdb_observatory._OBS_GetCategories(
cdb_observatory._TestPoint(),
Array['us.census.spielman_singleton_segments.X10'],
'us.census.tiger.census_tract'
)
)
select (expected)[1]::text = '{"category":"Wealthy, urban without Kids","name":"Spielman-Singleton Segments: 10 Clusters","tablename":"obs_65f29658e096ca1485bf683f65fdbc9f05ec3c5d","aggregate":null,"type":"Text","description":"Sociodemographic classes from Spielman and Singleton 2015, 10 clusters"}' as GetCategories_at_test_point_1
from result;
WITH result as (
SELECT array_agg(_OBS_GetCategories) as expected FROM
cdb_observatory._OBS_GetCategories(
ST_SetSRID(ST_Point(0,0), 4326),
Array['us.census.spielman_singleton_segments.X10'],
'us.census.tiger.census_tract'
)
)
select expected[0] is NULL as GetCategories_at_null_island
from result;
)::text is null as null_island_segmentation;
-- Point-based OBS_GetMeasure with zillow
SELECT abs(OBS_GetMeasure_zhvi_point - 583600) / 583600 < 0.001 AS OBS_GetMeasure_zhvi_point_test FROM cdb_observatory.OBS_GetMeasure(
SELECT abs(OBS_GetMeasure_zhvi_point - 597900) / 597900 < 5.0 AS OBS_GetMeasure_zhvi_point_test FROM cdb_observatory.OBS_GetMeasure(
ST_SetSRID(ST_Point(-73.94602417945862, 40.6768220087458), 4326),
'us.zillow.AllHomes_Zhvi', null, 'us.census.tiger.zcta5', '2014-01'
) As t(OBS_GetMeasure_zhvi_point);
-- Point-based OBS_GetMeasure with zillow default to latest
SELECT abs(OBS_GetMeasure_zhvi_point_default_latest - 972900) / 972900 < 0.001 AS OBS_GetMeasure_zhvi_point_default_latest_test FROM cdb_observatory.OBS_GetMeasure(
-- Point-based OBS_GetMeasure with later measure
SELECT abs(OBS_GetMeasure_zhvi_point_default_latest - 995400) / 995400 < 5.0 AS OBS_GetMeasure_zhvi_point_default_latest_test FROM cdb_observatory.OBS_GetMeasure(
ST_SetSRID(ST_Point(-73.94602417945862, 40.6768220087458), 4326),
'us.zillow.AllHomes_Zhvi'
'us.zillow.AllHomes_Zhvi', null, 'us.census.tiger.zcta5', '2016-06'
) As t(OBS_GetMeasure_zhvi_point_default_latest);
-- Point-based OBS_GetMeasure, default normalization (area)
@@ -196,20 +89,49 @@ SELECT (abs(cdb_observatory.OBS_GetMeasure(
-- Poly-based OBS_GetMeasure with denominator normalization
SELECT abs(cdb_observatory.OBS_GetMeasure(
cdb_observatory._TestArea(),
'us.census.acs.B01001002', 'denominator') - 0.49026340444793965457) / 0.49026340444793965457 < 0.001 As OBS_GetMeasure_total_male_poly_denominator;
'us.census.acs.B01001002', 'denominator', null, '2010 - 2014') - 0.49026340444793965457) / 0.49026340444793965457 < 0.001 As OBS_GetMeasure_total_male_poly_denominator;
-- Poly-based OBS_GetMeasure with one very bad geom
SELECT abs(cdb_observatory.OBS_GetMeasure(
cdb_observatory._ProblemTestArea(),
'us.census.acs.B01003001') - 96230.2929825897) / 96230.2929825897 < 0.001 As OBS_GetMeasure_bad_geometry;
-- OBS_GetMeasure with NULL Input geometry
SELECT cdb_observatory.OBS_GetMeasure(
NULL,
'us.census.acs.B01003001') IS NULL As OBS_GetMeasure_null_geometry;
-- OBS_GetMeasure where there is no data
SELECT cdb_observatory.OBS_GetMeasure(
ST_SetSRID(st_point(0, 0), 4326),
'us.census.acs.B01003001') IS NULL As OBS_GetMeasure_out_of_bounds_geometry;
-- OBS_GetMeasure over arbitrary area for a measure we cannot estimate
SELECT cdb_observatory.OBS_GetMeasure(
ST_Buffer(cdb_observatory._testpoint(), 0.1),
'us.census.acs.B19083001') IS NULL As OBS_GetMeasure_estimate_for_blank_aggregate;
-- OBS_GetMeasure over arbitrary area for an average measure we can estimate
SELECT abs(cdb_observatory.OBS_GetMeasure(
ST_Buffer(cdb_observatory._testpoint(), 0.01),
'us.census.acs.B19301001') - 20025) / 20025 < 0.001 As OBS_GetMeasure_per_capita_income_average;
-- OBS_GetMeasure over arbitrary area for a median measure we can estimate
SELECT abs(cdb_observatory.OBS_GetMeasure(
ST_Buffer(cdb_observatory._testpoint(), 0.01),
'us.census.acs.B19013001') - 39266) / 39266 < 0.001 As OBS_GetMeasure_median_capita_income_average;
-- Point-based OBS_GetCategory
SELECT cdb_observatory.OBS_GetCategory(
cdb_observatory._TestPoint(), 'us.census.spielman_singleton_segments.X10') = 'Wealthy, urban without Kids' As OBS_GetCategory_point;
-- Poly-based OBS_GetCategory
SELECT cdb_observatory.OBS_GetCategory(
cdb_observatory._TestArea(), 'us.census.spielman_singleton_segments.X10') = 'Wealthy, urban without Kids' As obs_getcategory_polygon;
cdb_observatory._TestArea(), 'us.census.spielman_singleton_segments.X10') = 'Hispanic and Young' As obs_getcategory_polygon;
-- NULL Input OBS_GetCategory
SELECT cdb_observatory.OBS_GetCategory(
NULL, 'us.census.spielman_singleton_segments.X10') IS NULL As obs_getcategory_null;
-- Point-based OBS_GetPopulation, default normalization (area)
SELECT (abs(OBS_GetPopulation - 10923.093200390833950) / 10923.093200390833950) < 0.001 As OBS_GetPopulation FROM
@@ -231,6 +153,13 @@ FROM
cdb_observatory._TestArea(), NULL
) As m(obs_getpopulation_polygon_null);
-- Null input OBS_GetPopulation
SELECT obs_getpopulation_polygon_null_geom IS NULL As obs_getpopulation_polygon_null_geom_test
FROM
cdb_observatory.OBS_GetPopulation(
NULL, NULL
) As m(obs_getpopulation_polygon_null_geom);
-- Point-based OBS_GetUSCensusMeasure, default normalization (area)
SELECT (abs(cdb_observatory.obs_getuscensusmeasure(
cdb_observatory._testpoint(), 'male population') - 6789.5647735060920500) / 6789.5647735060920500) < 0.001 As obs_getuscensusmeasure_point_male_pop;
@@ -244,13 +173,22 @@ SELECT (abs(cdb_observatory.obs_getuscensusmeasure(
SELECT (abs(cdb_observatory.obs_getuscensusmeasure(
cdb_observatory._testarea(), 'male population', NULL) - 6043.63061042765) / 6043.63061042765) < 0.001 As obs_getuscensusmeasure_null;
-- Poly-based OBS_GetUSCensusMeasure, Null input geom
SELECT cdb_observatory.obs_getuscensusmeasure(
NULL, 'male population', NULL) IS NULL As obs_getuscensusmeasure_null_geom;
-- Point-based OBS_GetUSCensusCategory
SELECT cdb_observatory.OBS_GetUSCensusCategory(
cdb_observatory._testpoint(), 'Spielman-Singleton Segments: 10 Clusters') = 'Wealthy, urban without Kids' As OBS_GetUSCensusCategory_point;
-- Area-based OBS_GetUSCensusCategory
SELECT cdb_observatory.OBS_GetUSCensusCategory(
cdb_observatory._testarea(), 'Spielman-Singleton Segments: 10 Clusters') = 'Wealthy, urban without Kids' As OBS_GetUSCensusCategory_polygon;
cdb_observatory._testarea(), 'Spielman-Singleton Segments: 10 Clusters') = 'Hispanic and Young' As OBS_GetUSCensusCategory_polygon;
-- Null-input OBS_GetUSCensusCategory
SELECT cdb_observatory.OBS_GetUSCensusCategory(
NULL, 'Spielman-Singleton Segments: 10 Clusters') IS NULL As OBS_GetUSCensusCategory_null;
-- OBS_GetMeasureById tests
@@ -285,3 +223,543 @@ SELECT cdb_observatory.OBS_GetMeasureById(
'us.census.tiger.block_group',
'2010 - 2014'
) IS NULL As OBS_GetMeasureById_nulls;
-- NULL input id
SELECT cdb_observatory.OBS_GetMeasureById(
NULL,
'us.census.acs.B01003001',
'us.census.tiger.block_group',
'2010 - 2014'
) IS NULL As OBS_GetMeasureById_null_id;
-- OBS_GetMeta null/null
SELECT cdb_observatory.OBS_GetMeta(NULL, NULL) IS NULL
AS OBS_GetMeta_null_null_is_null;
-- OBS_GetMeta null/empty array
SELECT cdb_observatory.OBS_GetMeta(NULL, '[]') IS NULL
AS OBS_GetMeta_null_empty_is_null;
-- OBS_GetMeta nullisland/null
SELECT cdb_observatory.OBS_GetMeta(ST_Point(0, 0), NULL) IS NULL
AS OBS_GetMeta_nullisland_null_is_null;
-- OBS_GetMeta nullisland/empty array
SELECT cdb_observatory.OBS_GetMeta(ST_Point(0, 0), '[]') IS NULL
AS OBS_GetMeta_nullisland_empty_is_null;
-- OBS_GetMeta nullisland/us_measure data
SELECT cdb_observatory.OBS_GetMeta(ST_Point(0, 0),
'[{"numer_id": "us.census.acs.B01003001"}]') IS NULL
AS OBS_GetMeta_nullisland_us_measure_is_null;
-- OBS_GetMeta for point completes one partial measure with "best" metadata
-- with no denominator
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01003001' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'total_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Total Population' numer_name,
(meta->0->>'denom_id') IS NULL denom_id,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for point completes one partial measure with "best" metadata
-- with a denominator
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'male_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Male Population' numer_name,
(meta->0->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->0->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->0->>'denom_colname') = 'total_pop' denom_colname,
(meta->0->>'denom_type') = 'Numeric' denom_type,
(meta->0->>'denom_name') = 'Total Population' denom_name,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for polygon completes one partial measure with "best" metadata
-- with no denominator
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01003001' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'total_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Total Population' numer_name,
(meta->0->>'denom_id') IS NULL denom_id,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for polygon completes one partial measure with "best" metadata
-- with a denominator
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01001002"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'male_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Male Population' numer_name,
(meta->0->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->0->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->0->>'denom_colname') = 'total_pop' denom_colname,
(meta->0->>'denom_type') = 'Numeric' denom_type,
(meta->0->>'denom_name') = 'Total Population' denom_name,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for point completes several partial measures with "best"
-- metadata, includes geom alternatives if asked
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002"}]', null, 2) meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'male_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Male Population' numer_name,
(meta->0->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->0->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->0->>'denom_colname') = 'total_pop' denom_colname,
(meta->0->>'denom_type') = 'Numeric' denom_type,
(meta->0->>'denom_name') = 'Total Population' denom_name,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization,
(meta->1->>'id')::integer = 1 id,
(meta->1->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->1->>'timespan_rank')::integer = 1 timespan_rank,
(meta->1->>'score_rank')::integer = 2 score_rank,
(meta->1->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->1->>'numer_colname') = 'male_pop' numer_colname,
(meta->1->>'numer_type') = 'Numeric' numer_type,
(meta->1->>'numer_name') = 'Male Population' numer_name,
(meta->1->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->1->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->1->>'denom_colname') = 'total_pop' denom_colname,
(meta->1->>'denom_type') = 'Numeric' denom_type,
(meta->1->>'denom_name') = 'Total Population' denom_name,
(meta->1->>'geom_id') = 'us.census.tiger.census_tract' geom_id,
(meta->1->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for point completes several partial measures with "best" metadata
-- with pre-computed geom
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002", "geom_id": "us.census.tiger.census_tract"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'male_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Male Population' numer_name,
(meta->0->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->0->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->0->>'denom_colname') = 'total_pop' denom_colname,
(meta->0->>'denom_type') = 'Numeric' denom_type,
(meta->0->>'denom_name') = 'Total Population' denom_name,
(meta->0->>'geom_id') = 'us.census.tiger.census_tract' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for point completes several partial measures with conflicting
-- metadata
SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002", "denom_id": "us.census.acs.B01001002", "geom_id": "us.census.tiger.census_tract"}]') IS NULL
AS obs_getmeta_conflicting_metadata;
-- OBS_GetData/OBS_GetMeta by id with empty list/null
WITH data AS (SELECT * FROM cdb_observatory.OBS_GetData(ARRAY[]::TEXT[], null))
SELECT ARRAY_AGG(data) IS NULL AS obs_getdata_geomval_empty_null FROM data;
-- OBS_GetData/OBS_GetMeta by geom with empty list/null
WITH data AS (SELECT * FROM cdb_observatory.OBS_GetData(ARRAY[]::GEOMVAL[], null))
SELECT ARRAY_AGG(data) IS NULL AS obs_getdata_text_empty_null FROM data;
-- OBS_GetData/OBS_GetMeta by geom with empty list
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(ARRAY[]::GEOMVAL[],
(SELECT meta FROM meta)))
SELECT ARRAY_AGG(data) IS NULL AS obs_getdata_geomval_empty_one_measure FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with one standard measure NULL
-- normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 10923) / 10923 < 0.001 data_point_measure_null,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one standard measure NULL
-- normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_null,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with one standard measure area
-- normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "area"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 10923) / 10923 < 0.001 data_point_measure_area,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one standard measure area
-- normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "area"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_area,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with one standard measure predenom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "predenominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 1900) / 1900 < 0.001 data_point_measure_predenominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one standard measure predenom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "predenominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 12327) / 12327 < 0.001 data_polygon_measure_predenominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with impossible denom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "denominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' IS NULL data_point_measure_impossible_denominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one impossible denom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "denominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' IS NULL data_polygon_measure_impossible_denominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with denom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002", "normalization": "denominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 0.6215) / 0.6215 < 0.001 data_point_measure_denominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one denom measure
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01001002", "normalization": "denominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 0.4902) / 0.4902 < 0.001 data_polygon_measure_denominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with two standard measures NULL normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001"}, {"numer_id": "us.census.acs.B01001002"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_one_null,
abs((data->1->>'value')::Numeric - 0.4902) / 0.4902 < 0.001 data_polygon_measure_two_null
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with two standard measures predenom normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "predenom"}, {"numer_id": "us.census.acs.B01001002", "normalization": "predenom"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 12327) / 12327 < 0.001 data_polygon_measure_one_predenom,
abs((data->1->>'value')::Numeric - 6043) / 6043 < 0.001 data_polygon_measure_two_predenom
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with two standard measures area normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "area"}, {"numer_id": "us.census.acs.B01001002", "normalization": "area"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_one_area,
abs((data->1->>'value')::Numeric - 7739) / 7739 < 0.001 data_polygon_measure_two_area
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with two standard measures different geoms
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.census_tract"}, {"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.block_group"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 16960) / 16960 < 0.001 data_polygon_measure_tract,
abs((data->1->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_bg
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with one categorical
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.spielman_singleton_segments.X55"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' = 'Wealthy transplants displacing long-term local residents' data_point_categorical,
data->1->>'value' IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one categorical
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.spielman_singleton_segments.X55"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' = 'Hispanic Black mix multilingual, high poverty, renters, uses public transport' data_poly_categorical,
data->1->>'value' IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with one categorical and one measure
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.spielman_singleton_segments.X55"}, {"numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' = 'Hispanic Black mix multilingual, high poverty, renters, uses public transport' data_poly_categorical,
abs((data->1->>'value')::Numeric - 15787) / 15787 < 0.0001 valcol
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with polygons inside a polygon
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.block_group"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) is TRUE id,
count(distinct (data->0->>'value')::geometry) = 16 correct_num_geoms
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with polygons inside a polygon + one measure
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.block_group"}, {"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.block_group"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) is TRUE id,
count(distinct (data->0->>'value')::geometry) = 16 correct_num_geoms,
abs(sum((data->1->>'value')::numeric) - 15787) / 15787 < 0.001 correct_pop
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with polygons inside a polygon + one measure + one text
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.block_group"}, {"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.block_group"}, {"numer_id": "us.census.tiger.name", "geom_id": "us.census.tiger.block_group"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) is TRUE id,
count(distinct (data->0->>'value')::geometry) = 16 correct_num_geoms,
abs(sum((data->1->>'value')::numeric) - 15787) / 15787 < 0.001 correct_pop,
array_agg(distinct data->2->>'value') = '{"Block Group 1","Block Group 2","Block Group 3","Block Group 4","Block Group 5"}' correct_bg_names
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with points inside a polygon
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.pointlm_geom"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) AS id,
count(distinct (data->0->>'value')::geometry(point, 4326)) = 3 correct_num_points
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with points inside a polygon + one text
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.pointlm_geom"}, {"geom_id": "us.census.tiger.pointlm_geom", "numer_id": "us.census.tiger.fullname"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) AS id,
count(distinct (data->0->>'value')::geometry(point, 4326)) = 3 correct_num_points,
array_agg(data->1->>'value') = '{"Bushwick Yards","Edward Block Square","Bushwick Houses"}' pointgeom_names
FROM data;
-- OBS_GetData by id with one standard measure
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
(abs((data->0->>'value')::numeric) - 5578) / 5578 < 0.001 obs_getdata_by_id_one_measure_null
FROM data;
-- OBS_GetData by id with one standard measure, predenominated
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"normalization": "predenominated", "geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
(abs((data->0->>'value')::numeric) - 3241) / 3241 < 0.001 obs_getdata_by_id_one_measure_predenom
FROM data;
-- OBS_GetData/OBS_GetMeta by id with two standard measures
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.acs.B01003001"}, {"geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.acs.B01001002"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
(abs((data->0->>'value')::numeric) - 5578) / 5578 < 0.001 obs_getdata_by_id_one_measure_null,
(abs((data->1->>'value')::numeric) - 0.6053) / 0.6053 < 0.001 obs_getdata_by_id_two_measure_null
FROM data;
-- OBS_GetData/OBS_GetMeta by id with one categorical
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.spielman_singleton_segments.X55"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
data->0->>'value' = 'Wealthy transplants displacing long-term local residents' obs_getdata_by_id_categorical
FROM data;
-- OBS_GetData/OBS_GetMeta by id with one geometry
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.census_tract"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
ST_GeometryType((data->0->>'value')::geometry) = 'ST_MultiPolygon' obs_getdata_by_id_geometry
FROM data;
-- OBS_GetData with an API + geomvals, no args
SELECT ARRAY['us.census.tiger.census_tract'] <@ array_agg(data->0->>'value') AS OBS_GetData_API_geomvals_no_args
FROM cdb_observatory.obs_getdata(array[(cdb_observatory._testarea(), 1)::geomval],
'[{"numer_type": "text", "numer_colname": "boundary_id", "api_method": "obs_getavailableboundaries", "geom_geomref_colname": "boundary_id"}]',
false);
-- OBS_GetData with an API + geomvals, args, numeric
SELECT json_typeof(data->0->'value') = 'number' AS OBS_GetData_API_geomvals_args_numer_return
FROM cdb_observatory.obs_getdata(array[(cdb_observatory._testarea(), 1)::geomval],
'[{"numer_type": "numeric", "numer_colname": "obs_getmeasure", "api_method": "obs_getmeasure", "api_args": ["us.census.acs.B01003001"]}]', false);
-- OBS_GetData with an API + geomvals, args, text
SELECT json_typeof(data->0->'value') = 'string' AS OBS_GetData_API_geomvals_args_string_return
FROM cdb_observatory.obs_getdata(array[(cdb_observatory._testarea(), 1)::geomval],
'[{"numer_type": "text", "numer_colname": "obs_getcategory", "api_method": "obs_getcategory", "api_args": ["us.census.spielman_singleton_segments.X55"]}]', false);
-- OBS_GetData with an API + geomrefs, args, numeric
SELECT json_typeof(data->0->'value') = 'number' AS OBS_GetData_API_geomrefs_args_numer_return
FROM cdb_observatory.obs_getdata(array['36047076200'],
'[{"numer_type": "numeric", "numer_colname": "obs_getmeasurebyid", "api_method": "obs_getmeasurebyid", "api_args": ["us.census.acs.B01003001", "us.census.tiger.census_tract"]}]');
-- OBS_GetData with an API + geomrefs, args, text
SELECT json_typeof(data->0->'value') = 'string' AS OBS_GetData_API_geomrefs_args_string_return
FROM cdb_observatory.obs_getdata(array['36047'],
'[{"numer_type": "text", "numer_colname": "obs_getboundarybyid", "api_method": "obs_getboundarybyid", "api_args": ["us.census.tiger.county"]}]');

View File

@@ -10,11 +10,11 @@ SET client_min_messages TO WARNING;
-- _OBS_SearchTables tests
SELECT
t.table_name = 'obs_1babf5a26a1ecda5fb74963e88408f71d0364b81' As _OBS_SearchTables_tables_match,
t.timespan = '2014' As _OBS_SearchTables_timespan_matches
t.table_name = 'obs_0310c639744a2014bb1af82709228f05b59e7d3d' As _OBS_SearchTables_tables_match,
t.timespan = '2015' As _OBS_SearchTables_timespan_matches
FROM cdb_observatory._OBS_SearchTables(
'us.census.tiger.county',
'2014'
'2015'
) As t(table_name, timespan);
-- _OBS_SearchTables tests
@@ -33,3 +33,497 @@ SELECT COUNT(*) > 0 AS _OBS_GetAvailableBoundariesExist
FROM cdb_observatory.OBS_GetAvailableBoundaries(
cdb_observatory._TestPoint()
) AS t(boundary_id, description, time_span, tablename);
--
-- OBS_GetAvailableNumerators tests
--
SELECT 'us.census.acs.B01003001' IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators())
AS _obs_getavailablenumerators_usa_pop_in_all;
SELECT 'us.census.acs.B01003001' IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailablenumerators_usa_pop_in_nyc_point;
SELECT 'us.census.acs.B01003001' IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakeEnvelope(
-169.8046875, 21.289374355860424,
-47.4609375, 72.0739114882038
), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailablenumerators_usa_pop_in_usa_extents;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(0, 0), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailablenumerators_no_usa_pop_not_in_zero_point;
SELECT 'us.census.acs.B01003001' IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
ARRAY['subsection/tags.age_gender']
))
AS _obs_getavailablenumerators_usa_pop_in_age_gender_subsection;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
ARRAY['subsection/tags.income']
))
AS _obs_getavailablenumerators_no_pop_in_income_subsection;
SELECT 'us.census.acs.B01001002' IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'us.census.acs.B01003001'
) WHERE valid_denom = True)
AS _obs_getavailablenumerators_male_pop_denom_by_total_pop;
SELECT 'us.census.acs.B19013001' NOT IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'us.census.acs.B01003001'
) WHERE valid_denom = True)
AS _obs_getavailablenumerators_no_income_denom_by_total_pop;
SELECT 'us.zillow.AllHomes_Zhvi' IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'us.census.tiger.zcta5'
) WHERE valid_geom = True)
AS _obs_getavailablenumerators_zillow_at_zcta5;
SELECT 'us.zillow.AllHomes_Zhvi' NOT IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'us.census.tiger.block_group'
) WHERE valid_geom = True)
AS _obs_getavailablenumerators_no_zillow_at_block_group;
SELECT 'us.census.acs.B01003001' IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, '2010 - 2014'
) WHERE valid_timespan = True)
AS _obs_getavailablenumerators_total_pop_2010_2014;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT numer_id
FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, '1996'
) WHERE valid_timespan = True)
AS _obs_getavailablenumerators_no_total_pop_1996;
--
-- OBS_GetAvailableDenominators tests
--
SELECT 'us.census.acs.B01003001' IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators())
AS _obs_getavailabledenominators_usa_pop_in_all;
SELECT 'us.census.acs.B01003001' IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailabledenominators_usa_pop_in_nyc_point;
SELECT 'us.census.acs.B01003001' IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakeEnvelope(
-169.8046875, 21.289374355860424,
-47.4609375, 72.0739114882038
), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailabledenominators_usa_pop_in_usa_extents;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(0, 0), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailabledenominators_no_usa_pop_not_in_zero_point;
SELECT 'us.census.acs.B01003001' IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
ARRAY['subsection/tags.age_gender']
))
AS _obs_getavailabledenominators_usa_pop_in_age_gender_subsection;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
ARRAY['subsection/tags.income']
))
AS _obs_getavailabledenominators_no_pop_in_income_subsection;
SELECT 'us.census.acs.B01003001' IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'us.census.acs.B01001002'
) WHERE valid_numer = True)
AS _obs_getavailabledenominators_male_pop_denom_by_total_pop;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'us.census.acs.B19013001'
) WHERE valid_numer = True)
AS _obs_getavailabledenominators_no_income_denom_by_total_pop;
SELECT 'us.census.acs.B01003001' IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'us.census.tiger.zcta5'
) WHERE valid_geom = True)
AS _obs_getavailabledenominators_at_zcta5;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'es.ine.the_geom'
) WHERE valid_geom = True)
AS _obs_getavailabledenominators_none_spanish_geom;
SELECT 'us.census.acs.B01003001' IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, '2010 - 2014'
) WHERE valid_timespan = True)
AS _obs_getavailabledenominators_total_pop_2010_2014;
SELECT 'us.census.acs.B01003001' NOT IN (SELECT denom_id
FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, '1996'
) WHERE valid_timespan = True)
AS _obs_getavailabledenominators_no_total_pop_1996;
--
-- OBS_GetAvailableGeometries tests
--
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries())
AS _obs_getavailablegeometries_usa_bg_in_all;
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailablegeometries_usa_bg_in_nyc_point;
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakeEnvelope(
-169.8046875, 21.289374355860424,
-47.4609375, 72.0739114882038
), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailablegeometries_usa_bg_in_usa_extents;
SELECT 'us.census.tiger.block_group' NOT IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(0, 0), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailablegeometries_no_usa_bg_not_in_zero_point;
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
ARRAY['subsection/tags.boundary']
))
AS _obs_getavailablegeometries_usa_bg_in_boundary_subsection;
SELECT 'us.census.tiger.block_group' NOT IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
ARRAY['section/tags.uk']
))
AS _obs_getavailablegeometries_no_bg_in_uk_section;
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'us.census.acs.B01003001'
) WHERE valid_numer = True)
AS _obs_getavailablegeometries_total_pop_in_usa_bg;
SELECT 'us.census.tiger.block_group' NOT IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'foo.bar.baz'
) WHERE valid_numer = True)
AS _obs_getavailablegeometries_foobarbaz_not_in_usa_bg;
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'us.census.acs.B01003001'
) WHERE valid_denom = True)
AS _obs_getavailablegeometries_total_pop_denom_in_usa_bg;
SELECT 'us.census.tiger.block_group' NOT IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'foo.bar.baz'
) WHERE valid_denom = True)
AS _obs_getavailablegeometries_foobarbaz_denom_not_in_usa_bg;
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, '2015'
) WHERE valid_timespan = True)
AS _obs_getavailablegeometries_bg_2015;
SELECT 'us.census.tiger.block_group' NOT IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, '1996'
) WHERE valid_timespan = True)
AS _obs_getavailablegeometries_bg_not_1996;
--
-- OBS_GetAvailableTimespans tests
--
SELECT '2010 - 2014' IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans())
AS _obs_getavailabletimespans_2010_2014_in_all;
SELECT '2010 - 2014' IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailabletimespans_2010_2014_in_nyc_point;
SELECT '2010 - 2014' IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_SetSRID(ST_MakeEnvelope(
-169.8046875, 21.289374355860424,
-47.4609375, 72.0739114882038
), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailabletimespans_2010_2014_in_usa_extents;
SELECT '2010 - 2014' NOT IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_SetSRID(ST_MakePoint(0, 0), 4326),
NULL, NULL, NULL, NULL
)) AS _obs_getavailabletimespans_no_usa_bg_not_in_zero_point;
SELECT '2010 - 2014' IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'us.census.acs.B01003001'
) WHERE valid_numer = True)
AS _obs_getavailabletimespans_total_pop_in_2010_2014;
SELECT '2010 - 2014' NOT IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, 'foo.bar.baz'
) WHERE valid_numer = True)
AS _obs_getavailabletimespans_foobarbaz_not_in_2010_2014;
SELECT '2010 - 2014' IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'us.census.acs.B01003001'
) WHERE valid_denom = True)
AS _obs_getavailablegeometries_total_pop_denom_in_2010_2014;
SELECT '2010 - 2014' NOT IN (SELECT timespan_id
FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, 'foo.bar.baz'
) WHERE valid_denom = True)
AS _obs_getavailablegeometries_foobarbaz_denom_not_in_2010_2014;
--
-- _OBS_GetGeometryScores tests
--
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.county', 'us.census.tiger.zcta5']
AS _obs_geometryscores_500m_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 500)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.county', 'us.census.tiger.zcta5'])
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']
AS _obs_geometryscores_5km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 5000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.county', 'us.census.tiger.zcta5'])
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.census_tract', 'us.census.tiger.block_group',
'us.census.tiger.zcta5', 'us.census.tiger.county']
AS _obs_geometryscores_50km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY[ 'us.census.tiger.zcta5', 'us.census.tiger.census_tract',
'us.census.tiger.county', 'us.census.tiger.block_group' ]
AS _obs_geometryscores_500km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 500000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.county', 'us.census.tiger.zcta5',
'us.census.tiger.census_tract', 'us.census.tiger.block_group']
AS _obs_geometryscores_2500km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 2500000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT JSON_Object_Agg(column_id, numgeoms::int ORDER BY numgeoms DESC)::Text
= '{ "us.census.tiger.block_group" : 9, "us.census.tiger.census_tract" : 3, "us.census.tiger.zcta5" : 0, "us.census.tiger.county" : 0 }'
AS _obs_geometryscores_numgeoms_500m_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 500)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT JSON_Object_Agg(column_id, numgeoms::int ORDER BY numgeoms DESC)::Text =
'{ "us.census.tiger.block_group" : 880, "us.census.tiger.census_tract" : 310, "us.census.tiger.zcta5" : 45, "us.census.tiger.county" : 1 }'
AS _obs_geometryscores_numgeoms_5km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 5000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT JSON_Object_Agg(column_id, numgeoms::int ORDER BY numgeoms DESC)::Text =
'{ "us.census.tiger.block_group" : 11531, "us.census.tiger.census_tract" : 3601, "us.census.tiger.zcta5" : 550, "us.census.tiger.county" : 14 }'
AS _obs_geometryscores_numgeoms_50km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT JSON_Object_Agg(column_id, numgeoms::int ORDER BY numgeoms DESC)::Text =
'{ "us.census.tiger.block_group" : 48917, "us.census.tiger.census_tract" : 15969, "us.census.tiger.zcta5" : 6534, "us.census.tiger.county" : 314 }'
AS _obs_geometryscores_numgeoms_500km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 500000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT JSON_Object_Agg(column_id, numgeoms::int ORDER BY numgeoms DESC)::Text =
'{ "us.census.tiger.block_group" : 169191, "us.census.tiger.census_tract" : 56469, "us.census.tiger.zcta5" : 26525, "us.census.tiger.county" : 2753 }'
AS _obs_geometryscores_numgeoms_2500km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 2500000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.county', 'us.census.tiger.zcta5',
'us.census.tiger.census_tract', 'us.census.tiger.block_group']
AS _obs_geometryscores_500km_buffer_50_geoms
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'], 50)
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC)
= ARRAY['us.census.tiger.zcta5', 'us.census.tiger.census_tract',
'us.census.tiger.county', 'us.census.tiger.block_group']
AS _obs_geometryscores_500km_buffer_500_geoms
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'], 500)
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.census_tract', 'us.census.tiger.block_group',
'us.census.tiger.zcta5', 'us.census.tiger.county']
AS _obs_geometryscores_500km_buffer_2500_geoms
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'], 2500)
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']
AS _obs_geometryscores_500km_buffer_25000_geoms
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'], 25000)
WHERE table_id LIKE '%2015%';
--
-- OBS_LegacyBuilderMetadata tests
--
SELECT 'us.census.acs.B01003001' IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata()
) AS _total_pop_in_legacy_builder_metadata;
SELECT 'us.census.acs.B19013001' IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata()
) AS _median_income_in_legacy_builder_metadata;
SELECT 'us.census.acs.B19083001' IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata()
) AS _gini_in_legacy_builder_metadata;
SELECT 'us.census.acs.B01003001' IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata('sum')
) AS _total_pop_in_legacy_builder_metadata_sums;
SELECT 'us.census.acs.B19013001' IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata('sum')
) AS _median_income_in_legacy_builder_metadata_sums;
SELECT 'us.census.acs.B19083001' NOT IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata('sum')
) AS _gini_not_in_legacy_builder_metadata_sums;
SELECT COUNT(*) = 0 _no_dupe_subsections_in_legacy_builder_metadata FROM (
SELECT name, subsection, count(*) FROM
(SELECT name, ((JSONB_Array_Elements(subsection))->'f1')->>'id' subsection
FROM cdb_observatory.obs_legacybuildermetadata()) foo
GROUP BY name, subsection
HAVING count(*) > 1
) bar;

View File

@@ -42,7 +42,7 @@ SELECT cdb_observatory.OBS_GetBoundary(
SELECT cdb_observatory.OBS_GetBoundary(
cdb_observatory._TestPoint(),
'us.census.tiger.census_tract',
'2014'
'2015'
) = :'cartodb_census_tract_geometry' As OBS_GetBoundary_year_census_tract;
-- should return null
@@ -65,7 +65,7 @@ SELECT cdb_observatory.OBS_GetBoundaryId(
SELECT cdb_observatory.OBS_GetBoundaryId(
cdb_observatory._TestPoint(),
'us.census.tiger.census_tract',
'2014'
'2015'
) = '36047048500'::text As OBS_GetBoundaryId_cartodb_census_tract_with_year;
-- should give back '36047', the geoid of cartodb's county (King's/
@@ -73,7 +73,7 @@ SELECT cdb_observatory.OBS_GetBoundaryId(
SELECT cdb_observatory.OBS_GetBoundaryId(
cdb_observatory._TestPoint(),
'us.census.tiger.county',
'2014'
'2015'
) = '36047'::text As OBS_GetBoundaryId_cartodb_county_with_year;
-- should give back null since there is not a census tract at null island
@@ -104,7 +104,7 @@ SELECT cdb_observatory.OBS_GetBoundaryById(
SELECT cdb_observatory.OBS_GetBoundaryById(
'36047',
'us.census.tiger.county',
'2014'
'2015'
) = :'cartodb_county_geometry' OBS_GetBoundaryById_boundary_id_mismatch_geom_id;
-- should give null since boundary_id does not match geometry reference id
@@ -115,6 +115,34 @@ SELECT cdb_observatory.OBS_GetBoundaryById(
-- _OBS_GetBoundariesByGeometry
SELECT array_agg(geom_refs) = Array[ '1104486618765', '1104486642837',
'1104991798384', '1105044325367',
'1105089330200', '1105089331758']
As _OBS_GetBoundariesByGeometry_roads_around_cartodb
FROM (
SELECT *
FROM cdb_observatory._OBS_GetBoundariesByGeometry(
-- near CartoDB's office
ST_MakeEnvelope(-74,40.69,-73.99,40.7,
4326),
'us.census.tiger.prisecroads_geom')
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
SELECT
array_agg(geom_refs) = Array['1102654301684', '1102654307106',
'1102654326686', '1102654351507' ]
As _OBS_GetBoundariesByGeometry_points_around_cartodb
FROM (
SELECT *
FROM cdb_observatory._OBS_GetBoundariesByGeometry(
-- near CartoDB's office
ST_MakeEnvelope(-73.9452409744,40.6988851644,-73.9280319214,40.7101254524,
4326),
'us.census.tiger.pointlm_geom')
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
-- check that all census tracts intersecting with the geometry are returned
-- order them to ensure that the same values are returned
SELECT
@@ -270,7 +298,7 @@ FROM (
-73.9280319214,40.7101254524,
4326),
'us.census.tiger.census_tract',
'2014')
'2015')
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
@@ -313,7 +341,7 @@ FROM (
cdb_observatory._testpoint(),
500,
'us.census.tiger.census_tract',
'2014')
'2015')
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
@@ -330,21 +358,4 @@ FROM (
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
-- _OBS_GetGeometryMetadata
-- get metadata for census tracts
SELECT
geoid_colname = 'geoid' As geoid_name_matches,
target_table = 'obs_fc050f0b8673cfe3c6aa1040f749eb40975691b7' As table_name_matches,
geom_colname = 'the_geom' As geom_name_matches
FROM cdb_observatory._OBS_GetGeometryMetadata('us.census.tiger.census_tract')
As m(geoid_colname, target_table, geom_colname);
-- get metadata for boundaries with clipped geometries
SELECT
geoid_colname = 'geoid' As geoid_name_matches,
target_table = 'obs_fcd4e4f5610f6764973ef8c0c215b2e80bec8963' As table_name_matches,
geom_colname = 'the_geom' As geom_name_matches
FROM cdb_observatory._OBS_GetGeometryMetadata('us.census.tiger.census_tract_clipped') As m(geoid_colname, target_table, geom_colname);
\i test/fixtures/drop_fixtures.sql

View File

@@ -0,0 +1,3 @@
nose
nose_parameterized
psycopg2

14
src/python/test/README.md Normal file
View File

@@ -0,0 +1,14 @@
### Integration/performance tests
Tests here are meant to be run on a box with an Observatory meta/data dump
loaded and ready to be tested against the API.
The local Python needs the requirements in `src/python/requirements.txt`.
In order to find and access the correct database, the `PGUSER`, `PGPASSWORD`,
`PGHOST`, `PGPORT` and `PGDATABASE` env variables should be set.
Tests should be executed as follows:
nosetests test/autotest.py
nosetests -s test/perftest.py

309
src/python/test/autotest.py Normal file
View File

@@ -0,0 +1,309 @@
from nose.tools import assert_equal, assert_is_not_none
from nose.plugins.skip import SkipTest
from nose_parameterized import parameterized
from util import query
USE_SCHEMA = True
MEASURE_COLUMNS = query('''
SELECT distinct numer_id, Coalesce(numer_aggregate, '') NOT ILIKE 'sum' as point_only
FROM observatory.obs_meta
WHERE numer_type ILIKE 'numeric'
AND numer_weight > 0
''').fetchall()
CATEGORY_COLUMNS = query('''
SELECT distinct numer_id
FROM observatory.obs_meta
WHERE numer_type ILIKE 'text'
AND numer_weight > 0
''').fetchall()
BOUNDARY_COLUMNS = query('''
SELECT id FROM observatory.obs_column
WHERE type ILIKE 'geometry'
AND weight > 0
''').fetchall()
US_CENSUS_MEASURE_COLUMNS = query('''
SELECT distinct numer_name
FROM observatory.obs_meta
WHERE numer_type ILIKE 'numeric'
AND 'us.census.acs.acs' = ANY (subsection_tags)
AND numer_weight > 0
''').fetchall()
SKIP_COLUMNS = set([
u'mx.inegi_columns.INDI18',
u'mx.inegi_columns.ECO40',
u'mx.inegi_columns.POB34',
u'mx.inegi_columns.POB63',
u'mx.inegi_columns.INDI7',
u'mx.inegi_columns.EDU28',
u'mx.inegi_columns.SCONY10',
u'mx.inegi_columns.EDU31',
u'mx.inegi_columns.POB7',
u'mx.inegi_columns.VIV30',
u'mx.inegi_columns.INDI12',
u'mx.inegi_columns.EDU13',
u'mx.inegi_columns.ECO43',
u'mx.inegi_columns.VIV9',
u'mx.inegi_columns.HOGAR25',
u'mx.inegi_columns.POB32',
u'mx.inegi_columns.ECO7',
u'mx.inegi_columns.INDI19',
u'mx.inegi_columns.INDI16',
u'mx.inegi_columns.POB65',
u'mx.inegi_columns.INDI3',
u'mx.inegi_columns.INDI9',
u'mx.inegi_columns.POB36',
u'mx.inegi_columns.POB33',
u'mx.inegi_columns.POB58',
u'mx.inegi_columns.DISC4',
u'mx.inegi_columns.VIV41',
u'mx.inegi_columns.VIV40',
u'mx.inegi_columns.VIV17',
u'mx.inegi_columns.VIV25',
u'mx.inegi_columns.EDU10',
u'whosonfirst.wof_disputed_name',
u'us.census.tiger.fullname',
u'whosonfirst.wof_marinearea_name',
u'us.census.tiger.mtfcc',
u'whosonfirst.wof_county_name',
u'whosonfirst.wof_region_name',
])
#def default_geometry_id(column_id):
# '''
# Returns default test point for the column_id.
# '''
# if column_id == 'whosonfirst.wof_disputed_geom':
# return 'ST_SetSRID(ST_MakePoint(76.57, 33.78), 4326)'
# elif column_id == 'whosonfirst.wof_marinearea_geom':
# return 'ST_SetSRID(ST_MakePoint(-68.47, 43.33), 4326)'
# elif column_id in ('us.census.tiger.school_district_elementary',
# 'us.census.tiger.school_district_secondary',
# 'us.census.tiger.school_district_elementary_clipped',
# 'us.census.tiger.school_district_secondary_clipped'):
# return 'ST_SetSRID(ST_MakePoint(-73.7067, 40.7025), 4326)'
# elif column_id.startswith('es.ine'):
# return 'ST_SetSRID(ST_MakePoint(-2.51141249535454, 42.8226119029222), 4326)'
# elif column_id.startswith('us.zillow'):
# return 'ST_SetSRID(ST_MakePoint(-81.3544048197256, 28.3305906291771), 4326)'
# elif column_id.startswith('ca.'):
# return ''
# else:
# return 'ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)'
def default_lonlat(column_id):
'''
Returns default test point for the column_id.
'''
if column_id == 'whosonfirst.wof_disputed_geom':
return (76.57, 33.78)
elif column_id == 'whosonfirst.wof_marinearea_geom':
return (-68.47, 43.33)
elif column_id in ('us.census.tiger.school_district_elementary',
'us.census.tiger.school_district_secondary',
'us.census.tiger.school_district_elementary_clipped',
'us.census.tiger.school_district_secondary_clipped'):
return (40.7025, -73.7067)
elif column_id.startswith('uk'):
if 'WA' in column_id:
return (51.46844551219723, -3.184833526611328)
else:
return (51.51461834694225, -0.08883476257324219)
elif column_id.startswith('es'):
return (42.8226119029222, -2.51141249535454)
elif column_id.startswith('us.zillow'):
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('mx.'):
return (19.41347699386547, -99.17019367218018)
elif column_id.startswith('th.'):
return (13.725377712079784, 100.49263000488281)
# cols for French Guyana only
elif column_id in ('fr.insee.P12_RP_CHOS', 'fr.insee.P12_RP_HABFOR'
, 'fr.insee.P12_RP_EAUCH', 'fr.insee.P12_RP_BDWC'
, 'fr.insee.P12_RP_MIDUR', 'fr.insee.P12_RP_CLIM'
, 'fr.insee.P12_RP_MIBOIS', 'fr.insee.P12_RP_CASE'
, 'fr.insee.P12_RP_TTEGOU', 'fr.insee.P12_RP_ELEC'
, 'fr.insee.P12_ACTOCC15P_ILT45D'
, 'fr.insee.P12_RP_CHOS', 'fr.insee.P12_RP_HABFOR'
, 'fr.insee.P12_RP_EAUCH', 'fr.insee.P12_RP_BDWC'
, 'fr.insee.P12_RP_MIDUR', 'fr.insee.P12_RP_CLIM'
, 'fr.insee.P12_RP_MIBOIS', 'fr.insee.P12_RP_CASE'
, 'fr.insee.P12_RP_TTEGOU', 'fr.insee.P12_RP_ELEC'
, 'fr.insee.P12_ACTOCC15P_ILT45D'):
return (4.938408371206558, -52.32908248901367)
elif column_id.startswith('fr.'):
return (48.860875144709475, 2.3613739013671875)
elif column_id.startswith('ca.'):
return (43.65594991256823, -79.37965393066406)
elif column_id.startswith('us.census.'):
return (40.7, -73.9)
elif column_id.startswith('us.dma.'):
return (40.7, -73.9)
elif column_id.startswith('us.ihme.'):
return (40.7, -73.9)
elif column_id.startswith('us.bls.'):
return (40.7, -73.9)
elif column_id.startswith('us.qcew.'):
return (40.7, -73.9)
elif column_id.startswith('whosonfirst.'):
return (40.7, -73.9)
elif column_id.startswith('us.epa.'):
return (40.7, -73.9)
elif column_id.startswith('eu.'):
raise SkipTest('No tests for Eurostat!')
elif column_id.startswith('br.'):
return (-23.53, -46.63)
elif column_id.startswith('au.'):
return (-33.8806, 151.2131)
else:
raise Exception('No catalog point set for {}'.format(column_id))
def default_point(column_id):
lat, lng = default_lonlat(column_id)
return 'ST_SetSRID(ST_MakePoint({lng}, {lat}), 4326)'.format(
lat=lat, lng=lng)
def default_area(column_id):
'''
Returns default test area for the column_id
'''
point = default_point(column_id)
area = 'ST_Transform(ST_Buffer(ST_Transform({point}, 3857), 250), 4326)'.format(
point=point)
return area
@parameterized(US_CENSUS_MEASURE_COLUMNS)
def test_get_us_census_measure_points(name):
resp = query('''
SELECT * FROM {schema}OBS_GetUSCensusMeasure({point}, '{name}')
'''.format(name=name.replace("'", "''"),
schema='cdb_observatory.' if USE_SCHEMA else '',
point=default_point('')))
rows = resp.fetchall()
assert_equal(1, len(rows))
assert_is_not_none(rows[0][0])
@parameterized(MEASURE_COLUMNS)
def test_get_measure_areas(column_id, point_only):
if column_id in SKIP_COLUMNS:
raise SkipTest('Column {} should be skipped'.format(column_id))
if point_only:
return
resp = query('''
SELECT * FROM {schema}OBS_GetMeasure({area}, '{column_id}')
'''.format(column_id=column_id,
schema='cdb_observatory.' if USE_SCHEMA else '',
area=default_area(column_id)))
rows = resp.fetchall()
assert_equal(1, len(rows))
assert_is_not_none(rows[0][0])
@parameterized(MEASURE_COLUMNS)
def test_get_measure_points(column_id, point_only):
if column_id in SKIP_COLUMNS:
raise SkipTest('Column {} should be skipped'.format(column_id))
resp = query('''
SELECT * FROM {schema}OBS_GetMeasure({point}, '{column_id}')
'''.format(column_id=column_id,
schema='cdb_observatory.' if USE_SCHEMA else '',
point=default_point(column_id)))
rows = resp.fetchall()
assert_equal(1, len(rows))
assert_is_not_none(rows[0][0])
#@parameterized(CATEGORY_COLUMNS)
#def test_get_category_areas(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetCategory({area}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# area=default_area(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
@parameterized(CATEGORY_COLUMNS)
def test_get_category_points(column_id):
if column_id in SKIP_COLUMNS:
raise SkipTest('Column {} should be skipped'.format(column_id))
resp = query('''
SELECT * FROM {schema}OBS_GetCategory({point}, '{column_id}')
'''.format(column_id=column_id,
schema='cdb_observatory.' if USE_SCHEMA else '',
point=default_point(column_id)))
rows = resp.fetchall()
assert_equal(1, len(rows))
assert_is_not_none(rows[0][0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundaries_by_geometry(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundariesByGeometry({area}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# area=default_area(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_points_by_geometry(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetPointsByGeometry({area}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# area=default_area(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundary_points(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundary({point}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# point=default_point(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundary_id(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundaryId({point}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# point=default_point(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundary_by_id(column_id):
# resp = query('''
#SELECT * FROM {schema}OBS_GetBoundaryById({geometry_id}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# geometry_id=default_geometry_id(column_id)))
# assert_equal(resp.status_code, 200)
# rows = resp.json()['rows']
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])

350
src/python/test/perftest.py Normal file
View File

@@ -0,0 +1,350 @@
from nose.tools import assert_equal, assert_is_not_none
from nose_parameterized import parameterized
from util import query, commit
from time import time
import json
import os
USE_SCHEMA = True
for q in (
'DROP TABLE IF EXISTS obs_perftest_simple',
'''CREATE TABLE obs_perftest_simple (cartodb_id SERIAL PRIMARY KEY,
point GEOMETRY,
geom GEOMETRY,
offset_geom GEOMETRY,
name TEXT, measure NUMERIC, category TEXT)''',
'''INSERT INTO obs_perftest_simple (point, geom, offset_geom, name)
SELECT ST_PointOnSurface(the_geom) point,
the_geom geom,
ST_Translate(the_geom, -0.1, 0.1) offset_geom,
geom_refs AS name
FROM (SELECT * FROM {schema}OBS_GetBoundariesByGeometry(
st_makeenvelope(-74.1, 40.5,
-73.8, 40.9, 4326),
'us.census.tiger.census_tract_clipped')) foo
ORDER BY ST_NPoints(the_geom) ASC
LIMIT 1000''',
'DROP TABLE IF EXISTS obs_perftest_complex',
'''CREATE TABLE obs_perftest_complex (cartodb_id SERIAL PRIMARY KEY,
point GEOMETRY,
geom GEOMETRY,
offset_geom GEOMETRY,
name TEXT, measure NUMERIC, category TEXT)''',
'''INSERT INTO obs_perftest_complex (point, geom, offset_geom, name)
SELECT ST_PointOnSurface(the_geom) point,
the_geom geom,
ST_Translate(the_geom, -0.1, 0.1) offset_geom,
geom_refs AS name
FROM (SELECT * FROM {schema}OBS_GetBoundariesByGeometry(
st_makeenvelope(-75.05437469482422,40.66319159533881,
-73.81885528564453,41.745696344339564, 4326),
'us.census.tiger.county_clipped')) foo
ORDER BY ST_NPoints(the_geom) DESC
LIMIT 50;''',
'DROP TABLE IF EXISTS obs_perftest_country_simple',
'''CREATE TABLE obs_perftest_country_simple (cartodb_id SERIAL PRIMARY KEY,
geom GEOMETRY,
name TEXT) ''',
'''INSERT INTO obs_perftest_country_simple (geom, name)
SELECT the_geom geom,
geom_refs AS name
FROM (SELECT * FROM {schema}OBS_GetBoundariesByGeometry(
st_makeenvelope(-179,-89, 179,89, 4326),
'whosonfirst.wof_country_geom')) foo
ORDER BY ST_NPoints(the_geom) ASC
LIMIT 50;''',
'DROP TABLE IF EXISTS obs_perftest_country_complex',
'''CREATE TABLE obs_perftest_country_complex (cartodb_id SERIAL PRIMARY KEY,
geom GEOMETRY,
name TEXT) ''',
'''INSERT INTO obs_perftest_country_complex (geom, name)
SELECT the_geom geom,
geom_refs AS name
FROM (SELECT * FROM {schema}OBS_GetBoundariesByGeometry(
st_makeenvelope(-179,-89, 179,89, 4326),
'whosonfirst.wof_country_geom')) foo
ORDER BY ST_NPoints(the_geom) DESC
LIMIT 50;''',
#'''SET statement_timeout = 5000;'''
):
q_formatted = q.format(
schema='cdb_observatory.' if USE_SCHEMA else '',
)
resp = query(q_formatted)
if q.lower().startswith('insert'):
if resp.rowcount == 0:
raise Exception('''Performance fixture creation "{}" inserted 0 rows,
this will break tests. Check the query to determine
what is going wrong.'''.format(q_formatted))
commit()
ARGS = {
('OBS_GetMeasureByID', None): "name, 'us.census.acs.B01001002', '{}'",
('OBS_GetMeasure', 'predenominated'): "{}, 'us.census.acs.B01003001', null, {}",
('OBS_GetMeasure', 'area'): "{}, 'us.census.acs.B01001002', 'area', {}",
('OBS_GetMeasure', 'denominator'): "{}, 'us.census.acs.B01001002', 'denominator', {}",
('OBS_GetCategory', None): "{}, 'us.census.spielman_singleton_segments.X10', {}",
('_OBS_GetGeometryScores', None): "{}, NULL"
}
def record(params, results):
sha = os.environ['OBS_EXTENSION_SHA']
msg = os.environ.get('OBS_EXTENSION_MSG')
fpath = os.path.join(os.environ['OBS_PERFTEST_DIR'], sha + '.json')
if os.path.isfile(fpath):
tests = json.load(open(fpath, 'r'))
else:
tests = {}
with open(fpath, 'w') as fhandle:
tests[json.dumps(params)] = {
'params': params,
'results': results
}
json.dump(tests, fhandle)
@parameterized([
('simple', '_OBS_GetGeometryScores', 'NULL', 1),
('simple', '_OBS_GetGeometryScores', 'NULL', 500),
('simple', '_OBS_GetGeometryScores', 'NULL', 3000),
('complex', '_OBS_GetGeometryScores', 'NULL', 1),
('complex', '_OBS_GetGeometryScores', 'NULL', 500),
('complex', '_OBS_GetGeometryScores', 'NULL', 3000),
('country_simple', '_OBS_GetGeometryScores', 'NULL', 1),
('country_simple', '_OBS_GetGeometryScores', 'NULL', 500),
('country_simple', '_OBS_GetGeometryScores', 'NULL', 5000),
('country_complex', '_OBS_GetGeometryScores', 'NULL', 1),
('country_complex', '_OBS_GetGeometryScores', 'NULL', 500),
('country_complex', '_OBS_GetGeometryScores', 'NULL', 5000),
])
def test_getgeometryscores_performance(geom_complexity, api_method, filters, target_geoms):
print api_method, geom_complexity, filters, target_geoms
rownums = (1, 5, 10, ) if 'complex' in geom_complexity else (5, 25, 50,)
results = []
for rows in rownums:
stmt = '''SELECT {schema}{api_method}(geom, {filters}, {target_geoms})
FROM obs_perftest_{complexity}
WHERE cartodb_id <= {n}'''.format(
complexity=geom_complexity,
schema='cdb_observatory.' if USE_SCHEMA else '',
api_method=api_method,
filters=filters,
target_geoms=target_geoms,
n=rows)
start = time()
query(stmt)
end = time()
qps = (rows / (end - start))
results.append({
'rows': rows,
'qps': qps,
'stmt': stmt
})
print rows, ': ', qps, ' QPS'
if 'OBS_RECORD_TEST' in os.environ:
record({
'geom_complexity': geom_complexity,
'api_method': api_method,
'filters': filters,
'target_geoms': target_geoms
}, results)
@parameterized([
('simple', 'OBS_GetMeasureByID', None, 'us.census.tiger.census_tract', None),
('complex', 'OBS_GetMeasureByID', None, 'us.census.tiger.county', None),
('simple', 'OBS_GetMeasure', 'predenominated', 'point', 'NULL'),
('simple', 'OBS_GetMeasure', 'predenominated', 'geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'predenominated', 'offset_geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'area', 'point', 'NULL'),
('simple', 'OBS_GetMeasure', 'area', 'geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'area', 'offset_geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'denominator', 'point', 'NULL'),
('simple', 'OBS_GetMeasure', 'denominator', 'geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'denominator', 'offset_geom', 'NULL'),
('simple', 'OBS_GetCategory', None, 'point', 'NULL'),
('simple', 'OBS_GetCategory', None, 'geom', 'NULL'),
('simple', 'OBS_GetCategory', None, 'offset_geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'predenominated', 'point', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'predenominated', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'predenominated', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'area', 'point', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'area', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'area', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'denominator', 'point', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'denominator', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'denominator', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetCategory', None, 'point', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetCategory', None, 'geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetCategory', None, 'offset_geom', "'us.census.tiger.census_tract'"),
('complex', 'OBS_GetMeasure', 'predenominated', 'point', 'NULL'),
('complex', 'OBS_GetMeasure', 'predenominated', 'geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'predenominated', 'offset_geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'area', 'point', 'NULL'),
('complex', 'OBS_GetMeasure', 'area', 'geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'area', 'offset_geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'denominator', 'point', 'NULL'),
('complex', 'OBS_GetMeasure', 'denominator', 'geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'denominator', 'offset_geom', 'NULL'),
('complex', 'OBS_GetCategory', None, 'point', 'NULL'),
('complex', 'OBS_GetCategory', None, 'geom', 'NULL'),
('complex', 'OBS_GetCategory', None, 'offset_geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'predenominated', 'point', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'predenominated', 'geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'predenominated', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'area', 'point', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'area', 'geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'area', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'denominator', 'point', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'denominator', 'geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'denominator', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetCategory', None, 'point', "'us.census.tiger.census_tract'"),
('complex', 'OBS_GetCategory', None, 'geom', "'us.census.tiger.census_tract'"),
('complex', 'OBS_GetCategory', None, 'offset_geom', "'us.census.tiger.census_tract'"),
])
def test_getmeasure_performance(geom_complexity, api_method, normalization, geom, boundary):
print api_method, geom_complexity, normalization, geom, boundary
col = 'measure' if 'measure' in api_method.lower() else 'category'
results = []
rownums = (1, 5, 10, ) if geom_complexity == 'complex' else (5, 25, 50, )
for rows in rownums:
stmt = '''UPDATE obs_perftest_{complexity}
SET {col} = {schema}{api_method}({args})
WHERE cartodb_id <= {n}'''.format(
col=col,
complexity=geom_complexity,
schema='cdb_observatory.' if USE_SCHEMA else '',
api_method=api_method,
args=ARGS[api_method, normalization].format(geom, boundary),
n=rows)
start = time()
query(stmt)
end = time()
qps = (rows / (end - start))
results.append({
'rows': rows,
'qps': qps,
'stmt': stmt
})
print rows, ': ', qps, ' QPS'
if 'OBS_RECORD_TEST' in os.environ:
record({
'geom_complexity': geom_complexity,
'api_method': api_method,
'normalization': normalization,
'boundary': boundary,
'geom': geom
}, results)
@parameterized([
('simple', 'predenominated', 'point', 'null'),
('simple', 'predenominated', 'geom', 'null'),
('simple', 'predenominated', 'offset_geom', 'null'),
('simple', 'area', 'point', 'null'),
('simple', 'area', 'geom', 'null'),
('simple', 'area', 'offset_geom', 'null'),
('simple', 'denominator', 'point', 'null'),
('simple', 'denominator', 'geom', 'null'),
('simple', 'denominator', 'offset_geom', 'null'),
('simple', 'predenominated', 'point', "'us.census.tiger.census_tract'"),
('simple', 'predenominated', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'predenominated', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'area', 'point', "'us.census.tiger.census_tract'"),
('simple', 'area', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'area', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'denominator', 'point', "'us.census.tiger.census_tract'"),
('simple', 'denominator', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'denominator', 'offset_geom', "'us.census.tiger.census_tract'"),
('complex', 'predenominated', 'point', 'null'),
('complex', 'predenominated', 'geom', 'null'),
('complex', 'predenominated', 'offset_geom', 'null'),
('complex', 'area', 'point', 'null'),
('complex', 'area', 'geom', 'null'),
('complex', 'area', 'offset_geom', 'null'),
('complex', 'denominator', 'point', 'null'),
('complex', 'denominator', 'geom', 'null'),
('complex', 'denominator', 'offset_geom', 'null'),
('complex', 'predenominated', 'point', "'us.census.tiger.county'"),
('complex', 'predenominated', 'geom', "'us.census.tiger.county'"),
('complex', 'predenominated', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'area', 'point', "'us.census.tiger.county'"),
('complex', 'area', 'geom', "'us.census.tiger.county'"),
('complex', 'area', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'denominator', 'point', "'us.census.tiger.county'"),
('complex', 'denominator', 'geom', "'us.census.tiger.county'"),
('complex', 'denominator', 'offset_geom', "'us.census.tiger.county'"),
])
def test_getmeasure_split_performance(geom_complexity, normalization, geom, boundary):
print geom_complexity, normalization, geom, boundary
results = []
rownums = (1, 5, 10, ) if geom_complexity == 'complex' else (10, 50, 100)
for rows in rownums:
stmt = '''
with data as (
SELECT id, data FROM {schema}OBS_GetData(
(SELECT array_agg(({geom}, cartodb_id)::geomval)
FROM obs_perftest_{complexity}
WHERE cartodb_id <= {n}),
(SELECT {schema}OBS_GetMeta(
(SELECT st_setsrid(st_extent({geom}), 4326)
FROM obs_perftest_{complexity}
WHERE cartodb_id <= {n}),
'[{{
"numer_id": "us.census.acs.B01001002",
"normalization": "{normalization}",
"geom_id": {boundary}
}}]'::JSON
))
))
UPDATE obs_perftest_{complexity}
SET measure = (data->0->>'value')::Numeric
FROM data
WHERE obs_perftest_{complexity}.cartodb_id = data.id
;
'''.format(
point_or_poly='point' if geom == 'point' else 'polygon',
complexity=geom_complexity,
schema='cdb_observatory.' if USE_SCHEMA else '',
normalization=normalization,
geom=geom,
boundary=boundary.replace("'", '"'),
n=rows)
start = time()
query(stmt)
end = time()
qps = (rows / (end - start))
results.append({
'rows': rows,
'qps': qps,
'stmt': stmt
})
print rows, ': ', qps, ' QPS'
if 'OBS_RECORD_TEST' in os.environ:
record({
'geom_complexity': geom_complexity,
'api_method': 'OBS_GetData',
'normalization': normalization,
'boundary': boundary,
'geom': geom
}, results)

31
src/python/test/util.py Normal file
View File

@@ -0,0 +1,31 @@
import os
import psycopg2
DB_CONN = psycopg2.connect('postgres://{user}:{password}@{host}:{port}/{database}'.format(
user=os.environ.get('PGUSER', 'postgres'),
password=os.environ.get('PGPASSWORD', ''),
host=os.environ.get('PGHOST', 'localhost'),
port=os.environ.get('PGPORT', '5432'),
database=os.environ.get('PGDATABASE', 'postgres'),
))
CURSOR = DB_CONN.cursor()
def query(q):
'''
Query the database.
'''
try:
CURSOR.execute(q)
return CURSOR
except:
DB_CONN.rollback()
raise
def commit():
try:
DB_CONN.commit()
except:
DB_CONN.rollback()
raise