163 Commits
1.1.5 ... 1.4.0

Author SHA1 Message Date
John Krauss
536af5e4a2 release artifact 2017-03-22 15:17:19 +00:00
John Krauss
ebf23d2a23 Merge branch 'develop' into release-v-1.4.0 2017-03-22 15:16:35 +00:00
John Krauss
f1afcf0d8e update NEWS.md 2017-03-22 15:14:35 +00:00
John Krauss
3c0b40cf3f more consistent arguments in docs 2017-03-22 15:12:50 +00:00
John Krauss
8a87dc7e9a update NEWS.md 2017-03-21 21:24:50 +00:00
John Krauss
61552adba4 Allow for target_geoms and target_area override on column-by-column basis 2017-03-21 17:26:02 +00:00
csobier
36abbee64f Merge pull request #274 from CartoDB/273-docs-edit
clarification of docs for obs_getboundariesbygeometry function
2017-03-17 12:07:48 -04:00
csobier
5a76a7381e clarification of docs for obs_getboundariesbygeometry function 2017-03-17 11:45:49 -04:00
John Krauss
217ca2d84d release 1.3.5 artifact 2017-03-15 20:12:06 +00:00
John Krauss
f1bf4259bc release artifact 1.3.4 2017-03-10 20:17:22 +00:00
John Krauss
a2609d9d07 update NEWS for 1.3.4 2017-03-10 20:14:32 +00:00
John Krauss
01779991bb Remove erroneously commited NOTICE 2017-03-10 20:13:27 +00:00
John Krauss
ec53d354e9 release 1.3.3 artifact 2017-03-10 19:48:23 +00:00
John Krauss
c1aa91da5b update NEWS.md 2017-03-10 19:36:00 +00:00
John Krauss
93ebd9aa0f test getdata across multiple input columns; remove dead code from autotest 2017-03-10 19:27:06 +00:00
John Krauss
4a29c060ef fix unittest bug, easier to read use of unnest, static geomvals when one passed in 2017-03-10 19:18:06 +00:00
John Krauss
1639bea74a mark relevant functions STABLE 2017-03-10 18:36:51 +00:00
John Krauss
765cbfcccc only do polygon operations when polygons passed in 2017-03-10 16:32:31 +00:00
John Krauss
c4f3c5d534 selectively pass through obs geometries and area calcs 2017-03-10 16:23:27 +00:00
John Krauss
d5e7d95824 fix performance regression on getboundariesbygeometry, where pct overlap was being unnecessarily calculated 2017-03-09 21:26:53 +00:00
John Krauss
3ff1b36d7f remove erroneous NOTICE 2017-03-09 20:46:38 +00:00
John Krauss
c28cdeb767 Merge branch 'release-v-1.3.3' into separate-geom-from-data-calcs 2017-03-09 18:09:45 +00:00
John Krauss
b1d672bfe4 Merge branch 'release-v-1.3.3' into faster-autotest 2017-03-09 18:07:28 +00:00
John Krauss
524d477f7b Merge remote-tracking branch 'origin/release-v-1.3.3' into release-v-1.3.3 2017-03-09 17:59:49 +00:00
John Krauss
7ef035580f avoid geom calculation when points are passed in 2017-03-09 17:29:41 +00:00
John Krauss
20b347528c tests passing 2017-03-09 17:14:20 +00:00
John Krauss
d070802f53 resolving API bugs 2017-03-09 16:17:58 +00:00
John Krauss
751f470049 Merge branch 'faster-autotest' into separate-geom-from-data-calcs 2017-03-09 14:58:26 +00:00
John Krauss
a1b5f01d57 Merge remote-tracking branch 'origin/develop' into faster-autotest 2017-03-09 14:50:48 +00:00
John Krauss
f2d2b32bf1 Merge remote-tracking branch 'origin/develop' into separate-geom-from-data-calcs 2017-03-09 14:50:01 +00:00
csobier
02413eb974 line 412, bad tag 2017-03-09 08:15:43 -05:00
csobier
1a4a2edbc6 lien 207 2017-03-09 08:10:23 -05:00
csobier
47c6453bbc tags 2017-03-09 08:05:59 -05:00
csobier
5f2daad408 wrong quotes around context, breaking docs 2017-03-09 07:36:10 -05:00
csobier
764a1ce7cd highlight missing, breaking docs 2017-03-09 07:29:19 -05:00
csobier
12235c7138 missing tag on line 387, breaking docs. 2017-03-09 07:16:49 -05:00
John Krauss
3f817f8e9a bugfixes, most unit tests passing 2017-03-09 05:03:25 +00:00
John Krauss
5ca2664a17 first pass much faster multicolumn getdata via precalcs 2017-03-09 04:12:38 +00:00
John Krauss
1b913c77c4 fix last oustanding bug with autotest 2017-03-08 23:18:07 +00:00
John Krauss
22eb6349c2 fix issues with python autotest failing for nulls, try removing case statements around geometries in getdata 2017-03-08 21:17:45 +00:00
John Krauss
862db2c33a Merge remote-tracking branch 'origin/release-v-1.3.3' into faster-autotest
Conflicts:
	src/pg/sql/40_observatory_utility.sql
2017-03-08 20:52:31 +00:00
John Krauss
e2f92d78cf much faster autotest by grouping in getdata, fixes to getdata to prevent hangs 2017-03-08 20:51:41 +00:00
john krauss
3df1ffc3c8 Merge pull request #265 from CartoDB/check-intersection-errors
Resolve intersection errors
2017-03-08 15:38:39 -05:00
John Krauss
6a60cfc417 Merge branch 'develop' into faster-autotest 2017-03-08 15:57:14 +00:00
John Krauss
3b6b1b4843 limit safe_intersection to SRID 4326, DRY out ST_MakeValid 2017-03-08 15:52:19 +00:00
John Krauss
460059f2cf Merge branch 'develop' into check-intersection-errors 2017-03-07 20:45:05 +00:00
John Krauss
fc111dd1e2 Merge branch 'obs-getavailableX-docs' into develop 2017-03-07 20:39:40 +00:00
John Krauss
7cbef7e1b5 Merge branch 'obs-getdata-getmeta-docs' into develop 2017-03-07 20:39:25 +00:00
John Krauss
deede798e9 fix non-noded intersection between shoreline clipped and non-shoreline clipped geometries by using a safe_intersection function 2017-03-07 20:38:12 +00:00
John Krauss
fd3918b29c fix divide-by-zero errors 2017-03-07 16:45:15 +00:00
John Krauss
cdf7b17a4d tmp commit 2017-03-07 15:29:09 +00:00
John Krauss
50ec6dddf6 release-v1.3.2 artifact 2017-03-02 21:16:22 +00:00
John Krauss
0ebe9babeb update tests 2017-03-02 21:09:23 +00:00
John Krauss
4fad32d5f2 fix and NEWS.md 2017-03-02 21:07:29 +00:00
John Krauss
f0efa1e2eb release v1.3.1 2017-03-01 16:33:35 +00:00
John Krauss
bcbd8a2be4 change OBS_GetLegacyMetadata to return median/average measures too when called for polygons 2017-03-01 16:03:14 +00:00
John Krauss
63ae7c1392 add obs_getavailableX metadata API docs 2017-02-28 21:33:06 +00:00
John Krauss
af671931d4 integrate michelles comments 2017-02-23 20:12:27 +00:00
John Krauss
71d891c067 handle blank aggregates 2017-02-16 17:53:38 +00:00
John Krauss
01b56fbfcc update fixtures 2017-02-16 17:38:18 +00:00
John Krauss
6215f6585c update NEWS.md 2017-02-16 17:23:47 +00:00
John Krauss
9bda063148 Merge branch 'nonsum-interpolation' into release-v-1.3.1 2017-02-16 17:20:38 +00:00
John Krauss
4a97689705 add point for au 2017-02-16 16:50:40 +00:00
John Krauss
2edb850a45 estimate average and median across arbitrary areas if universe is provided, otherwise return null and raise a notice. fixes #252 2017-02-10 01:08:10 +00:00
Michelle Ho
8120081d68 Typo fix
Typo fix of "measured" to "measure"
2017-02-06 16:37:27 -05:00
Michelle Ho
72ced1a7a7 Change 'raise' to 'raises'
Changes semantic meaning-- user does not raise the error, CARTO raises the error
2017-02-06 16:27:43 -05:00
Michelle Ho
d15b74a594 Change ``OBS_GetUSCensusMeasure`` 2017-02-06 16:18:56 -05:00
Michelle Ho
60ab773549 change point to polygon in GetUSCensusMeasure 2017-02-06 15:57:49 -05:00
Michelle Ho
01b70dd06e proof-reading changes 2017-02-06 14:58:07 -05:00
John Krauss
4b409cc9f4 first-pass docs for obs_getdata and obs_getmeta 2017-02-01 09:12:18 -05:00
Mario de Frutos
79c450f63f Merge pull request #247 from CartoDB/develop
Release 1.3.0
2017-01-31 10:14:52 +01:00
Mario de Frutos
c8dd9e417b Release 1.3.0 artifact 2017-01-26 12:19:23 +01:00
Mario de Frutos
2717ecdc8b Merge pull request #246 from CartoDB/release-v-1.3.0
Observatory Release v 1.3.0
2017-01-26 12:18:15 +01:00
Mario de Frutos
0f372604db Remove fdw utilities 2017-01-26 11:57:24 +01:00
Mario de Frutos
c5a715f7b5 Delete empty sql file used for plpython code 2017-01-25 19:03:51 +01:00
John Krauss
e4b38413cd skip a few autotests that are failing, but not meaningfully exposed in interfaces 2017-01-25 17:23:36 +00:00
John Krauss
ee84604ced empty file to clear out artifacts from built extension 2017-01-25 17:09:38 +00:00
John Krauss
5e7bffae6a remove plpython and python code for now. also removed mistaken installation of postgres_fdw in tests 2017-01-25 16:59:37 +00:00
John Krauss
aa807eb65b fix hang generating fixtures 2017-01-18 23:28:46 +00:00
John Krauss
80277ba065 optimizations for cases where small amounts of metadata passed into obs_getmeta 2017-01-18 23:15:27 +00:00
John Krauss
0e4a514753 use simplification in obs_getdata for very complex geoms 2017-01-18 21:44:02 +00:00
John Krauss
fc74529a04 ensure fixture creation worked or do not run tests 2017-01-18 21:16:53 +00:00
John Krauss
a18d88a85f Merge branch 'overpass' into release-v-1.3.0 2017-01-18 18:28:53 +00:00
John Krauss
8ea972f4a0 update NEWS.md for 1.3.0 2017-01-18 18:27:50 +00:00
John Krauss
0e99e62eb2 remove unused table-level functions and dependencies 2017-01-17 22:51:30 +00:00
John Krauss
3db98fb522 full testing suite for obs_getdata and obs_getmeta 2017-01-17 22:49:29 +00:00
John Krauss
c18f16ed6d handle cases with mixed geometries in obs_getdata correctly 2017-01-17 22:49:04 +00:00
John Krauss
fa82c1bb4f Merge branch 'release-v-1.2.1' into overpass 2017-01-17 15:42:39 +00:00
John Krauss
00825e4ba1 update NEWS.md 2017-01-17 15:42:30 +00:00
John Krauss
afe4c27dd5 obs_getdata takes api_method and api_args in both forms, and handles them correctly; cleanup to getdata, added more tests 2017-01-14 01:14:42 +00:00
John Krauss
c2dc4fb8b9 add test for third-party call 2017-01-10 21:55:48 +00:00
John Krauss
bc4f1b5909 support use of dynamic tables (API-generated) in obs_getdata 2017-01-10 21:44:49 +00:00
John Krauss
267af19911 fix perftest to work with renamed core functions 2017-01-10 16:03:12 +00:00
John Krauss
7c093741dc major refactor of internals 2017-01-10 02:28:38 +00:00
John Krauss
4886222776 adaptation of obs_getmeasuredatamulti that can return geoms from a boundingbox 2017-01-04 21:18:56 +00:00
John Krauss
ddbe1b6763 return shops as part of POI for OSM 2017-01-04 18:23:52 +00:00
John Krauss
218840bfa8 first-pass function for overpass working 2017-01-04 16:59:48 +00:00
John Krauss
000a440417 resolve issues in build and with code, now returning geometries and data as expected from obs_getoverpass 2017-01-03 16:37:16 +00:00
John Krauss
ff50c5e2bf first pass on overpass api, still getting an error with columns 2017-01-03 15:39:01 +00:00
John Krauss
d7552031f6 support obtaining text measures with obs_getmeasuredatamulti 2016-12-29 23:01:48 +00:00
John Krauss
39eb031316 support POINT and LINESTRING types from obs_getboundaries 2016-12-29 17:07:38 +00:00
John Krauss
7adbad602e updating NEWS 2016-12-28 20:04:26 +00:00
john krauss
3233cb527e Merge pull request #241 from CartoDB/obs_getmeasure_res_bypass
Obs getmeasure res bypass
2016-12-28 14:44:01 -05:00
John Krauss
5bdcb59df3 remove commented code 2016-12-28 19:34:37 +00:00
John Krauss
6e475cf210 fix uppercase NULL in tests 2016-12-28 19:17:57 +00:00
John Krauss
eb508c5d16 Revert "subdivide complex geoms in obs_getmeasure"
This reverts commit d44887b2b3.
2016-12-28 18:40:01 +00:00
John Krauss
bbd0cc0938 capture boundary in multi, capture message from env 2016-12-28 16:54:16 +00:00
John Krauss
d44887b2b3 subdivide complex geoms in obs_getmeasure 2016-12-28 16:19:13 +00:00
John Krauss
fa96de5aa9 remove notices from getgeometryscores 2016-12-28 15:57:56 +00:00
John Krauss
b7943ad8d2 fix divide by zero issues for denominated 2016-12-21 23:22:31 +00:00
John Krauss
6b071db588 remove notices 2016-12-21 23:18:25 +00:00
John Krauss
fbf13be62a unit tests passing with 2015 geoms included, fixes to obs_getmeasure 2016-12-21 23:17:03 +00:00
John Krauss
fc3fcbec4e fix broken polygon area normalization 2016-12-21 22:41:53 +00:00
John Krauss
d3a57e637c keep track of table_id in obs_meta and geometryscores, use obs_getmeasure*multi for obs_getmeasure 2016-12-21 21:53:53 +00:00
John Krauss
24587b7e03 switch over to multi for the "split" test 2016-12-19 16:49:50 +00:00
John Krauss
2398b0268f major performance speedup for obs_getmeasuremeta 2016-12-16 21:54:42 +00:00
John Krauss
4c6d854e81 Merge branch 'release-v-1.1.7' into obs_getmeasure_res_bypass 2016-12-16 18:01:17 +00:00
John Krauss
fd32f962f2 remove failing MX test 2016-12-15 20:19:12 +00:00
John Krauss
462eed1d61 update NEWS.md and PULL_REQUEST_TEMPLATE.md 2016-12-15 19:56:42 +00:00
John Krauss
5a5d5a9386 tests pass, although obs_getmeasure performance suffers 2016-12-14 22:58:22 +00:00
John Krauss
88d1145c12 fix issue with NULL being passed into obs_getmeasure, add tests for obs_getmeasuremeta and obs_getmeasuredata 2016-12-13 15:43:04 +00:00
csobier
8455468ad0 Merge pull request #238 from CartoDB/csobier-patch-1
missed tool name in docs
2016-12-13 07:17:40 -05:00
John Krauss
9567f52a36 minor tweaks to obs_getmeasuremeta and obs_getmeasuredata, good behavior for geometryscores even when null is passed as desired_num_geoms 2016-12-13 00:14:19 +00:00
John Krauss
fad7bb991b split obs_getmeasuremeta and obs_getmeasuredata 2016-12-12 23:10:12 +00:00
John Krauss
d17b865648 add test that takes out the geom component 2016-12-12 21:49:00 +00:00
John Krauss
d4e6e7ac95 use obs_column_table_tile_raster with simpler bands for faster performance 2016-12-12 21:25:59 +00:00
csobier
e77ebe7bb1 missed tool
Totally missed mention of Editor here, changed to Builder.
2016-12-12 13:50:59 -05:00
John Krauss
82137d5679 Merge branch 'develop' into raster-simplification-experiments 2016-12-12 17:36:12 +00:00
Mario de Frutos
d745f07cac Merge pull request #237 from CartoDB/develop
Version 1.1.6 release artifacts
2016-12-12 16:45:08 +01:00
Mario de Frutos
aa3e0ed76b Version 1.1.6 release artifacts 2016-12-12 16:44:36 +01:00
Mario de Frutos
f378e75d4c Merge pull request #236 from CartoDB/develop
Release 1.1.6
2016-12-12 16:24:31 +01:00
Mario de Frutos
f97482f3fb Merge pull request #234 from CartoDB/release-v-1.1.6
Release v 1.1.6
2016-12-12 16:23:09 +01:00
Mario de Frutos
36f1c1974a Merge pull request #235 from CartoDB/develop
Docs update
2016-12-12 09:36:36 +01:00
John Krauss
21b108d32c move redundant aggregates to CTE 2016-12-09 22:31:29 +00:00
John Krauss
9f640f0c35 use simple envelope for very complex geometries in obs_getgetgeometryscores 2016-12-09 21:47:30 +00:00
John Krauss
95b6cba085 remove some unnecessary calculations from obs_getgeometryscores, yields QPS improvement from about 20 to 30 2016-12-09 21:06:42 +00:00
John Krauss
6a6d1bc3e4 Merge branch 'release-v-1.1.6' into raster-simplification-experiments 2016-12-09 19:38:12 +00:00
John Krauss
99166d1b4e update NEWS.md 2016-12-08 21:59:32 +00:00
John Krauss
e33bcae964 add several ignored MX measures likely due to new geometry scoring 2016-12-08 03:21:04 +00:00
John Krauss
48a8df8b98 switch brazil testpoint 2016-12-08 03:13:55 +00:00
John Krauss
4b9ba06b42 fix lat/lng switch for brazil 2016-12-08 02:55:53 +00:00
john krauss
209832e38d Merge pull request #233 from CartoDB/fix-area-getmeasure-denom-zerodiv
fix divide-by-zero condition with obs_getmeasure(area) using denominator
2016-12-07 21:28:41 -05:00
John Krauss
7373794c30 fix divide-by-zero condition with obs_getmeasure(area) using denominator 2016-12-08 02:32:03 +00:00
John Krauss
1a2e1dd8c9 Merge branch 'remove-format-literals' into release-v-1.1.6 2016-12-08 02:29:21 +00:00
John Krauss
14b82a0e09 Merge remote-tracking branch 'origin/release-v-1.1.6' into release-v-1.1.6 2016-12-08 02:29:06 +00:00
John Krauss
7e20a200c1 Merge branch 'complex-geom-perf-improvements' into release-v-1.1.6 2016-12-08 02:28:53 +00:00
John Krauss
39473db14b Merge branch 'improve-perftest' into complex-geom-perf-improvements 2016-12-08 02:21:29 +00:00
John Krauss
4d7fb145eb Merge branch 'improve-perftest' into remove-format-literals 2016-12-08 02:21:12 +00:00
john krauss
8e51d33e4a Merge pull request #232 from CartoDB/complex-geom-perf-improvements
Complex geom perf improvements
2016-12-07 21:20:29 -05:00
John Krauss
b7ee3a6d67 perftest updates, adding BR test point 2016-12-08 02:17:38 +00:00
csobier
d4dcb7f4ba Merge pull request #228 from CartoDB/docs-1149-update-catalog-link
edited default tool, and updated link to html catalog
2016-12-07 12:11:37 -05:00
csobier
401317738f edited default tool, and updated link to html catalog 2016-12-07 11:51:13 -05:00
John Krauss
1aca5b5ff0 Merge branch 'improve-perftest' into complex-geom-perf-improvements 2016-12-05 22:57:03 +00:00
John Krauss
521fcf9059 Merge branch 'improve-perftest' into remove-format-literals 2016-12-05 22:56:30 +00:00
John Krauss
255f8dc18e support peristence of test results to JSON 2016-12-05 22:55:14 +00:00
John Krauss
463db99222 add perf tests for different geometry complexities as well as all code branches for getmeasure 2016-12-05 18:51:58 +00:00
John Krauss
59857355c7 simplifying raster experiments 2016-12-02 19:33:16 +00:00
John Krauss
44932be1f5 improvements to scoring, fixing oversimplification and removing some premature optimization 2016-12-01 21:50:39 +00:00
John Krauss
4ce1648550 score rasters with lots of missing space lower 2016-11-30 23:16:18 +00:00
John Krauss
ff0f6ea6e0 use st_subdivide to deal with more complex geometries 2016-11-30 23:15:30 +00:00
John Krauss
34a3aab323 remove redundant area checks from other polygon-based getmeasure branches 2016-11-30 17:24:45 +00:00
John Krauss
f32cc60d61 remove redundant area check 2016-11-30 17:15:39 +00:00
John Krauss
81c8fc316b remove almost all %L formats, including all where geoms were dropped in 2016-11-30 16:53:22 +00:00
38 changed files with 32488 additions and 13117 deletions

View File

@@ -2,6 +2,12 @@
I'd like to request a new data observatory extension deploy: dump + extension
## Performance comparison to last deployment
Please include link here to comparison perftests:
http://52.71.151.140/perftest/#oldsha..newsha
## Dump database id to be deployed
Please put here the dump id to be deployed: <dump_id>

161
NEWS.md
View File

@@ -1,3 +1,164 @@
1.4.0 (2017-03-21)
__API Changes__
* Allow for override of `target_area` and `target_geoms` in `OBS_GetMeta`
([#276](https://github.com/CartoDB/observatory-extension/pull/265)). This
allows the interface to work with points and sparse areas much btter.
* Allow for override of `max_timespan_rank` and `max_score_rank` on an
item-by-item basis for metadata.
* `numer_description`, `geom_description`, `denom_description`,
`numer_t_description`, `denom_t_description` and `geom_t_description` now
returned as part of `OBS_GetMeta`.
__Improvements__
* Reduced amount of simplification done on input geometries (from 0.0001 above
500 points to 0.00001 above 1000 points).
* Added tests to confirm that accurate results are returned from automatic
boundary selection
1.3.5 (2017-03-15)
No changes. Artifact to allow for data update.
1.3.4 (2017-03-10)
__Bugfixes__
* Remove erroneously committed `RAISE NOTICE` in `OBS_GetData`
1.3.3 (2017-03-10)
__Bugfixes__
* Resolve divide-by-zero errors in cases where the intersection of an
Observatory geometry and user geometry has 0 area
([#265](https://github.com/CartoDB/observatory-extension/pull/265))
* Run MakeValid on geometry's when intersecting, if necessary
([#268](https://github.com/CartoDB/observatory-extension/pull/268))
__Improvements__
* Add performance tests for multiple columns in `OBS_GetData`
* Major performance boost for `autotest.py` through the use of multi-column
`OBS_GetData` instead of separate `OBS_GetMeasure` calls for every single
measurement.
([#268](https://github.com/CartoDB/observatory-extension/pull/268))
* Major performance boost for `OBS_GetData` in cases where multiple columns are
requested. Previously, each additional column would result in a linear
slowdown, even if geometries could be reused.
([#267](https://github.com/CartoDB/observatory-extension/pull/267))
1.3.2 (2017-03-02)
__Bugfixes__
* Accept "prenormalized" as well as "predenominated" to bypass normalization.
This fixes issues with Camshaft.
1.3.1 (2017-02-16)
__Improvements__
* It is now possible to obtain measures that are averages or medians over
arbitrary polygons ([#254](https://github.com/CartoDB/observatory-extension/pull/254).
* Added test point for Australian data
* `OBS_GetLegacyMetadata` now returns median and averages in cases where it is
called for measures for polygons
1.3.0 (2017-01-17)
__API Changes__
* `OBS_GetMeasureDataMulti()` is now called `OBS_GetData()`
* `OBS_GetMeasureMetaMulti()` is now called `OBS_GetMeta()`
* Additional signature for `OBS_GetData` which can take an array of `TEXT`,
mimicking functionality of `OBS_GetMeasureByID`
__Improvements__
* Generate fixtures from `obs_meta`
* Remove unused table-level code
* Refactor all augmentation and geometry functions to obtain data from
`OBS_GetMeta()` and `OBS_GetData()`.
* Improvements to `OBS_GetMeta()` so it can still fill in metadata in cases
where only a geometry is being requested.
* `OBS_GetData()` returns two-column table instead of anonymous record.
* `OBS_GetData()` can return categorical (text) and geometries
__Bugfixes__
* Remove unnecessary dependency on `postgres_fdw`
* `OBS_GetData()` now aggregates measures with mixed geoms correctly
__API Changes__
1.2.1 (2017-01-17)
__Improvements__
* Support Point/LineString in responses from `OBS_GetBoundary`.
([#243](https://github.com/CartoDB/observatory-extension/pull/233))
1.2.0 (2016-12-28)
__API Changes__
* Added `OBS_GetMeasureDataMulti`, which takes an array of geomvals and
parameters as JSON, and returns a set of RECORDs keyed by the vals of the
geomvals.
* Added `OBS_GetMeasureMetaMulti`, which takes sparse metadata as JSON (for
example, the measure ID) and returns a filled-out version of the metadata
sufficient for use with `OBS_GetMeasureDataMulti`.
__Improvements__
* Move tests to 2015
* Fixes to `_OBS_GetGeometryScores` to avoid spamming NOTICEs about all pixels
for a band being NULL
* Tests for `_OBS_GetGeometryScores` with complex geometries
* Performance tests for `OBS_GetMeasureDataMulti`
* Return both `table_id` and `column_id` from `_OBS_GetGeometryScores`
1.1.7 (2016-12-15)
__Improvements__
* Use simpler raster table and simplified `_OBSGetGeometryScores` functions to
improve performance
* In cases where geometry passed into geometry scoring function has greater
than 10K points, simply use its buffer instead
* Add `IMMUTABLE` to `_OBSGetGeometryScores`
* Add tests explicitly for `_OBSGetGeometryScores` in perftest.py
* Yields a ~50% improvement in performance for `_OBSGetGeomeryScores`.
1.1.6 (2016-12-08)
__Bugfixes__
* Fix divide by zero condition in "denominator" branch of `OBS_GetMeasure`
when passing in a polygon ([#233](https://github.com/CartoDB/observatory-extension/pull/233)).
__Improvements__
* Use `ST_Subdivide` to improve performance when functions are called on very
complex geometries (with many points) ([#232](https://github.com/CartoDB/observatory-extension/pull/232))
* Improve raster scoring to more heavily weight boundaries with nearer to
correct number of points, and penalize boundaries with lots of blank space
([#232](https://github.com/CartoDB/observatory-extension/pull/232))
* Remove some redundant area calculations in `OBS_GetMeasure`
([#232](https://github.com/CartoDB/observatory-extension/pull/232))
* Replace use of `format('%L', var)` with proper use of `EXECUTE` and `$1` etc.
variables ([#231](https://github.com/CartoDB/observatory-extension/pull/231))
* Add test point for Brazil
([#229](https://github.com/CartoDB/observatory-extension/pull/229))
* Improvements to performance tests
([#229](https://github.com/CartoDB/observatory-extension/pull/229))
- Support simple and complex geometries
- Handle all code branches
- Add ability to persist results to JSON for graph visualization later
1.1.5 (2016-11-29)
__Bugfixes__

View File

@@ -2,9 +2,9 @@
Use the following functions to retrieve [Boundary](https://carto.com/docs/carto-engine/data/overview/#boundary-data) data. Data ranges from small areas (e.g. US Census Block Groups) to large areas (e.g. Countries). You can access boundaries by point location lookup, bounding box lookup, direct ID access and several other methods described below.
You can [access](https://carto.com/docs/carto-engine/data/accessing) boundaries through the CARTO Editor. The same methods will work if you are using the CARTO Engine to develop your application. We [encourage you](http://docs/carto-engine/data/accessing/#best-practices) to use table modifying methods (UPDATE and INSERT) over dynamic methods (SELECT).
You can [access](https://carto.com/docs/carto-engine/data/accessing) boundaries through CARTO Builder. The same methods will work if you are using the CARTO Engine to develop your application. We [encourage you](http://docs/carto-engine/data/accessing/#best-practices) to use table modifying methods (UPDATE and INSERT) over dynamic methods (SELECT).
## OBS_GetBoundariesByGeometry(polygon geometry, geometry_id text)
## OBS_GetBoundariesByGeometry(geom geometry, geometry_id text)
The ```OBS_GetBoundariesByGeometry(geometry, geometry_id)``` method returns a set of boundary geometries that intersect a supplied geometry. This can be used to find all boundaries that are within or overlap a bounding box. You have the ability to choose whether to retrieve all boundaries that intersect your supplied bounding box or only those that fall entirely inside of your bounding box.
@@ -12,7 +12,7 @@ The ```OBS_GetBoundariesByGeometry(geometry, geometry_id)``` method returns a se
Name |Description
--- | ---
polygon | a bounding box or other WGS84 geometry
geom | a WGS84 geometry
geometry_id | a string identifier for a boundary geometry
timespan (optional) | year(s) to request from ('NULL' (default) gives most recent)
overlap_type (optional) | one of '[intersects](http://postgis.net/docs/manual-2.2/ST_Intersects.html)' (default), '[contains](http://postgis.net/docs/manual-2.2/ST_Contains.html)', or '[within](http://postgis.net/docs/manual-2.2/ST_Within.html)'.
@@ -26,7 +26,7 @@ Column Name | Description
the_geom | a boundary geometry (e.g., US Census tract boundaries)
geom_refs | a string identifier for the geometry (e.g., geoids of US Census tracts)
If geometries are not found for the requested `polygon`, `geometry_id`, `timespan`, or `overlap_type`, then null values are returned.
If geometries are not found for the requested `geom`, `geometry_id`, `timespan`, or `overlap_type`, then null values are returned.
#### Example
@@ -44,7 +44,6 @@ FROM OBS_GetBoundariesByGeometry(
#### Errors
* If a geometry other than a point is passed as the first argument, an error is thrown: `Invalid geometry type (ST_Polygon), expecting 'ST_Point'`
* If an `overlap_type` other than the valid ones listed above is entered, then an error is thrown
## OBS_GetPointsByGeometry(polygon geometry, geometry_id text)

View File

@@ -56,3 +56,306 @@ time_span | the timespan attached the boundary. this does not mean that the boun
```SQL
SELECT * FROM OBS_GetAvailableBoundaries(CDB_LatLng(40.7, -73.9))
```
## OBS_GetAvailableNumerators(bounds, filter_tags, denom_id, geom_id, timespan)
Return available numerators within a boundary and with the specified
`filter_tags`.
#### Arguments
Name | Type | Description
--- | --- | ---
bounds | Geometry(Geometry, 4326) | a geometry which some of the numerator's data must intersect with
filter_tags | Text[] | a list of filters. Only numerators for which all of these apply are returned `NULL` to ignore (optional)
denom_id | Text | the ID of a denominator to check whether the numerator is valid against. Will not reduce length of returned table, but will change values for `valid_denom` (optional)
geom_id | Text | the ID of a geometry to check whether the numerator is valid against. Will not reduce length of returned table, but will change values for `valid_geom` (optional)
timespan | Text | the ID of a timespan to check whether the numerator is valid against. Will not reduce length of returned table, but will change values for `valid_timespan` (optional)
#### Returns
A TABLE containing the following properties
Key | Type | Description
--- | ---- | -----------
numer_id | Text | The ID of the numerator
numer_name | Text | A human readable name for the numerator
numer_description | Text | Description of the numerator. Is sometimes NULL
numer_weight | Numeric | Numeric "weight" of the numerator. Ignored.
numer_license | Text | ID of the license for the numerator
numer_source | Text | ID of the source for the numerator
numer_type | Text | Postgres type of the numerator
numer_aggregate | Text | Aggregate type of the numerator. If `'SUM'`, this can be normalized by area
numer_extra | JSONB | Extra information about the numerator column. Ignored.
numer_tags | Text[] | Array of all tags applying to this numerator
valid_denom | Boolean | True if the `denom_id` argument is a valid denominator for this numerator, False otherwise
valid_geom | Boolean | True if the `geom_id` argument is a valid geometry for this numerator, False otherwise
valid_timespan | Boolean | True if the `timespan` argument is a valid timespan for this numerator, False otherwise
#### Examples
Obtain all numerators that are available within a small rectangle.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326))
```
Obtain all numerators that are available within a small rectangle and are for
the United States only.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), '{section/tags.united_states}');
```
Obtain all numerators that are available within a small rectangle and are
employment related for the United States only.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), '{section/tags.united_states, subsection/tags.employment}');
```
Obtain all numerators that are available within a small rectangle and are
related to both employment and age & gender for the United States only.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), '{section/tags.united_states, subsection/tags.employment, subsection/tags.age_gender}');
```
Obtain all numerators that work with US population (`us.census.acs.B01003001`)
as a denominator.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, 'us.census.acs.B01003001')
WHERE valid_denom IS True;
```
Obtain all numerators that work with US states (`us.census.tiger.state`)
as a geometry.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, NULL, 'us.census.tiger.state')
WHERE valid_geom IS True;
```
Obtain all numerators available in the timespan `2011 - 2015`.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableNumerators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, NULL, NULL, '2011 - 2015')
WHERE valid_timespan IS True;
```
## OBS_GetAvailableDenominators(bounds, filter_tags, numer_id, geom_id, timespan)
Return available denominators within a boundary and with the specified
`filter_tags`.
#### Arguments
Name | Type | Description
--- | --- | ---
bounds | Geometry(Geometry, 4326) | a geometry which some of the denominator's data must intersect with
filter_tags | Text[] | a list of filters. Only denominators for which all of these apply are returned `NULL` to ignore (optional)
numer_id | Text | the ID of a numerator to check whether the denominator is valid against. Will not reduce length of returned table, but will change values for `valid_numer` (optional)
geom_id | Text | the ID of a geometry to check whether the denominator is valid against. Will not reduce length of returned table, but will change values for `valid_geom` (optional)
timespan | Text | the ID of a timespan to check whether the denominator is valid against. Will not reduce length of returned table, but will change values for `valid_timespan` (optional)
#### Returns
A TABLE containing the following properties
Key | Type | Description
--- | ---- | -----------
denom_id | Text | The ID of the denominator
denom_name | Text | A human readable name for the denominator
denom_description | Text | Description of the denominator. Is sometimes NULL
denom_weight | Numeric | Numeric "weight" of the denominator. Ignored.
denom_license | Text | ID of the license for the denominator
denom_source | Text | ID of the source for the denominator
denom_type | Text | Postgres type of the denominator
denom_aggregate | Text | Aggregate type of the denominator. If `'SUM'`, this can be normalized by area
denom_extra | JSONB | Extra information about the denominator column. Ignored.
denom_tags | Text[] | Array of all tags applying to this denominator
valid_numer | Boolean | True if the `numer_id` argument is a valid numerator for this denominator, False otherwise
valid_geom | Boolean | True if the `geom_id` argument is a valid geometry for this denominator, False otherwise
valid_timespan | Boolean | True if the `timespan` argument is a valid timespan for this denominator, False otherwise
#### Examples
Obtain all denominators that are available within a small rectangle.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326));
```
Obtain all denominators that are available within a small rectangle and are for
the United States only.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), '{section/tags.united_states}');
```
Obtain all denominators for male population (`us.census.acs.B01001002`).
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, 'us.census.acs.B01001002')
WHERE valid_numer IS True;
```
Obtain all denominators that work with US states (`us.census.tiger.state`)
as a geometry.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, NULL, 'us.census.tiger.state')
WHERE valid_geom IS True;
```
Obtain all denominators available in the timespan `2011 - 2015`.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableDenominators(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, NULL, NULL, '2011 - 2015')
WHERE valid_timespan IS True;
```
## OBS_GetAvailableGeometries(bounds, filter_tags, numer_id, denom_id, timespan)
Return available geometries within a boundary and with the specified
`filter_tags`.
#### Arguments
Name | Type | Description
--- | --- | ---
bounds | Geometry(Geometry, 4326) | a geometry which must intersect the geometry
filter_tags | Text[] | a list of filters. Only geometries for which all of these apply are returned `NULL` to ignore (optional)
numer_id | Text | the ID of a numerator to check whether the geometry is valid against. Will not reduce length of returned table, but will change values for `valid_numer` (optional)
denom_id | Text | the ID of a denominator to check whether the geometry is valid against. Will not reduce length of returned table, but will change values for `valid_denom` (optional)
timespan | Text | the ID of a timespan to check whether the geometry is valid against. Will not reduce length of returned table, but will change values for `valid_timespan` (optional)
#### Returns
A TABLE containing the following properties
Key | Type | Description
--- | ---- | -----------
geom_id | Text | The ID of the geometry
geom_name | Text | A human readable name for the geometry
geom_description | Text | Description of the geometry. Is sometimes NULL
geom_weight | Numeric | Numeric "weight" of the geometry. Ignored.
geom_aggregate | Text | Aggregate type of the geometry. Ignored.
geom_license | Text | ID of the license for the geometry
geom_source | Text | ID of the source for the geometry
geom_type | Text | Postgres type of the geometry
geom_extra | JSONB | Extra information about the geometry column. Ignored.
geom_tags | Text[] | Array of all tags applying to this geometry
valid_numer | Boolean | True if the `numer_id` argument is a valid numerator for this geometry, False otherwise
valid_denom | Boolean | True if the `geom_id` argument is a valid geometry for this geometry, False otherwise
valid_timespan | Boolean | True if the `timespan` argument is a valid timespan for this geometry, False otherwise
score | Numeric | Score between 0 and 100 for this geometry, higher numbers mean that this geometry is a better choice for the passed extent
numtiles | Numeric | How many raster tiles were read for score, numgeoms, and percentfill estimates
numgeoms | Numeric | About how many of these geometries fit inside the passed extent
percentfill | Numeric | About what percentage of the passed extent is filled with these geometries
estnumgeoms | Numeric | Ignored
meanmediansize | Numeric | Ignored
#### Examples
Obtain all geometries that are available within a small rectangle.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_MakeEnvelope(-74, 41, -73, 40, 4326));
```
Obtain all geometries that are available within a small rectangle and are for
the United States only.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), '{section/tags.united_states}');
```
Obtain all geometries that work with total population (`us.census.acs.B01003001`).
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, 'us.census.acs.B01003001')
WHERE valid_numer IS True;
```
Obtain all geometries with timespan `2015`.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, NULL, NULL, '2015')
WHERE valid_timespan IS True;
```
## OBS_GetAvailableTimespans(bounds, filter_tags, numer_id, denom_id, geom_id)
Return available timespans within a boundary and with the specified
`filter_tags`.
#### Arguments
Name | Type | Description
--- | --- | ---
bounds | Geometry(Geometry, 4326) | a geometry which some of the timespan's data must intersect with
filter_tags | Text[] | a list of filters. Ignore
numer_id | Text | the ID of a numerator to check whether the timespans is valid against. Will not reduce length of returned table, but will change values for `valid_numer` (optional)
denom_id | Text | the ID of a denominator to check whether the timespans is valid against. Will not reduce length of returned table, but will change values for `valid_denom` (optional)
geom_id | Text | the ID of a geometry to check whether the timespans is valid against. Will not reduce length of returned table, but will change values for `valid_geom` (optional)
#### Returns
A TABLE containing the following properties
Key | Type | Description
--- | ---- | -----------
timespan_id | Text | The ID of the timespan
timespan_name | Text | A human readable name for the timespan
timespan_description | Text | Ignored
timespan_weight | Numeric | Ignored
timespan_license | Text | Ignored
timespan_source | Text | Ignored
timespan_aggregate | Text | Ignored
valid_numer | Boolean | True if the `numer_id` argument is a valid numerator for this timespan, False otherwise
valid_denom | Boolean | True if the `timespan` argument is a valid timespan for this timespan, False otherwise
valid_geom | Boolean | True if the `geom_id` argument is a valid geometry for this timespan, False otherwise
#### Examples
Obtain all timespans that are available within a small rectangle.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_MakeEnvelope(-74, 41, -73, 40, 4326));
```
Obtain all timespans for total population (`us.census.acs.B01003001`).
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, 'us.census.acs.B01003001')
WHERE valid_numer IS True;
```
Obtain all timespans that work with US states (`us.census.tiger.state`)
as a geometry.
```SQL
SELECT * FROM cdb_observatory.OBS_GetAvailableTimespans(
ST_MakeEnvelope(-74, 41, -73, 40, 4326), NULL, NULL, NULL, 'us.census.tiger.state')
WHERE valid_geom IS True;
```

View File

@@ -2,21 +2,21 @@
[Data Observatory Measures](https://carto.com/docs/carto-engine/data/overview/#measures-methods) are the numerical location data you can access. The measure functions allow you to access individual measures to augment your own data or integrate in your analysis workflows. Measures are used by sending an identifier or a geometry (point or polygon) and receiving back a measure (an absolute value) for that location.
There are hundreds of measures and the list is growing with each release. You can currently discover and learn about measures contained in the Data Observatory by downloading our [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf).
There are hundreds of measures and the list is growing with each release. You can currently discover and learn about measures contained in the Data Observatory by downloading our [Data Catalog](https://cartodb.github.io/bigmetadata/index.html).
You can [access](https://carto.com/docs/carto-engine/data/accessing) measures through the CARTO Editor. The same methods will work if you are using the CARTO Engine to develop your application. We [encourage you](https://carto.com/docs/carto-engine/data/accessing/#best-practices) to use table modifying methods (UPDATE and INSERT) over dynamic methods (SELECT).
You can [access](https://carto.com/docs/carto-engine/data/accessing) measures through CARTO Builder. The same methods will work if you are using the CARTO Engine to develop your application. We [encourage you](https://carto.com/docs/carto-engine/data/accessing/#best-practices) to use table modifying methods (UPDATE and INSERT) over dynamic methods (SELECT).
## OBS_GetUSCensusMeasure(point geometry, measure_name text)
The ```OBS_GetUSCensusMeasure(point, measure_name)``` function returns a measure based on a subset of the US Census variables at a point location. The ```OBS_GetUSCensusMeasure``` function is limited to only a subset of all measures that are available in the Data Observatory, to access the full list, use measure IDs with the ```OBS_GetMeasure``` function below.
The ```OBS_GetUSCensusMeasure(point, measure_name)``` function returns a measure based on a subset of the US Census variables at a point location. The ```OBS_GetUSCensusMeasure``` function is limited to only a subset of all measures that are available in the Data Observatory. To access the full list, use measure IDs with the ```OBS_GetMeasure``` function below.
#### Arguments
Name |Description
--- | ---
point | a WGS84 point geometry (the_geom)
measure_name | a human readable name of a US Census variable. The list of measure_names is [available in the Glossary](https://carto.com/docs/carto-engine/data/glossary/#obsgetuscensusmeasure-names-table).
normalize | for measures that are are **sums** (e.g. population) the default normalization is 'area' and response comes back as a rate per square kilometer. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf) (optional)
measure_name | a human-readable name of a US Census variable. The list of measure_names is [available in the Glossary](https://carto.com/docs/carto-engine/data/glossary/#obsgetuscensusmeasure-names-table).
normalize | for measures that are **sums** (e.g. population) the default normalization is 'area' and response comes back as a rate per square kilometer. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](https://cartodb.github.io/bigmetadata/index.html) (optional)
boundary_id | source of geometries to pull measure from (e.g., 'us.census.tiger.census_tract')
time_span | time span of interest (e.g., 2010 - 2014)
@@ -39,7 +39,7 @@ SET total_population = OBS_GetUSCensusMeasure(the_geom, 'Total Population')
## OBS_GetUSCensusMeasure(polygon geometry, measure_name text)
The ```OBS_GetUSCensusMeasure(point, measure_name)``` function returns a measure based on a subset of the US Census variables within a given polygon. The ```OBS_GetUSCensusMeasure``` function is limited to only a subset of all measures that are available in the Data Observatory, to access the full list, use the ```OBS_GetUSCensusMeasure``` function below.
The ```OBS_GetUSCensusMeasure(polygon, measure_name)``` function returns a measure based on a subset of the US Census variables within a given polygon. The ```OBS_GetUSCensusMeasure``` function is limited to only a subset of all measures that are available in the Data Observatory. To access the full list, use the ```OBS_GetMeasure``` function below.
#### Arguments
@@ -47,7 +47,7 @@ Name |Description
--- | ---
polygon | a WGS84 polygon geometry (the_geom)
measure_name | a human readable string name of a US Census variable. The list of measure_names is [available in the Glossary](https://carto.com/docs/carto-engine/data/glossary/#obsgetuscensusmeasure-names-table).
normalize | for measures that are **sums** (e.g. population) the default normalization is 'none' and response comes back as a raw value. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf) (optional)
normalize | for measures that are **sums** (e.g. population) the default normalization is 'none' and response comes back as a raw value. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](https://cartodb.github.io/bigmetadata/index.html) (optional)
boundary_id | source of geometries to pull measure from (e.g., 'us.census.tiger.census_tract')
time_span | time span of interest (e.g., 2010 - 2014)
@@ -70,7 +70,7 @@ SET local_male_population = OBS_GetUSCensusMeasure(the_geom, 'Male Population')
## OBS_GetMeasure(point geometry, measure_id text)
The ```OBS_GetMeasure(point, measure_id)``` function returns any Data Observatory measure at a point location. You can browse all available Measures in the [Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf).
The ```OBS_GetMeasure(point, measure_id)``` function returns any Data Observatory measure at a point location. You can browse all available Measures in the [Catalog](https://cartodb.github.io/bigmetadata/index.html).
#### Arguments
@@ -78,7 +78,7 @@ Name |Description
--- | ---
point | a WGS84 point geometry (the_geom)
measure_id | a measure identifier from the Data Observatory ([see available measures](https://cartodb.github.io/bigmetadata/observatory.pdf)). It is important to note that these are different than 'measure_name' used in the Census based functions above.
normalize | for measures that are are **sums** (e.g. population) the default normalization is 'area' and response comes back as a rate per square kilometer. The other option is 'denominator', which will use the denominator specified in the [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf). (optional)
normalize | for measures that are **sums** (e.g. population) the default normalization is 'area' and response comes back as a rate per square kilometer. The other option is 'denominator', which will use the denominator specified in the [Data Catalog](https://cartodb.github.io/bigmetadata/index.html). (optional)
boundary_id | source of geometries to pull measure from (e.g., 'us.census.tiger.census_tract')
time_span | time span of interest (e.g., 2010 - 2014)
@@ -109,7 +109,7 @@ Name |Description
--- | ---
polygon_geometry | a WGS84 polygon geometry (the_geom)
measure_id | a measure identifier from the Data Observatory ([see available measures](https://cartodb.github.io/bigmetadata/observatory.pdf))
normalize | for measures that are are **sums** (e.g. population) the default normalization is 'none' and response comes back as a raw value. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf) (optional)
normalize | for measures that are **sums** (e.g. population) the default normalization is 'none' and response comes back as a raw value. Other options are 'denominator', which will use the denominator specified in the [Data Catalog](https://cartodb.github.io/bigmetadata/index.html) (optional)
boundary_id | source of geometries to pull measure from (e.g., 'us.census.tiger.census_tract')
time_span | time span of interest (e.g., 2010 - 2014)
@@ -132,7 +132,7 @@ SET household_count = OBS_GetMeasure(the_geom, 'us.census.acs.B11001001')
#### Errors
* If an unrecognized normalization type is input, raise an error: `'Only valid inputs for "normalize" are "area" (default) and "denominator".`
* If an unrecognized normalization type is input, raises error: `'Only valid inputs for "normalize" are "area" (default) and "denominator".`
## OBS_GetMeasureById(geom_ref text, measure_id text, boundary_id text)
@@ -170,7 +170,7 @@ SET household_count = OBS_GetMeasureById(geoid_column, 'us.census.acs.B11001001'
## OBS_GetCategory(point geometry, category_id text)
The ```OBS_GetCategory(point, category_id)``` function returns any Data Observatory Category value at a point location. The Categories available are currently limited to Segmentation categories. See the Segmentation section of the [Catalog](http://data-observatory.s3.amazonaws.com/observatory.pdf) for more detail.
The ```OBS_GetCategory(point, category_id)``` function returns any Data Observatory Category value at a point location. The Categories available are currently limited to Segmentation categories. See the Segmentation section of the [Catalog](https://cartodb.github.io/bigmetadata/index.html) for more detail.
#### Arguments
@@ -195,3 +195,295 @@ Add the Category to an empty column text column based on point locations in your
UPDATE tablename
SET segmentation = OBS_GetCategory(the_geom, 'us.census.spielman_singleton_segments.X55')
```
## OBS_GetMeta(extent geometry, metadata json, max_timespan_rank, max_score_rank, target_geoms)
The ```OBS_GetMeta(extent, metadata)``` function returns a completed Data
Observatory metadata JSON Object for use in ```OBS_GetData(geomvals,
metadata)``` or ```OBS_GetData(ids, metadata)```. It is not possible to pass
metadata to those functions if it is not processed by ```OBS_GetMeta(extent,
metadata)``` first.
`OBS_GetMeta` makes it possible to automatically select appropriate timespans
and boundaries for the measurement you want.
#### Arguments
Name | Description
---- | -----------
extent | A geometry of the extent of the input geometries
metadata | A JSON array composed of metadata input objects. Each indicates one desired measure for an output column, and optionally additional parameters about that column
max_timespan_rank | How many historical time periods to include. Defaults to 1
max_boundary_score_rank | How many alternative boundary levels to include. Defaults to 1
target_geoms | Target number of geometries. Boundaries with close to this many objects within `extent` will be ranked highest.
The schema of the metadata input objects are as follows:
Metadata Input Key | Description
--- | -----------
numer_id | The identifier for the desired measurement. If left blank, but a `geom_id` is specified, the column will return a geometry instead of a measurement.
geom_id | Identifier for a desired geographic boundary level to use when calculating measures. Will be automatically assigned if undefined. If defined but `numer_id` is blank, then the column will return a geometry instead of a measurement.
normalization | The desired normalization. One of 'area', 'prenormalized', or 'denominated'. 'Area' will normalize the measure per square kilometer, 'prenormalized' will return the original value, and 'denominated' will normalize by a denominator. Ignored if this metadata object specifies a geometry.
denom_id | Identifier for a desired normalization column in case `normalization` is 'denominated'. Will be automatically assigned if necessary. Ignored if this metadata object specifies a geometry.
numer_timespan | The desired timespan for the measurement. Defaults to most recent timespan available if left unspecified.
geom_timespan | The desired timespan for the geometry. Defaults to timespan matching numer_timespan if left unspecified.
target_area | Instead of aiming to have `target_geoms` in the area of the geometry passed as `extent`, fill this area. Unit is square degrees WGS84. Set this to `0` if you want to use the smallest source geometry for this element of metadata, for example if you're passing in points.
target_geoms | Override global `target_geoms` for this element of metadata
max_timespan_rank | Override global `max_timespan_rank` for this element of metadata
max_score_rank | Override global `max_score_rank` for this element of metadata
#### Returns
A JSON array composed of metadata output objects.
Key | Description
--- | -----------
meta | A JSON array with completed metadata for the requested data, including all keys below
The schema of the metadata output objects are as follows. You should pass this
array as-is to ```OBS_GetData```. If you modify any values the function will
fail.
Metadata Output Key | Description
--- | -----------
numer_id | Identifier for desired measurement
numer_timespan | Timespan that will be used of the desired measurement
numer_name | Human-readable name of desired measure
numer_description | Long human-readable description of the desired measure
numer_t_description | Further information about the source table
numer_type | PostgreSQL/PostGIS type of desired measure
numer_colname | Internal identifier for column name
numer_tablename | Internal identifier for table
numer_geomref_colname | Internal identifier for geomref column name
denom_id | Identifier for desired normalization
denom_timespan | Timespan that will be used of the desired normalization
denom_name | Human-readable name of desired measure's normalization
denom_description | Long human-readable description of the desired measure's normalization
denom_t_description | Further information about the source table
denom_type | PostgreSQL/PostGIS type of desired measure's normalization
denom_colname | Internal identifier for normalization column name
denom_tablename | Internal identifier for normalization table
denom_geomref_colname | Internal identifier for normalization geomref column name
geom_id | Identifier for desired boundary geometry
geom_timespan | Timespan that will be used of the desired boundary geometry
geom_name | Human-readable name of desired boundary geometry
geom_description | Long human-readable description of the desired boundary geometry
geom_t_description | Further information about the source table
geom_type | PostgreSQL/PostGIS type of desired boundary geometry
geom_colname | Internal identifier for boundary geometry column name
geom_tablename | Internal identifier for boundary geometry table
geom_geomref_colname | Internal identifier for boundary geometry ref column name
timespan_rank | Ranking of this measurement by time, most recent is 1, second most recent 2, etc.
score | The score of this measurement's boundary compared to the `extent` and `target_geoms` passed in. Between 0 and 100.
score_rank | The ranking of this measurement's boundary, highest ranked is 1, second is 2, etc.
numer_aggregate | The aggregate type of the numerator, either `sum`, `average`, `median`, or blank
denom_aggregate | The aggregate type of the denominator, either `sum`, `average`, `median`, or blank
normalization | The sort of normalization that will be used for this measure, either `area`, `predenominated`, or `denominated`
#### Examples
Obtain metadata that can augment with one additional column of US population
data, using a boundary relevant for the geometry provided and latest timespan.
Limit to only the most recent column most relevant to the extent & density of
input geometries in `tablename`.
```SQL
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom), 4326),
'[{"numer_id": "us.census.acs.B01003001"}]',
1, 1,
COUNT(*)
) FROM tablename
```
Obtain metadata that can augment with one additional column of US population
data, using census tract boundaries.
```SQL
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom), 4326),
'[{"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.census_tract"}]',
1, 1,
COUNT(*)
) FROM tablename
```
Obtain metadata that can augment with two additional columns, one for total
population and one for male population.
```SQL
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom), 4326),
'[{"numer_id": "us.census.acs.B01003001"}, {"numer_id": "us.census.acs.B01001002"}]',
1, 1,
COUNT(*)
) FROM tablename
```
## OBS_GetData(geomvals array[geomval], metadata json)
The ```OBS_GetData(geomvals, metadata)``` function returns a measure and/or
geometry corresponding to the `metadata` JSON array for each every Geometry of
the `geomval` element in the `geomvals` array. The metadata argument must be
obtained from ```OBS_GetMeta(extent, metadata)```.
#### Arguments
Name | Description
---- | -----------
geomvals | An array of `geomval` elements, which are obtained by casting together a `Geometry` and a `Numeric`. This should be obtained by using `ARRAY_AGG((the_geom, cartodb_id)::geomval)` from the CARTO table one wishes to obtain data for.
metadata | A JSON array composed of metadata output objects from ```OBS_GetMeta(extent, metadata)```. The schema of the elements of the `metadata` JSON array corresponds to that of the output of ```OBS_GetMeta(extent, metadata)```, and this argument must be obtained from that function in order for the call to be valid.
#### Returns
A TABLE with the following schema, where each element of the input `geomvals`
array corresponds to one row:
Column | Type | Description
------ | ---- | -----------
id | Numeric | ID corresponding to the `val` component of an element of the input `geomvals` array
data | JSON | A JSON array with elements corresponding to the input `metadata` JSON array
Each `data` object has the following keys:
Key | Description
--- | -----------
value | The value of the measurement or geometry for the geometry corresponding to this row and measurement corresponding to this position in the `metadata` JSON array
To determine the appropriate cast for `value`, one can use the `numer_type`
or `geom_type` key corresponding to that value in the input `metadata` JSON
array.
#### Examples
Obtain population densities for every geometry in a table, keyed by cartodb_id:
```SQL
WITH meta AS (
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom), 4326),
'[{"numer_id": "us.census.acs.B01003001"}]',
1, 1, COUNT(*)
) meta FROM tablename)
SELECT id AS cartodb_id, (data->0->>'value')::Numeric AS pop_density
FROM OBS_GetData((SELECT ARRAY_AGG((the_geom, cartodb_id)::geomval) FROM tablename),
(SELECT meta FROM meta))
```
Update a table with a blank numeric column called `pop_density` with population
densities:
```SQL
WITH meta AS (
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom), 4326),
'[{"numer_id": "us.census.acs.B01003001"}]',
1, 1, COUNT(*)
) meta FROM tablename),
data AS (
SELECT id AS cartodb_id, (data->0->>'value')::Numeric AS pop_density
FROM OBS_GetData((SELECT ARRAY_AGG((the_geom, cartodb_id)::geomval) FROM tablename),
(SELECT meta FROM meta)))
UPDATE tablename
SET pop_density = data.pop_density
FROM data
WHERE cartodb_id = data.id
```
Update a table with two measurements at once, population density and household
density. The table should already have a Numeric column `pop_density` and
`household_density`.
```SQL
WITH meta AS (
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom),4326),
'[{"numer_id": "us.census.acs.B01003001"},{"numer_id": "us.census.acs.B11001001"}]',
1, 1, COUNT(*)
) meta from tablename),
data AS (
SELECT id,
data->0->>'value' AS pop_density,
data->1->>'value' AS household_density
FROM OBS_GetData((SELECT ARRAY_AGG((the_geom, cartodb_id)::geomval) FROM tablename),
(SELECT meta FROM meta)))
UPDATE tablename
SET pop_density = data.pop_density,
household_density = data.household_density
FROM data
WHERE cartodb_id = data.id
```
## OBS_GetData(ids array[text], metadata json)
The ```OBS_GetData(ids, metadata)``` function returns a measure and/or
geometry corresponding to the `metadata` JSON array for each every id of
the `ids` array. The metadata argument must be obtained from
`OBS_GetMeta(extent, metadata)`. When obtaining metadata, one must include
the `geom_id` corresponding to the boundary that the `ids` refer to.
#### Arguments
Name | Description
---- | -----------
ids | An array of `TEXT` elements. This should be obtained by using `ARRAY_AGG(col_of_geom_refs)` from the CARTO table one wishes to obtain data for.
metadata | A JSON array composed of metadata output objects from ```OBS_GetMeta(extent, metadata)```. The schema of the elements of the `metadata` JSON array corresponds to that of the output of ```OBS_GetMeta(extent, metadata)```, and this argument must be obtained from that function in order for the call to be valid.
For this function to work, the `metadata` argument must include a `geom_id`
that corresponds to the ids found in `col_of_geom_refs`.
#### Returns
A TABLE with the following schema, where each element of the input `ids` array
corresponds to one row:
Column | Type | Description
------ | ---- | -----------
id | Text | ID corresponding to an element of the input `ids` array
data | JSON | A JSON array with elements corresponding to the input `metadata` JSON array
Each `data` object has the following keys:
Key | Description
--- | -----------
value | The value of the measurement or geometry for the geometry corresponding to this row and measurement corresponding to this position in the `metadata` JSON array
To determine the appropriate cast for `value`, one can use the `numer_type`
or `geom_type` key corresponding to that value in the input `metadata` JSON
array.
#### Examples
Obtain population densities for every row of a table with FIPS code county IDs
(USA).
```SQL
WITH meta AS (
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom), 4326),
'[{"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.county"}]'
) meta FROM tablename)
SELECT id AS fips, (data->0->>'value')::Numeric AS pop_density
FROM OBS_GetData((SELECT ARRAY_AGG((fips) FROM tablename),
(SELECT meta FROM meta))
```
Update a table with population densities for every FIPS code county ID (USA).
This table has a blank column called `pop_density` and fips codes stored in a
column `fips`.
```SQL
WITH meta AS (
SELECT OBS_GetMeta(
ST_SetSRID(ST_Extent(the_geom), 4326),
'[{"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.county"}]'
) meta FROM tablename),
data as (
SELECT id AS fips, (data->0->>'value') AS pop_density
FROM OBS_GetData((SELECT ARRAY_AGG((fips) FROM tablename),
(SELECT meta FROM meta)))
UPDATE tablename
SET pop_density = data.pop_density
FROM data
WHERE fips = data.id
```

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1,5 +1,5 @@
comment = 'CartoDB Observatory backend extension'
default_version = '1.1.5'
requires = 'postgis, postgres_fdw'
default_version = '1.4.0'
requires = 'postgis'
superuser = true
schema = cdb_observatory

View File

@@ -38,30 +38,22 @@ def get_tablename_query(column_id, boundary_id, timespan):
timespan, give back the current table hash from the data observatory
"""
return """
SELECT t.tablename, geoid_ct.colname colname, t.id table_id
FROM observatory.obs_table t,
observatory.obs_column_table geoid_ct,
observatory.obs_column_table data_ct
WHERE
t.id = geoid_ct.table_id AND
t.id = data_ct.table_id AND
geoid_ct.column_id =
(SELECT source_id
FROM observatory.obs_column_to_column
WHERE target_id = '{boundary_id}'
AND reltype = 'geom_ref'
) AND
data_ct.column_id = '{column_id}' AND
timespan = '{timespan}'
""".format(column_id=column_id,
boundary_id=boundary_id,
timespan=timespan)
SELECT numer_tablename, numer_geomref_colname, numer_tid,
geom_tablename, geom_geomref_colname, geom_tid
FROM observatory.obs_meta
WHERE numer_id = '{numer_id}' AND
geom_id = '{geom_id}' AND
numer_timespan = '{numer_timespan}'
""".format(numer_id=column_id,
geom_id=boundary_id,
numer_timespan=timespan)
METADATA_TABLES = ['obs_table', 'obs_column_table', 'obs_column', 'obs_column_tag',
'obs_tag', 'obs_column_to_column', 'obs_dump_version', 'obs_meta',
'obs_meta_numer', 'obs_meta_denom', 'obs_meta_geom',
'obs_meta_timespan', 'obs_column_table_tile', ]
'obs_meta_timespan', 'obs_column_table_tile',
'obs_column_table_tile_simple']
FIXTURES = [
('us.census.acs.B01003001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
@@ -75,7 +67,7 @@ FIXTURES = [
('us.census.acs.B05001006_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006002_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006008_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08301010_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006009_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006011_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08006015_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
@@ -129,7 +121,6 @@ FIXTURES = [
('us.census.acs.B15003022', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B15003023', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19013001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19083001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19301001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25001001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B25002003', 'us.census.tiger.block_group', '2010 - 2014'),
@@ -142,15 +133,6 @@ FIXTURES = [
('us.census.acs.B25081002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08134001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08134002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08134003', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08134004', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08134005', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08134006', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08134007', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08134008', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08134009', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08134010', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B08135001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001003', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001004', 'us.census.tiger.block_group', '2010 - 2014'),
@@ -167,24 +149,73 @@ FIXTURES = [
('us.census.acs.B19001015', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001016', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B19001017', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.tiger.census_tract', 'us.census.tiger.census_tract', '2014'),
('us.census.tiger.block_group', 'us.census.tiger.block_group', '2014'),
('us.census.tiger.zcta5', 'us.census.tiger.zcta5', '2014'),
('us.census.tiger.county', 'us.census.tiger.county', '2014'),
('us.census.acs.B01001002', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.acs.B01003001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01003001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01003001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.spielman_singleton_segments.X2', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01001002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01001026', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01002001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002003', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002004', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002006', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002012', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002005', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002008', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002009', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B03002002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B11001001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003017', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003019', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003020', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003021', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003022', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B15003023', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19013001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19083001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19301001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25001001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25002003', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25004002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25004004', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25058001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25071001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25075001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25075025', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B25081002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134008', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134008', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B08134010', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001002', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001003', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001004', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001005', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001006', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001007', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001008', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001009', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001010', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001011', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001012', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001013', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001014', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001015', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001016', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B19001017', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.spielman_singleton_segments.X10', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.spielman_singleton_segments.X31', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.spielman_singleton_segments.X55', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.zillow.AllHomes_Zhvi', 'us.census.tiger.zcta5', '2014-01'),
('us.zillow.AllHomes_Zhvi', 'us.census.tiger.zcta5', '2016-06'),
('whosonfirst.wof_country_geom', 'whosonfirst.wof_country_geom', '2016'),
('us.census.tiger.zcta5_clipped', 'us.census.tiger.zcta5_clipped', '2014'),
('us.census.tiger.block_group_clipped', 'us.census.tiger.block_group_clipped', '2014'),
('us.census.tiger.census_tract_clipped', 'us.census.tiger.census_tract_clipped', '2014'),
('whosonfirst.wof_country_name', 'whosonfirst.wof_country_geom', '2016'),
('us.census.acs.B01003001', 'us.census.tiger.zcta5_clipped', '2010 - 2014'),
('us.census.acs.B01003001', 'us.census.tiger.block_group_clipped', '2010 - 2014'),
('us.census.acs.B01003001', 'us.census.tiger.census_tract_clipped', '2010 - 2014'),
('us.census.tiger.fullname', 'us.census.tiger.pointlm_geom', '2016'),
('us.census.tiger.fullname', 'us.census.tiger.prisecroads_geom', '2016'),
('us.census.tiger.name', 'us.census.tiger.county', '2015'),
('us.census.tiger.name', 'us.census.tiger.county_clipped', '2015'),
('us.census.tiger.name', 'us.census.tiger.block_group', '2015'),
]
OUTFILE_PATH = os.path.join(os.path.dirname(__file__), '..',
@@ -203,6 +234,7 @@ def dump(cols, tablename, where=''):
' | sed "s:SET search_path.*::" '
' | sed "s:CREATE TABLE :CREATE TABLE observatory.:" '
' | sed "s:ALTER TABLE.*OWNER.*::" '
' | sed "s:SET idle_in_transaction_session_timeout.*::" '
' >> {outfile}'.format(
tablename=tablename,
outfile=OUTFILE_PATH,
@@ -233,15 +265,19 @@ def main():
tablename_query = get_tablename_query(column_id, boundary_id, timespan)
resp = query(tablename_query).fetchone()
if resp:
tablename, colname, table_id = resp
numer_tablename, numer_colname, numer_table_id = resp[0:3]
geom_tablename, geom_colname, geom_table_id = resp[3:6]
else:
print("Could not find table for {}, {}, {}".format(
raise Exception("Could not find table for {}, {}, {}".format(
column_id, boundary_id, timespan))
continue
table_colname = (tablename, colname, boundary_id, table_id, )
if table_colname not in unique_tables:
print(table_colname)
unique_tables.add(table_colname)
numer = (numer_tablename, numer_colname, numer_table_id, )
geom = (geom_tablename, geom_colname, geom_table_id, )
if numer not in unique_tables:
print(numer)
unique_tables.add(numer)
if geom not in unique_tables:
print(geom)
unique_tables.add(geom)
print unique_tables
@@ -290,13 +326,14 @@ def main():
"column_id IN ('{}', '{}')".format(numer_id, geom_id)
for numer_id, geom_id, timespan in FIXTURES
])
elif tablename in ('obs_column_table', 'obs_column_table_tile', ):
where = 'WHERE column_id IN ({numer_ids}) ' \
'OR column_id IN ({geom_ids}) ' \
'OR table_id IN ({table_ids}) '.format(
elif tablename in ('obs_column_table', 'obs_column_table_tile',
'obs_column_table_tile_simple'):
where = '''WHERE table_id IN ({table_ids}) AND
(column_id IN ({numer_ids}) OR column_id IN ({geom_ids}))
'''.format(
numer_ids=','.join(["'{}'".format(x) for x, _, _ in FIXTURES]),
geom_ids=','.join(["'{}'".format(x) for _, x, _ in FIXTURES]),
table_ids=','.join(["'{}'".format(x) for _, _, _, x in unique_tables])
table_ids=','.join(["'{}'".format(x) for _, _, x in unique_tables])
)
elif tablename == 'obs_column_to_column':
where = "WHERE " + " OR ".join([
@@ -308,18 +345,24 @@ def main():
where = 'WHERE timespan IN ({timespans}) ' \
'OR id IN ({table_ids}) '.format(
timespans=','.join(["'{}'".format(x) for _, _, x in FIXTURES]),
table_ids=','.join(["'{}'".format(x) for _, _, _, x in unique_tables])
table_ids=','.join(["'{}'".format(x) for _, _, x in unique_tables])
)
else:
where = ''
dump('*', tablename, where)
for tablename, colname, boundary_id, table_id in unique_tables:
if 'zcta5' in boundary_id:
for tablename, colname, table_id in unique_tables:
if 'zcta5' in table_id or 'zillow_zip' in table_id:
where = '\'11%\''
compare = 'LIKE'
elif 'whosonfirst' in boundary_id:
where = '(\'85632785\',\'85633051\',\'85633111\',\'85633147\',\'85633253\',\'85633267\')'
elif 'pri_sec_roads' in table_id or 'point_landmark' in table_id:
dump('*', tablename, 'WHERE geom && ST_MakeEnvelope(-74,40.69,-73.9,40.72, 4326)')
continue
elif 'whosonfirst' in table_id:
where = "('85632785','85633051','85633111','85633147','85633253','85633267')"
compare = 'IN'
elif 'county' in table_id and 'tiger' in table_id:
where = "('48061', '36047')"
compare = 'IN'
else:
where = '\'36047%\''

View File

@@ -1,5 +1,5 @@
comment = 'CartoDB Observatory backend extension'
default_version = '1.1.5'
requires = 'postgis, postgres_fdw'
default_version = '1.4.0'
requires = 'postgis'
superuser = true
schema = cdb_observatory

View File

@@ -1,67 +0,0 @@
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_ConnectRemoteTable(fdw_name text, schema_name text, user_dbname text, user_hostname text, username text, user_tablename text, user_schema text)
RETURNS void
AS $$
DECLARE
row record;
option record;
connection_str json;
BEGIN
-- Build connection string
connection_str := '{"server":{"extensions":"postgis", "dbname":"'
|| user_dbname ||'", "host":"' || user_hostname ||'", "port":"6432"}, "users":{"public"'
|| ':{"user":"' || username ||'", "password":""} } }';
-- This function tries to be as idempotent as possible, by not creating anything more than once
-- (not even using IF NOT EXIST to avoid throwing warnings)
IF NOT EXISTS ( SELECT * FROM pg_extension WHERE extname = 'postgres_fdw') THEN
CREATE EXTENSION postgres_fdw;
END IF;
-- Create FDW first if it does not exist
IF NOT EXISTS ( SELECT * FROM pg_foreign_server WHERE srvname = fdw_name)
THEN
EXECUTE FORMAT('CREATE SERVER %I FOREIGN DATA WRAPPER postgres_fdw', fdw_name);
END IF;
-- Set FDW settings
FOR row IN SELECT p.key, p.value from lateral json_each_text(connection_str->'server') p
LOOP
IF NOT EXISTS (WITH a AS (select split_part(unnest(srvoptions), '=', 1) as options from pg_foreign_server where srvname=fdw_name) SELECT * from a where options = row.key)
THEN
EXECUTE FORMAT('ALTER SERVER %I OPTIONS (ADD %I %L)', fdw_name, row.key, row.value);
ELSE
EXECUTE FORMAT('ALTER SERVER %I OPTIONS (SET %I %L)', fdw_name, row.key, row.value);
END IF;
END LOOP;
-- Create user mappings
FOR row IN SELECT p.key, p.value from lateral json_each(connection_str->'users') p LOOP
-- Check if entry on pg_user_mappings exists
IF NOT EXISTS ( SELECT * FROM pg_user_mappings WHERE srvname = fdw_name AND usename = row.key ) THEN
EXECUTE FORMAT ('CREATE USER MAPPING FOR %I SERVER %I', row.key, fdw_name);
END IF;
-- Update user mapping settings
FOR option IN SELECT o.key, o.value from lateral json_each_text(row.value) o LOOP
IF NOT EXISTS (WITH a AS (select split_part(unnest(umoptions), '=', 1) as options from pg_user_mappings WHERE srvname = fdw_name AND usename = row.key) SELECT * from a where options = option.key) THEN
EXECUTE FORMAT('ALTER USER MAPPING FOR %I SERVER %I OPTIONS (ADD %I %L)', row.key, fdw_name, option.key, option.value);
ELSE
EXECUTE FORMAT('ALTER USER MAPPING FOR %I SERVER %I OPTIONS (SET %I %L)', row.key, fdw_name, option.key, option.value);
END IF;
END LOOP;
END LOOP;
-- Create schema if it does not exist.
IF NOT EXISTS ( SELECT * from pg_namespace WHERE nspname=fdw_name) THEN
EXECUTE FORMAT ('CREATE SCHEMA %I', fdw_name);
END IF;
-- Bring the remote cdb_tablemetadata
IF NOT EXISTS ( SELECT * FROM PG_CLASS WHERE relnamespace = (SELECT oid FROM pg_namespace WHERE nspname=fdw_name) and relname='cdb_tablemetadata') THEN
EXECUTE FORMAT ('CREATE FOREIGN TABLE %I.cdb_tablemetadata (tabname text, updated_at timestamp with time zone) SERVER %I OPTIONS (table_name ''cdb_tablemetadata_text'', schema_name ''public'', updatable ''false'')', fdw_name, fdw_name);
END IF;
-- Import target table
EXECUTE FORMAT ('IMPORT FOREIGN SCHEMA %I LIMIT TO (%I) from SERVER %I INTO %I', user_schema, user_tablename, fdw_name, schema_name);
END;
$$ LANGUAGE PLPGSQL;

View File

@@ -205,6 +205,18 @@ END;
$$ LANGUAGE plpgsql;
-- Function we can call to raise an exception in the midst of a SQL statement
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_RaiseNotice(
message TEXT
) RETURNS TEXT
AS $$
BEGIN
RAISE NOTICE '%', message;
RETURN NULL;
END;
$$ LANGUAGE plpgsql;
-- Create a function that always returns the first non-NULL item
CREATE OR REPLACE FUNCTION cdb_observatory.first_agg ( anyelement, anyelement )
RETURNS anyelement LANGUAGE SQL IMMUTABLE STRICT AS $$
@@ -220,3 +232,39 @@ CREATE AGGREGATE cdb_observatory.FIRST (
stype = anyelement
);
CREATE OR REPLACE FUNCTION cdb_observatory.isnumeric (
typename varchar
)
RETURNS BOOLEAN LANGUAGE SQL IMMUTABLE STRICT AS $$
SELECT LOWER(typename) IN (
'smallint',
'integer',
'bigint',
'decimal',
'numeric',
'real',
'double precision'
)
$$;
-- Attempt to perform intersection, if there's an exception then buffer
-- https://gis.stackexchange.com/questions/50399/how-best-to-fix-a-non-noded-intersection-problem-in-postgis
CREATE OR REPLACE FUNCTION cdb_observatory.safe_intersection(
geom_a Geometry(Geometry, 4326),
geom_b Geometry(Geometry, 4326)
)
RETURNS Geometry(Geometry, 4326) AS
$$
BEGIN
RETURN ST_MakeValid(ST_Intersection(geom_a, geom_b));
EXCEPTION
WHEN OTHERS THEN
BEGIN
RETURN ST_MakeValid(ST_Intersection(ST_Buffer(geom_a, 0.0000001), ST_Buffer(geom_b, 0.0000001)));
EXCEPTION
WHEN OTHERS THEN
RETURN NULL;
END;
END
$$
LANGUAGE 'plpgsql' STABLE STRICT;

File diff suppressed because it is too large Load Diff

View File

@@ -298,7 +298,7 @@ BEGIN
) SELECT available_geoms.*, score, numtiles, notnull_percent, numgeoms,
percentfill, estnumgeoms, meanmediansize
FROM available_geoms, scores
WHERE available_geoms.geom_id = scores.geom_id
WHERE available_geoms.geom_id = scores.column_id
$string$, geom_clause)
USING numer_id, denom_id, timespan, filter_tags, bounds;
RETURN;
@@ -369,8 +369,10 @@ RETURNS TABLE (
DECLARE
aggregate_condition TEXT DEFAULT '';
BEGIN
IF aggregate_type IS NOT NULL THEN
aggregate_condition := format(' AND numer_aggregate = %L ', aggregate_type);
IF LOWER(aggregate_type) ILIKE 'sum' THEN
aggregate_condition := ' AND numer_aggregate IN (''sum'', ''median'', ''average'') ';
ELSIF aggregate_type IS NOT NULL THEN
aggregate_condition := format(' AND numer_aggregate ILIKE %L ', aggregate_type);
END IF;
RETURN QUERY
EXECUTE format($string$
@@ -412,75 +414,95 @@ BEGIN
END
$$ LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetGeometryScores(
bounds Geometry(Geometry, 4326) DEFAULT NULL,
filter_geom_ids TEXT[] DEFAULT NULL,
desired_num_geoms INTEGER DEFAULT 3000
desired_num_geoms INTEGER DEFAULT NULL,
desired_area NUMERIC DEFAULT NULL
) RETURNS TABLE (
score NUMERIC,
numtiles BIGINT,
geom_id TEXT,
table_id TEXT,
column_id TEXT,
notnull_percent NUMERIC,
numgeoms NUMERIC,
percentfill NUMERIC,
estnumgeoms NUMERIC,
meanmediansize NUMERIC
) AS $$
DECLARE
num_geoms_multiplier Numeric;
BEGIN
IF desired_num_geoms IS NULL THEN
desired_num_geoms := 3000;
END IF;
filter_geom_ids := COALESCE(filter_geom_ids, (ARRAY[])::TEXT[]);
-- Very complex geometries simply fail. For a boundary check, we can
-- comfortably get away with the simplicity of an envelope
IF ST_Npoints(bounds) > 10000 THEN
bounds := ST_Envelope(bounds);
END IF;
IF desired_area IS NULL THEN
desired_area := ST_Area(bounds);
END IF;
-- In case of points, desired_area will be 0. We still want an accurate
-- estimate of numgeoms in that case.
IF desired_area = 0 THEN
num_geoms_multiplier := 1;
ELSE
num_geoms_multiplier := Coalesce(desired_area / Nullif(ST_Area(bounds), 0), 1);
END IF;
RETURN QUERY
EXECUTE format($string$
SELECT
(1 / (abs(numgeoms - $3)
--* (1 / Coalesce(NullIf(notnull_percent, 0), 1))
--* (1 / Coalesce(NullIf(percentfill, 0), 0.0001))
))::Numeric
AS score, *
FROM (
WITH clipped_geom AS (
SELECT column_id, table_id
, CASE WHEN $1 IS NOT NULL THEN ST_Clip(tile, $1, True)
ELSE tile END clipped_tile
, tile
FROM observatory.obs_column_table_tile
WHERE ($1 IS NULL OR ST_Intersects($1, tile))
AND (column_id = ANY($2) OR cardinality($2) = 0)
), clipped_geom_countagg AS (
SELECT column_id, table_id
, ST_CountAgg(clipped_tile, 2, True)::Numeric notnull_pixels
, ST_CountAgg(clipped_tile, 2, False)::Numeric pixels
FROM clipped_geom
GROUP BY column_id, table_id
) SELECT
count(*)::BIGINT, a.column_id
, (CASE WHEN cdb_observatory.FIRST(notnull_pixels) > 0
THEN cdb_observatory.FIRST(notnull_pixels) / cdb_observatory.FIRST(pixels)
ELSE 1
END)::Numeric AS notnull_percent
, (CASE WHEN cdb_observatory.FIRST(notnull_pixels) > 0
THEN (ST_SummaryStatsAgg(clipped_tile, 2, True)).sum
ELSE COALESCE(ST_Value(cdb_observatory.FIRST(tile), 2, ST_PointOnSurface($1)), 0) * (ST_Area($1) / ST_Area(ST_PixelAsPolygon(cdb_observatory.FIRST(tile), 0, 0)) * cdb_observatory.FIRST(pixels))
END)::Numeric AS numgeoms
, (CASE WHEN cdb_observatory.FIRST(notnull_pixels) > 0
THEN (ST_SummaryStatsAgg(clipped_tile, 3, True)).mean
ELSE COALESCE(ST_Value(cdb_observatory.FIRST(tile), 3, ST_PointOnSurface($1)), 0)
END)::Numeric AS percentfill
, ((ST_Area(ST_Transform($1, 3857)) / 1000000) / NullIf(
CASE WHEN cdb_observatory.FIRST(notnull_pixels) > 0
THEN (ST_SummaryStatsAgg(clipped_tile, 1, True)).mean
ELSE Coalesce(ST_Value(cdb_observatory.FIRST(tile), 1, ST_PointOnSurface($1)), 0)
END, 0))::Numeric AS estnumgeoms
, (CASE WHEN cdb_observatory.FIRST(notnull_pixels) > 0
THEN (ST_SummaryStatsAgg(clipped_tile, 1, True)).mean
ELSE COALESCE(ST_Value(cdb_observatory.FIRST(tile), 1, ST_PointOnSurface($1)), 0)
END)::Numeric AS meanmediansize
EXECUTE $string$
WITH clipped_geom AS (
SELECT column_id, table_id
, CASE WHEN $1 IS NOT NULL THEN ST_Clip(tile, $1, True) -- -20
ELSE tile END clipped_tile
, tile
FROM observatory.obs_column_table_tile_simple
WHERE ($1 IS NULL OR ST_Intersects($1, tile))
AND (column_id = ANY($2) OR cardinality($2) = 0)
), clipped_geom_countagg AS (
SELECT column_id, table_id
, BOOL_AND(ST_BandIsNoData(clipped_tile, 1)) nodata
FROM clipped_geom
GROUP BY column_id, table_id
), clipped_geom_reagg AS (
SELECT COUNT(*)::BIGINT cnt, a.column_id, a.table_id,
cdb_observatory.FIRST(nodata) first_nodata,
cdb_observatory.FIRST(tile) first_tile,
(ST_SummaryStatsAgg(clipped_tile, 1, False)).sum::Numeric sum_geoms, -- ND
(ST_SummaryStatsAgg(clipped_tile, 2, False)).mean::Numeric / 255 mean_fill --ND
FROM clipped_geom_countagg a, clipped_geom b
WHERE a.table_id = b.table_id
AND a.column_id = b.column_id
GROUP BY a.column_id, a.table_id
ORDER BY a.column_id, a.table_id
) foo
$string$) USING bounds, filter_geom_ids, desired_num_geoms;
), final AS (
SELECT
cnt, table_id, column_id
, NULL::Numeric AS notnull_percent
, (CASE WHEN first_nodata IS FALSE
THEN sum_geoms
ELSE COALESCE(ST_Value(first_tile, 1, ST_PointOnSurface($1)), 0)
* (ST_Area($1) / ST_Area(ST_PixelAsPolygon(first_tile, 0, 0)))
END)::Numeric * $4
AS numgeoms
, (CASE WHEN first_nodata IS FALSE
THEN mean_fill
ELSE COALESCE(ST_Value(first_tile, 2, ST_PointOnSurface($1))::Numeric / 255, 0) -- -2
END)::Numeric
AS percentfill
, null::numeric estnumgeoms
, null::numeric meanmediansize
FROM clipped_geom_reagg
) SELECT
((100.0 / (1+abs(log(0.0001 + $3) - log(0.0001 + numgeoms::Numeric)))) * percentfill)::Numeric
AS score, *
FROM final
$string$ USING bounds, filter_geom_ids, desired_num_geoms, num_geoms_multiplier;
RETURN;
END
$$ LANGUAGE plpgsql;
$$ LANGUAGE plpgsql IMMUTABLE;

View File

@@ -40,44 +40,11 @@ BEGIN
RAISE EXCEPTION 'Invalid geometry type (%), expecting ''ST_Point''', ST_GeometryType(geom);
END IF;
-- choose appropriate table based on time_span
IF time_span IS NULL
THEN
SELECT x.target_tables INTO target_table
FROM cdb_observatory._OBS_SearchTables(boundary_id,
time_span) As x(target_tables,
timespans)
ORDER BY x.timespans DESC
LIMIT 1;
ELSE
-- TODO: modify for only one table returned instead of arbitrarily choosing
-- one with LIMIT 1 (could be conflict between clipped vs non-clipped
-- boundaries in the metadata tables)
SELECT x.target_tables INTO target_table
FROM cdb_observatory._OBS_SearchTables(boundary_id,
time_span) As x(target_tables,
timespans)
WHERE x.timespans = time_span
LIMIT 1;
END IF;
-- if no tables are found, raise notice and return null
IF target_table IS NULL
THEN
--RAISE NOTICE 'No boundaries found for ''%'' in ''%''', ST_AsText(geom), boundary_id;
RETURN NULL::geometry;
END IF;
--RAISE NOTICE 'target_table: %', target_table;
-- return the first boundary in intersections
EXECUTE format(
'SELECT the_geom
FROM observatory.%I
WHERE ST_Intersects($1, the_geom)
LIMIT 1', target_table)
INTO boundary
USING geom;
EXECUTE $query$
SELECT * FROM cdb_observatory._OBS_GetBoundariesByGeometry($1, $2, $3) LIMIT 1
$query$ INTO boundary
USING geom, boundary_id, time_span;
RETURN boundary;
@@ -111,67 +78,17 @@ CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundaryId(
RETURNS text
AS $$
DECLARE
output_id text;
target_table text;
geoid_colname text;
result TEXT;
BEGIN
-- If not point, raise error
IF ST_GeometryType(geom) != 'ST_Point'
THEN
RAISE EXCEPTION 'Invalid geometry type (%), expecting ''ST_Point''', ST_GeometryType(geom);
END IF;
-- choose appropriate table based on time_span
IF time_span IS NULL
THEN
SELECT x.target_tables INTO target_table
FROM cdb_observatory._OBS_SearchTables(boundary_id,
time_span) As x(target_tables,
timespans)
ORDER BY x.timespans DESC
LIMIT 1;
ELSE
SELECT x.target_tables INTO target_table
FROM cdb_observatory._OBS_SearchTables(boundary_id,
time_span) As x(target_tables,
timespans)
WHERE x.timespans = time_span
LIMIT 1;
END IF;
-- if no tables are found, raise notice and return null
IF target_table IS NULL
THEN
--RAISE NOTICE 'Warning: No boundaries found for ''%''', boundary_id;
RETURN NULL::text;
END IF;
EXECUTE
format('SELECT ct.colname
FROM observatory.obs_column_to_column c2c,
observatory.obs_column_table ct,
observatory.obs_table t
WHERE c2c.reltype = ''geom_ref''
AND ct.column_id = c2c.source_id
AND ct.table_id = t.id
AND t.tablename = %L'
, target_table)
INTO geoid_colname;
--RAISE NOTICE 'target_table: %, geoid_colname: %', target_table, geoid_colname;
-- return geometry id column value
EXECUTE format(
'SELECT %I::text
FROM observatory.%I
WHERE ST_Intersects($1, the_geom)
LIMIT 1', geoid_colname, target_table)
INTO output_id
USING geom;
RETURN output_id;
EXECUTE $query$
SELECT geom_refs FROM cdb_observatory._OBS_GetBoundariesByGeometry(
$1, $2, $3) LIMIT 1
$query$
INTO result
USING geom, boundary_id, time_span;
RETURN result;
END;
$$ LANGUAGE plpgsql;
@@ -203,35 +120,21 @@ CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundaryById(
RETURNS geometry(geometry, 4326)
AS $$
DECLARE
boundary geometry(geometry, 4326);
target_table text;
geoid_colname text;
geom_colname text;
result GEOMETRY;
BEGIN
SELECT * INTO geoid_colname, target_table, geom_colname
FROM cdb_observatory._OBS_GetGeometryMetadata(boundary_id);
--RAISE NOTICE '%', target_table;
IF target_table IS NULL
THEN
--RAISE NOTICE 'No geometries found';
RETURN NULL::geometry;
END IF;
-- retrieve boundary
EXECUTE
format(
'SELECT %I
FROM observatory.%I
WHERE %I = $1
LIMIT 1', geom_colname, target_table, geoid_colname)
INTO boundary
USING geometry_id;
RETURN boundary;
EXECUTE $query$
SELECT (data->0->>'value')::Geometry
FROM cdb_observatory.OBS_GetData(
ARRAY[$1],
cdb_observatory.OBS_GetMeta(
ST_MakeEnvelope(-180, -90, 180, 90, 4326),
('[{"geom_id": "' || $2 || '"}]')::JSON))
$query$
INTO result
USING geometry_id, boundary_id;
RETURN result;
END;
$$ LANGUAGE plpgsql;
@@ -245,13 +148,12 @@ CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetBoundariesByGeometry(
boundary_id text,
time_span text DEFAULT NULL,
overlap_type text DEFAULT NULL)
RETURNS TABLE(the_geom geometry, geom_refs text)
AS $$
RETURNS TABLE (
the_geom geometry,
geom_refs text
) AS $$
DECLARE
boundary geometry(Geometry, 4326);
geom_colname text;
geoid_colname text;
target_table text;
meta JSON;
BEGIN
overlap_type := COALESCE(overlap_type, 'intersects');
-- check inputs
@@ -259,34 +161,27 @@ BEGIN
THEN
-- recognized overlap type (map to ST_Contains, ST_Intersects, and ST_Within)
RAISE EXCEPTION 'Overlap type ''%'' is not an accepted type (choose intersects, within, or contains)', overlap_type;
ELSIF ST_GeometryType(geom) NOT IN ('ST_Polygon', 'ST_MultiPolygon')
THEN
RAISE EXCEPTION 'Invalid geometry type (%), expecting ''ST_MultiPolygon'' or ''ST_Polygon''', ST_GeometryType(geom);
END IF;
-- TODO: add timespan in search
-- TODO: add overlap info in search
SELECT * INTO geoid_colname, target_table, geom_colname
FROM cdb_observatory._OBS_GetGeometryMetadata(boundary_id);
EXECUTE $query$
SELECT cdb_observatory.OBS_GetMeta($1, JSON_Build_Array(JSON_Build_Object(
'geom_id', $2, 'geom_timespan', $3)))
$query$
INTO meta
USING geom, boundary_id, time_span;
-- if no tables are found, raise notice and return null
IF target_table IS NULL
THEN
--RAISE NOTICE 'No boundaries found for bounding box ''%'' in ''%''', ST_AsText(geom), boundary_id;
RETURN QUERY SELECT NULL::geometry, NULL::text;
IF meta->0->>'geom_id' IS NULL THEN
RETURN QUERY EXECUTE 'SELECT NULL::Geometry, NULL::Text LIMIT 0';
RETURN;
END IF;
--RAISE NOTICE 'target_table: %', target_table;
-- return first boundary in intersections
RETURN QUERY
EXECUTE format(
'SELECT %I, %I::text
FROM observatory.%I
WHERE ST_%s($1, the_geom)
', geom_colname, geoid_colname, target_table, overlap_type)
USING geom;
RETURN QUERY EXECUTE $query$
SELECT (data->0->>'value')::Geometry the_geom, data->0->>'geomref' geom_refs
FROM cdb_observatory.OBS_GetData(
ARRAY[($1, 1)::geomval], $2, False
)
$query$ USING geom, meta;
RETURN;
END;
@@ -414,27 +309,11 @@ BEGIN
RAISE EXCEPTION 'Invalid geometry type (%), expecting ''ST_MultiPolygon'' or ''ST_Polygon''', ST_GeometryType(geom);
END IF;
SELECT * INTO geoid_colname, target_table, geom_colname
FROM cdb_observatory._OBS_GetGeometryMetadata(boundary_id);
-- if no tables are found, raise notice and return null
IF target_table IS NULL
THEN
--RAISE NOTICE 'No boundaries found for bounding box ''%'' in ''%''', ST_AsText(geom), boundary_id;
RETURN QUERY SELECT NULL::geometry, NULL::text;
RETURN;
END IF;
--RAISE NOTICE 'target_table: %', target_table;
-- return first boundary in intersections
RETURN QUERY
EXECUTE format(
'SELECT ST_PointOnSurface(%I) As %s, %I::text
FROM observatory.%I
WHERE ST_%s($1, the_geom)
', geom_colname, geom_colname, geoid_colname, target_table, overlap_type)
USING geom;
RETURN QUERY EXECUTE $query$
SELECT ST_PointOnSurface(the_geom), geom_refs
FROM cdb_observatory._OBS_GetBoundariesByGeometry($1, $2)
$query$ USING geom, boundary_id;
RETURN;
END;
@@ -534,44 +413,3 @@ BEGIN
RETURN;
END;
$$ LANGUAGE plpgsql;
-- _OBS_GetGeometryMetadata()
-- TODO: add timespan in search
-- TODO: add choice of clipped versus not clipped
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetGeometryMetadata(boundary_id text)
RETURNS table(geoid_colname text, target_table text, geom_colname text)
AS $$
BEGIN
RETURN QUERY
EXECUTE
format($string$
SELECT geoid_ct.colname::text As geoid_colname,
tablename::text,
geom_ct.colname::text As geom_colname
FROM observatory.obs_column_table As geoid_ct,
observatory.obs_table As geom_t,
observatory.obs_column_table As geom_ct,
observatory.obs_column As geom_c
WHERE geoid_ct.column_id
IN (
SELECT source_id
FROM observatory.obs_column_to_column
WHERE reltype = 'geom_ref'
AND target_id = '%s'
)
AND geoid_ct.table_id = geom_t.id AND
geom_t.id = geom_ct.table_id AND
geom_ct.column_id = geom_c.id AND
geom_c.type ILIKE 'geometry' AND
geom_c.id = '%s'
$string$, boundary_id, boundary_id);
RETURN;
-- AND geom_t.timespan = '%s' <-- put in requested year
-- TODO: filter by clipped vs. not so appropriate tablename are unique
-- so the limit 1 can be removed
RETURN;
END;
$$ LANGUAGE plpgsql;

View File

@@ -1,82 +0,0 @@
CREATE TYPE cdb_observatory.ds_fdw_metadata as (schemaname text, tabname text, servername text);
CREATE TYPE cdb_observatory.ds_return_metadata as (colnames text[], coltypes text[]);
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_ConnectUserTable(username text, orgname text, user_db_role text, input_schema text, dbname text, host_addr text, table_name text)
RETURNS cdb_observatory.ds_fdw_metadata
AS $$
DECLARE
fdw_server text;
fdw_import_schema text;
connection_str json;
import_foreign_schema_q text;
epoch_timestamp text;
BEGIN
SELECT extract(epoch from now() at time zone 'utc')::int INTO epoch_timestamp;
fdw_server := 'fdw_server_' || username || '_' || epoch_timestamp;
fdw_import_schema:= fdw_server;
-- Import foreign table
EXECUTE FORMAT ('SELECT cdb_observatory._OBS_ConnectRemoteTable(%L, %L, %L, %L, %L, %L, %L)', fdw_server, fdw_import_schema, dbname, host_addr, user_db_role, table_name, input_schema);
RETURN (fdw_import_schema::text, table_name::text, fdw_server::text);
EXCEPTION
WHEN others THEN
-- Disconnect user imported table. Delete schema and FDW server.
EXECUTE 'DROP FOREIGN TABLE IF EXISTS "' || fdw_import_schema || '".' || table_name;
EXECUTE 'DROP FOREIGN TABLE IF EXISTS "' || fdw_import_schema || '".cdb_tablemetadata';
EXECUTE 'DROP SCHEMA IF EXISTS "' || fdw_import_schema || '"';
EXECUTE 'DROP USER MAPPING IF EXISTS FOR public SERVER "' || fdw_server || '"';
EXECUTE 'DROP SERVER IF EXISTS "' || fdw_server || '"';
RETURN (null, null, null);
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetReturnMetadata(username text, orgname text, function_name text, params json)
RETURNS cdb_observatory.ds_return_metadata
AS $$
DECLARE
colnames text[];
coltypes text[];
BEGIN
EXECUTE FORMAT('SELECT r.colnames::text[], r.coltypes::text[] FROM cdb_observatory._%sResultMetadata(%L::json) r', function_name, params::text)
INTO colnames, coltypes;
RETURN (colnames::text[], coltypes::text[]);
END;
$$ LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_FetchJoinFdwTableData(username text, orgname text, table_schema text, table_name text, function_name text, params json)
RETURNS SETOF record
AS $$
DECLARE
data_query text;
rec RECORD;
BEGIN
EXECUTE FORMAT('SELECT cdb_observatory._%sQuery(%L, %L, %L::json)', function_name, table_schema, table_name, params::text)
INTO data_query;
FOR rec IN EXECUTE data_query
LOOP
RETURN NEXT rec;
END LOOP;
RETURN;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_DisconnectUserTable(username text, orgname text, table_schema text, table_name text, servername text)
RETURNS boolean
AS $$
BEGIN
EXECUTE 'DROP FOREIGN TABLE IF EXISTS "' || table_schema || '".' || table_name;
EXECUTE 'DROP FOREIGN TABLE IF EXISTS "' || table_schema || '".cdb_tablemetadata';
EXECUTE 'DROP SCHEMA IF EXISTS "' || table_schema || '"';
EXECUTE 'DROP USER MAPPING IF EXISTS FOR public SERVER "' || servername || '"';
EXECUTE 'DROP SERVER IF EXISTS "' || servername || '"';
RETURN true;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

View File

@@ -1,79 +0,0 @@
--
--
-- OBS_GetMeasure
--
--
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetMeasureResultMetadata(params json)
RETURNS cdb_observatory.ds_return_metadata
AS $$
DECLARE
colnames text[]; -- Array to store the name of the measures to be returned
coltypes text[]; -- Array to store the type of the measures to be returned
requested_measures text[];
measure_id text;
BEGIN
-- By definition, all the measure results for the OBS_GetMeasure API are numeric values
SELECT ARRAY(SELECT json_array_elements_text(params->'measure_id'))::text[] INTO requested_measures;
FOREACH measure_id IN ARRAY requested_measures
LOOP
SELECT array_append(colnames, measure_id) INTO colnames;
SELECT array_append(coltypes, 'numeric'::text) INTO coltypes;
END LOOP;
RETURN (colnames::text[], coltypes::text[]);
END;
$$ LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetMeasureQuery(table_schema text, table_name text, params json)
RETURNS text
AS $$
DECLARE
data_query text;
measure_ids_arr text[];
measure_id text;
measures_list text;
measures_query text;
normalize text;
boundary_id text;
time_span text;
geom_table_name text;
data_table_name text;
BEGIN
measures_query := '';
-- SELECT table_name from obs_meta WHERE boundary_id = {bound} AND [...] INTO geom_table_name
geom_table_name := 'observatory.obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308';
-- SELECT table_name from obs_meta WHERE time_span = {time} AND [...] INTO data_table_name
data_table_name := 'observatory.obs_1a098da56badf5f32e336002b0a81708c40d29cd';
-- Get measure_ids array from JSON
SELECT ARRAY(SELECT json_array_elements_text(params->'measure_id'))::text[] INTO measure_ids_arr;
-- Get a comma-separated list of measures ("total_pop, over_16_pop") to be used in SELECTs
SELECT array_to_string(measure_ids_arr, ',') INTO measures_list;
FOREACH measure_id IN ARRAY measure_ids_arr
LOOP
-- Build query to compute each value and normalize
-- Assumes the default normalization method, the normalize parameter given in the JSON
-- should be checked in order to build the final query
SELECT measures_query || ' sum(' || measure_id || '/fraction)::numeric as ' || measure_id || ', ' INTO measures_query;
END LOOP;
-- Data query should select the measures and the cartodb_id of the user table, in that order.
data_query := '(WITH _areas AS(SELECT ST_Area(a.the_geom::geography)'
|| '/ (1000 * 1000) as fraction, a.geoid, b.cartodb_id FROM '
|| geom_table_name || ' as a, '
|| table_schema || '.' || table_name || ' AS b '
|| 'WHERE b.the_geom && a.the_geom ), values AS (SELECT geoid, '
|| measures_list
|| ' FROM ' || data_table_name || ' ) '
|| 'SELECT '
|| measures_query
|| ' cartodb_id::int FROM _areas, values '
|| 'WHERE values.geoid = _areas.geoid GROUP BY cartodb_id);';
RETURN data_query;
END;
$$ LANGUAGE plpgsql;

View File

@@ -1,5 +1,4 @@
-- Install dependencies
CREATE EXTENSION postgis;
CREATE EXTENSION postgres_fdw;
-- Install the extension
CREATE EXTENSION observatory VERSION 'dev';

View File

@@ -21,3 +21,7 @@ t
obs_dumpversion_notnull
t
(1 row)
ERROR: Error performing intersection: TopologyException: found non-noded intersection between LINESTRING (-97.1968 25.9574, -97.1971 25.9576) and LINESTRING (-97.197 25.9575, -97.1972 25.9576) at -97.19699802694231 25.957551976080605
complex_safe_intersection_works
t
(1 row)

View File

@@ -3,36 +3,12 @@
obs_getdemographicsnapshot_test_no_returns
t
(1 row)
obs_get_median_income_at_test_point
t
(1 row)
obs_get_median_income_at_null_island
t
(1 row)
obs_getpoints_for_test_point_value|obs_getpoints_for_test_point_name|obs_getpoints_for_test_point_tablename|obs_getpoints_for_test_point_aggregate|obs_getpoints_for_test_point_type|obs_getpoints_for_test_point_description
t|t|t|t|t|t
(1 row)
obs_getpoints_for_null_island
t
(1 row)
obs_getpolygons_for_test_point
t
(1 row)
obs_getpolygons_for_null_island
t
(1 row)
test_point_segmentation
t
(1 row)
null_island_segmentation
t
(1 row)
getcategories_at_test_point_1
t
(1 row)
getcategories_at_null_island
t
(1 row)
obs_getmeasure_zhvi_point_test
t
(1 row)
@@ -72,6 +48,15 @@ t
obs_getmeasure_out_of_bounds_geometry
t
(1 row)
obs_getmeasure_estimate_for_blank_aggregate
t
(1 row)
obs_getmeasure_per_capita_income_average
t
(1 row)
obs_getmeasure_median_capita_income_average
t
(1 row)
obs_getcategory_point
t
(1 row)
@@ -129,3 +114,178 @@ t
obs_getmeasurebyid_null_id
t
(1 row)
obs_getmeta_null_null_is_null
t
(1 row)
obs_getmeta_null_empty_is_null
t
(1 row)
obs_getmeta_nullisland_null_is_null
t
(1 row)
obs_getmeta_nullisland_empty_is_null
t
(1 row)
obs_getmeta_nullisland_us_measure_is_null
t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization|id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t
(1 row)
id|numer_id|timespan_rank|score_rank|numer_aggregate|numer_colname|numer_type|numer_name|denom_id|denom_aggregate|denom_colname|denom_type|denom_name|geom_id|normalization
t|t|t|t|t|t|t|t|t|t|t|t|t|t|t
(1 row)
obs_getmeta_conflicting_metadata
t
(1 row)
obs_getdata_geomval_empty_null
t
(1 row)
obs_getdata_text_empty_null
t
(1 row)
obs_getdata_geomval_empty_one_measure
t
(1 row)
id|data_point_measure_null|nullcol
t|t|t
(1 row)
id|data_polygon_measure_null|nullcol
t|t|t
(1 row)
id|data_point_measure_area|nullcol
t|t|t
(1 row)
id|data_polygon_measure_area|nullcol
t|t|t
(1 row)
id|data_point_measure_prenormalized|nullcol
t|t|t
(1 row)
id|data_point_measure_predenominated|nullcol
t|t|t
(1 row)
id|data_polygon_measure_prenormalized|nullcol
t|t|t
(1 row)
id|data_polygon_measure_predenominated|nullcol
t|t|t
(1 row)
id|data_point_measure_impossible_denominated|nullcol
t|t|t
(1 row)
id|data_polygon_measure_impossible_denominated|nullcol
t|t|t
(1 row)
id|data_point_measure_denominated|nullcol
t|t|t
(1 row)
id|data_polygon_measure_denominated|nullcol
t|t|t
(1 row)
id|data_polygon_measure_one_null|data_polygon_measure_two_null
t|t|t
(1 row)
id|data_polygon_measure_one_predenom|data_polygon_measure_two_predenom
t|t|t
(1 row)
id|data_polygon_measure_one_area|data_polygon_measure_two_area
t|t|t
(1 row)
id|data_polygon_measure_tract|data_polygon_measure_bg
t|t|t
(1 row)
id|data_point_categorical|nullcol
t|t|t
(1 row)
id|data_poly_categorical|nullcol
t|t|t
(1 row)
id|data_poly_categorical|valcol
t|t|t
(1 row)
id|correct_num_geoms
t|t
(1 row)
id|correct_num_geoms|correct_pop
t|t|t
(1 row)
id|correct_num_geoms|correct_pop|correct_bg_names
t|t|t|t
(1 row)
id|correct_num_points
t|t
(1 row)
id|correct_num_points|pointgeom_names
t|t|t
(1 row)
id|obs_getdata_by_id_one_measure_null
t|t
(1 row)
id|obs_getdata_by_id_one_measure_predenom
t|t
(1 row)
id|obs_getdata_by_id_one_measure_null|obs_getdata_by_id_two_measure_null
t|t|t
(1 row)
id|obs_getdata_by_id_categorical
t|t
(1 row)
id|obs_getdata_by_id_geometry
t|t
(1 row)
obs_getdata_api_geomvals_no_args
t
(1 row)
ary_type|obs_getdata_api_geomvals_args_numer_return
t|t
(1 row)
ary_type|obs_getdata_api_geomvals_args_string_return
t|t
(1 row)
ary_type|obs_getdata_api_geomrefs_args_numer_return
t|t
(1 row)
ary_type|obs_getdata_api_geomrefs_args_string_return
t|t
(1 row)
setseed
(1 row)
bg_sample|bg_max_error|bg_avg_error|bg_min_error
1|t|t|t
2|t|t|t
3|t|t|t
5|t|t|t
10|t|t|t
25|t|t|t
50|t|t|t
100|t|t|t
2085|t|t|t
(9 rows)
tract_sample|tract_max_error|tract_avg_error|tract_min_error
1|t|t|t
2|t|t|t
3|t|t|t
5|t|t|t
10|t|t|t
25|t|t|t
50|t|t|t
100|t|t|t
761|t|t|t
(9 rows)
no_bg_point_error
t
(1 row)

View File

@@ -114,7 +114,7 @@ t
_obs_getavailablegeometries_foobarbaz_denom_not_in_usa_bg
t
(1 row)
_obs_getavailablegeometries_bg_2014
_obs_getavailablegeometries_bg_2015
t
(1 row)
_obs_getavailablegeometries_bg_not_1996
@@ -159,21 +159,36 @@ t
_obs_geometryscores_2500km_buffer
t
(1 row)
_obs_geometryscores_numgeoms_500m_buffer
t
(1 row)
_obs_geometryscores_numgeoms_5km_buffer
t
(1 row)
_obs_geometryscores_numgeoms_50km_buffer
t
(1 row)
_obs_geometryscores_numgeoms_500km_buffer
t
(1 row)
_obs_geometryscores_numgeoms_2500km_buffer
t
(1 row)
column_id|_obs_geometryscores_numgeoms_500m_buffer
us.census.tiger.block_group|2
us.census.tiger.census_tract|1
us.census.tiger.zcta5|0
us.census.tiger.county|0
(4 rows)
column_id|_obs_geometryscores_numgeoms_5km_buffer
us.census.tiger.block_group|244
us.census.tiger.census_tract|78
us.census.tiger.zcta5|9
us.census.tiger.county|0
(4 rows)
column_id|_obs_geometryscores_numgeoms_50km_buffer
us.census.tiger.block_group|10817
us.census.tiger.census_tract|3396
us.census.tiger.zcta5|484
us.census.tiger.county|11
(4 rows)
column_id|_obs_geometryscores_numgeoms_500km_buffer
us.census.tiger.block_group|48567
us.census.tiger.census_tract|15823
us.census.tiger.zcta5|6466
us.census.tiger.county|295
(4 rows)
column_id|_obs_geometryscores_numgeoms_2500km_buffer
us.census.tiger.block_group|165852
us.census.tiger.census_tract|55283
us.census.tiger.zcta5|27046
us.census.tiger.county|2551
(4 rows)
_obs_geometryscores_500km_buffer_50_geoms
t
(1 row)
@@ -186,16 +201,28 @@ t
_obs_geometryscores_500km_buffer_25000_geoms
t
(1 row)
testarea_uses_tract
t
(1 row)
points_use_bg
t
(1 row)
_total_pop_in_legacy_builder_metadata
t
(1 row)
_median_income_in_legacy_builder_metadata
t
(1 row)
_gini_in_legacy_builder_metadata
t
(1 row)
_total_pop_in_legacy_builder_metadata_sums
t
(1 row)
_median_income_not_in_legacy_builder_metadata_sums
_median_income_in_legacy_builder_metadata_sums
t
(1 row)
_gini_not_in_legacy_builder_metadata_sums
t
(1 row)
_no_dupe_subsections_in_legacy_builder_metadata

View File

@@ -42,6 +42,12 @@ t
obs_getboundarybyid_boundary_id_mismatch_geom_id
t
(1 row)
_obs_getboundariesbygeometry_roads_around_cartodb
t
(1 row)
_obs_getboundariesbygeometry_points_around_cartodb
t
(1 row)
_obs_getboundariesbygeometry_tracts_around_cartodb
t
(1 row)
@@ -87,9 +93,3 @@ t
obs_getpointsbypointandradius_around_null_island
t
(1 row)
geoid_name_matches|table_name_matches|geom_name_matches
t|t|t
(1 row)
geoid_name_matches|table_name_matches|geom_name_matches
t|t|t
(1 row)

View File

@@ -13,17 +13,22 @@ DROP TABLE IF EXISTS observatory.obs_meta_denom;
DROP TABLE IF EXISTS observatory.obs_meta_geom;
DROP TABLE IF EXISTS observatory.obs_meta_timespan;
DROP TABLE IF EXISTS observatory.obs_column_table_tile;
DROP TABLE IF EXISTS observatory.obs_fcd4e4f5610f6764973ef8c0c215b2e80bec8963;
DROP TABLE IF EXISTS observatory.obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308;
DROP TABLE IF EXISTS observatory.obs_6c1309a64d8f3e6986061f4d1ca7b57743e75e74;
DROP TABLE IF EXISTS observatory.obs_7615e8622a68bfc5fe37c69c9880edfb40250103;
DROP TABLE IF EXISTS observatory.obs_d39f7fe5959891c8296490d83c22ded31c54af13;
DROP TABLE IF EXISTS observatory.obs_1babf5a26a1ecda5fb74963e88408f71d0364b81;
DROP TABLE IF EXISTS observatory.obs_column_table_tile_simple;
DROP TABLE IF EXISTS observatory.obs_78fb6c1d6ff6505225175922c2c389ce48d7632c;
DROP TABLE IF EXISTS observatory.obs_65f29658e096ca1485bf683f65fdbc9f05ec3c5d;
DROP TABLE IF EXISTS observatory.obs_144e8b4f906885b2e057ac4842644a553ae49c6e;
DROP TABLE IF EXISTS observatory.obs_fc050f0b8673cfe3c6aa1040f749eb40975691b7;
DROP TABLE IF EXISTS observatory.obs_1746e37b7cd28cb131971ea4187d42d71f09c5f3;
DROP TABLE IF EXISTS observatory.obs_fcd4e4f5610f6764973ef8c0c215b2e80bec8963;
DROP TABLE IF EXISTS observatory.obs_c4411eba732408d47d73281772dbf03d60645dec;
DROP TABLE IF EXISTS observatory.obs_1a098da56badf5f32e336002b0a81708c40d29cd;
DROP TABLE IF EXISTS observatory.obs_7615e8622a68bfc5fe37c69c9880edfb40250103;
DROP TABLE IF EXISTS observatory.obs_a01cd5d8ccaa6531cef715071e9307e6b1987ec3;
DROP TABLE IF EXISTS observatory.obs_6c1309a64d8f3e6986061f4d1ca7b57743e75e74;
DROP TABLE IF EXISTS observatory.obs_0310c639744a2014bb1af82709228f05b59e7d3d;
DROP TABLE IF EXISTS observatory.obs_87a814e485deabe3b12545a537f693d16ca702c2;
DROP TABLE IF EXISTS observatory.obs_e32f8e59c7c8861ee5ee4029b3ace2af9a5c9caf;
DROP TABLE IF EXISTS observatory.obs_23cb5063486bd7cf36f17e89e5e65cd31b331f6e;
DROP TABLE IF EXISTS observatory.obs_1ea93bbc109c87c676b3270789dacf7a1430db6c;
DROP TABLE IF EXISTS observatory.obs_b393b5b88c6adda634b2071a8005b03c551b609a;
DROP TABLE IF EXISTS observatory.obs_1746e37b7cd28cb131971ea4187d42d71f09c5f3;
DROP TABLE IF EXISTS observatory.obs_a01cd5d8ccaa6531cef715071e9307e6b1987ec3;
DROP TABLE IF EXISTS observatory.obs_8e30e6b3792430b410ba5b9e49cdc6a0d404d48f;
DROP TABLE IF EXISTS observatory.obs_08025e1287e3af2b5de571d06562ba8d3bdb48e9;
DROP TABLE IF EXISTS observatory.obs_d39f7fe5959891c8296490d83c22ded31c54af13;

File diff suppressed because one or more lines are too long

View File

@@ -1,6 +1,5 @@
-- Install dependencies
CREATE EXTENSION postgis;
CREATE EXTENSION postgres_fdw;
-- Install the extension
CREATE EXTENSION observatory VERSION 'dev';

View File

@@ -11,8 +11,8 @@ SELECT
cdb_observatory._OBS_GeomTable(
ST_SetSRID(ST_Point(-74.0059, 40.7128), 4326),
'us.census.tiger.census_tract',
'2014'
) = 'obs_fc050f0b8673cfe3c6aa1040f749eb40975691b7' As _obs_geomtable_with_returned_table;
'2015'
) = 'obs_87a814e485deabe3b12545a537f693d16ca702c2' As _obs_geomtable_with_returned_table;
-- get null for unknown geometry_id
-- should give back null
@@ -47,3 +47,15 @@ SELECT cdb_observatory._OBS_StandardizeMeasureName('test 343 %% 2 qqq }}{{}}') =
SELECT cdb_observatory.OBS_DumpVersion()
IS NOT NULL AS OBS_DumpVersion_notnull;
-- Should fail to perform intersection
SELECT ST_IsValid(ST_Intersection(
cdb_observatory.OBS_GetBoundaryByID('48061', 'us.census.tiger.county'),
cdb_observatory.OBS_GetBoundaryByID('48061', 'us.census.tiger.county_clipped')
)) AS complex_intersection_fails;
-- Should succeed in intersecting
SELECT ST_IsValid(cdb_observatory.safe_intersection(
cdb_observatory.OBS_GetBoundaryByID('48061', 'us.census.tiger.county'),
cdb_observatory.OBS_GetBoundaryByID('48061', 'us.census.tiger.county_clipped')
)) AS complex_safe_intersection_works;

View File

@@ -5,128 +5,21 @@ SET client_min_messages TO WARNING;
--
WITH result as(
Select count(coalesce(OBS_GetDemographicSnapshot->>'value', 'foo')) expected_columns
FROM cdb_observatory.OBS_GetDemographicSnapshot(cdb_observatory._TestPoint())
FROM cdb_observatory.OBS_GetDemographicSnapshot(cdb_observatory._TestPoint(), '2010 - 2014')
) select expected_columns = 52 as OBS_GetDemographicSnapshot_test_no_returns
FROM result;
WITH result as (
SELECT _OBS_Get::text as expected FROM
cdb_observatory._OBS_Get(
cdb_observatory._TestPoint(),
Array['us.census.acs.B19013001']::text[],
'2010 - 2014',
'us.census.tiger.block_group'
)
) SELECT expected = '{"value":79292,"name":"Median Household Income in the past 12 Months","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"median","type":"Numeric","description":"Within a geographic area, the median income received by every household on a regular basis before payments for personal income taxes, social security, union dues, medicare deductions, etc. It includes income received from wages, salary, commissions, bonuses, and tips; self-employment income from own nonfarm or farm businesses, including proprietorships and partnerships; interest, dividends, net rental income, royalty income, or income from estates and trusts; Social Security or Railroad Retirement income; Supplemental Security Income (SSI); any cash public assistance or welfare payments from the state or local welfare office; retirement, survivor, or disability benefits; and any other sources of income received regularly such as Veterans'' (VA) payments, unemployment and/or worker''s compensation, child support, and alimony."}'
As OBS_Get_median_income_at_test_point
FROM result;
-- median income at null island
WITH result as (
SELECT count(_OBS_Get) as expected FROM
cdb_observatory._OBS_Get(
ST_SetSRID(ST_Point(0, 0), 4326),
Array['us.census.acs.B19013001']::text[],
'2010 - 2014',
'us.census.tiger.block_group'
)
) select expected = 0 as OBS_Get_median_income_at_null_island
from result;
-- OBS_GetPoints
-- obs_getpoints
-- --------------------
-- {4809.33511352425}
-- SELECT
-- (cdb_observatory._OBS_GetPoints(
-- cdb_observatory._TestPoint(),
-- 'obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308'::text, -- block groups (see _obs_geomtable)
-- (Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json])
-- ))[1]::text = '{"value":10923.093200390833950,"name":"Total Population","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'
-- as OBS_GetPoints_for_test_point;
WITH cte As (
SELECT
(cdb_observatory._OBS_GetPoints(
cdb_observatory._TestPoint(),
'obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308'::text, -- block groups (see _obs_geomtable)
(Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json])
))[1]
as OBS_GetPoints_for_test_point)
SELECT
(abs((OBS_GetPoints_for_test_point ->> 'value')::numeric - 10923.093200390833950) / 10923.093200390833950) < 0.001 As OBS_GetPoints_for_test_point_value,
(OBS_GetPoints_for_test_point ->> 'name') = 'Total Population' As OBS_GetPoints_for_test_point_name,
(OBS_GetPoints_for_test_point ->> 'tablename') = 'obs_1a098da56badf5f32e336002b0a81708c40d29cd' As OBS_GetPoints_for_test_point_tablename,
(OBS_GetPoints_for_test_point ->> 'aggregate') = 'sum' As OBS_GetPoints_for_test_point_aggregate,
(OBS_GetPoints_for_test_point ->> 'type') = 'Numeric' As OBS_GetPoints_for_test_point_type,
(OBS_GetPoints_for_test_point ->> 'description') = 'The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates.' As OBS_GetPoints_for_test_point_description
FROM cte;
-- what happens at null island
SELECT
(cdb_observatory._OBS_GetPoints(
ST_SetSRID(ST_Point(0, 0), 4326),
'obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308'::text, -- see example in obs_geomtable
(Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json])
))[1]::text is null
as OBS_GetPoints_for_null_island;
-- OBS_GetPolygons
-- obs_getpolygons
-- --------------------
-- {12996.8172420752}
SELECT
(cdb_observatory._OBS_GetPolygons(
cdb_observatory._TestArea(),
'obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308'::text, -- see example in obs_geomtable
Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json]
))[1]::text = '{"value":12327.3133495107,"name":"Total Population","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'
as OBS_GetPolygons_for_test_point;
-- see what happens around null island
SELECT
((cdb_observatory._OBS_GetPolygons(
ST_Buffer(ST_SetSRID(ST_Point(0, 0), 4326)::geography, 500)::geometry,
'obs_c6fb99c47d61289fbb8e561ff7773799d3fcc308'::text, -- see example in obs_geomtable
Array['{"colname":"total_pop","tablename":"obs_1a098da56badf5f32e336002b0a81708c40d29cd","aggregate":"sum","name":"Total Population","type":"Numeric","description":"The total number of all people living in a given geographic area. This is a very useful catch-all denominator when calculating rates."}'::json])
)[1]->>'value') is null
as OBS_GetPolygons_for_null_island;
SELECT cdb_observatory.OBS_GetSegmentSnapshot(
cdb_observatory._TestPoint(),
'us.census.tiger.census_tract'
)::text =
'{"x10_segment":"Wealthy, urban without Kids","x55_segment":"Wealthy transplants displacing long-term local residents","us.census.acs.B01003001_quantile":"0.3235","us.census.acs.B01001002_quantile":"0.494716216216216","us.census.acs.B01001026_quantile":"0.183756756756757","us.census.acs.B01002001_quantile":"0.0752837837837838","us.census.acs.B03002003_quantile":"0.293162162162162","us.census.acs.B03002004_quantile":"0.455527027027027","us.census.acs.B03002006_quantile":"0.656405405405405","us.census.acs.B03002012_quantile":"0.840081081081081","us.census.acs.B05001006_quantile":"0.727135135135135","us.census.acs.B08006001_quantile":"0.688635135135135","us.census.acs.B08006002_quantile":"0.0204459459459459","us.census.acs.B08006008_quantile":"0.679324324324324","us.census.acs.B08006009_quantile":"0.996716216216216","us.census.acs.B08006011_quantile":"0.967418918918919","us.census.acs.B08006015_quantile":"0.512945945945946","us.census.acs.B08006017_quantile":"0.0504864864864865","us.census.acs.B09001001_quantile":"0.192405405405405","us.census.acs.B11001001_quantile":"0.331702702702703","us.census.acs.B14001001_quantile":"0.296283783783784","us.census.acs.B14001002_quantile":"0.045472972972973","us.census.acs.B14001005_quantile":"0.0442702702702703","us.census.acs.B14001006_quantile":"0.0829054054054054","us.census.acs.B14001007_quantile":"0.701135135135135","us.census.acs.B14001008_quantile":"0.404527027027027","us.census.acs.B15003001_quantile":"0.191824324324324","us.census.acs.B15003017_quantile":"0.864162162162162","us.census.acs.B15003022_quantile":"0.754297297297297","us.census.acs.B15003023_quantile":"0.350054054054054","us.census.acs.B16001001_quantile":"0.217635135135135","us.census.acs.B16001002_quantile":"0.85972972972973","us.census.acs.B16001003_quantile":"0.342851351351351","us.census.acs.B17001001_quantile":"0.51204054054054","us.census.acs.B17001002_quantile":"0.813540540540541","us.census.acs.B19013001_quantile":"0.0948648648648649","us.census.acs.B19083001_quantile":"0.678351351351351","us.census.acs.B19301001_quantile":"0.146108108108108","us.census.acs.B25001001_quantile":"0.149067567567568","us.census.acs.B25002003_quantile":"0","us.census.acs.B25004002_quantile":"0","us.census.acs.B25004004_quantile":"0.944554054054054","us.census.acs.B25058001_quantile":"0.398040540540541","us.census.acs.B25071001_quantile":"0.0596081081081081","us.census.acs.B25075001_quantile":"0","us.census.acs.B25075025_quantile":null}' as test_point_segmentation;
)::JSONB =
'{"x10_segment": "Wealthy, urban without Kids", "x55_segment": "Wealthy transplants displacing long-term local residents", "us.census.acs.B01001002_quantile": "0.494716216216216", "us.census.acs.B01001026_quantile": "0.183756756756757", "us.census.acs.B01002001_quantile": "0.0752837837837838", "us.census.acs.B01003001_quantile": "0.3235", "us.census.acs.B03002003_quantile": "0.293162162162162", "us.census.acs.B03002004_quantile": "0.455527027027027", "us.census.acs.B03002006_quantile": "0.656405405405405", "us.census.acs.B03002012_quantile": "0.840081081081081", "us.census.acs.B05001006_quantile": "0.727135135135135", "us.census.acs.B08006001_quantile": "0.688635135135135", "us.census.acs.B08006002_quantile": "0.0204459459459459", "us.census.acs.B08006009_quantile": "0.679324324324324", "us.census.acs.B08006011_quantile": "0.996716216216216", "us.census.acs.B08006015_quantile": "0.967418918918919", "us.census.acs.B08006017_quantile": "0.512945945945946", "us.census.acs.B08301010_quantile": "0.994743243243243", "us.census.acs.B09001001_quantile": "0.0504864864864865", "us.census.acs.B11001001_quantile": "0.192405405405405", "us.census.acs.B14001001_quantile": "0.331702702702703", "us.census.acs.B14001002_quantile": "0.296283783783784", "us.census.acs.B14001005_quantile": "0.045472972972973", "us.census.acs.B14001006_quantile": "0.0442702702702703", "us.census.acs.B14001007_quantile": "0.0829054054054054", "us.census.acs.B14001008_quantile": "0.701135135135135", "us.census.acs.B15003001_quantile": "0.404527027027027", "us.census.acs.B15003017_quantile": "0.191824324324324", "us.census.acs.B15003022_quantile": "0.864162162162162", "us.census.acs.B15003023_quantile": "0.754297297297297", "us.census.acs.B16001001_quantile": "0.350054054054054", "us.census.acs.B16001002_quantile": "0.217635135135135", "us.census.acs.B16001003_quantile": "0.85972972972973", "us.census.acs.B17001001_quantile": "0.342851351351351", "us.census.acs.B17001002_quantile": "0.51204054054054", "us.census.acs.B19013001_quantile": "0.813540540540541", "us.census.acs.B19083001_quantile": "0.0948648648648649", "us.census.acs.B19301001_quantile": "0.678351351351351", "us.census.acs.B25001001_quantile": "0.146108108108108", "us.census.acs.B25002003_quantile": "0.149067567567568", "us.census.acs.B25004002_quantile": "0", "us.census.acs.B25004004_quantile": "0", "us.census.acs.B25058001_quantile": "0.944554054054054", "us.census.acs.B25071001_quantile": "0.398040540540541", "us.census.acs.B25075001_quantile": "0.0596081081081081", "us.census.acs.B25075025_quantile": "0"}'::JSONB as test_point_segmentation;
-- segmentation around null island
SELECT cdb_observatory.OBS_GetSegmentSnapshot(
ST_SetSRID(ST_Point(0, 0), 4326),
'us.census.tiger.census_tract'
)::text = '{"x10_segment":null,"x55_segment":null,"us.census.acs.B01003001_quantile":null,"us.census.acs.B01001002_quantile":null,"us.census.acs.B01001026_quantile":null,"us.census.acs.B01002001_quantile":null,"us.census.acs.B03002003_quantile":null,"us.census.acs.B03002004_quantile":null,"us.census.acs.B03002006_quantile":null,"us.census.acs.B03002012_quantile":null,"us.census.acs.B05001006_quantile":null,"us.census.acs.B08006001_quantile":null,"us.census.acs.B08006002_quantile":null,"us.census.acs.B08006008_quantile":null,"us.census.acs.B08006009_quantile":null,"us.census.acs.B08006011_quantile":null,"us.census.acs.B08006015_quantile":null,"us.census.acs.B08006017_quantile":null,"us.census.acs.B09001001_quantile":null,"us.census.acs.B11001001_quantile":null,"us.census.acs.B14001001_quantile":null,"us.census.acs.B14001002_quantile":null,"us.census.acs.B14001005_quantile":null,"us.census.acs.B14001006_quantile":null,"us.census.acs.B14001007_quantile":null,"us.census.acs.B14001008_quantile":null,"us.census.acs.B15003001_quantile":null,"us.census.acs.B15003017_quantile":null,"us.census.acs.B15003022_quantile":null,"us.census.acs.B15003023_quantile":null,"us.census.acs.B16001001_quantile":null,"us.census.acs.B16001002_quantile":null,"us.census.acs.B16001003_quantile":null,"us.census.acs.B17001001_quantile":null,"us.census.acs.B17001002_quantile":null,"us.census.acs.B19013001_quantile":null,"us.census.acs.B19083001_quantile":null,"us.census.acs.B19301001_quantile":null,"us.census.acs.B25001001_quantile":null,"us.census.acs.B25002003_quantile":null,"us.census.acs.B25004002_quantile":null,"us.census.acs.B25004004_quantile":null,"us.census.acs.B25058001_quantile":null,"us.census.acs.B25071001_quantile":null,"us.census.acs.B25075001_quantile":null,"us.census.acs.B25075025_quantile":null}' as null_island_segmentation;
WITH result as (
SELECT array_agg(_OBS_GetCategories) as expected FROM
cdb_observatory._OBS_GetCategories(
cdb_observatory._TestPoint(),
Array['us.census.spielman_singleton_segments.X10'],
'us.census.tiger.census_tract'
)
)
select (expected)[1]::text = '{"category":"Wealthy, urban without Kids","name":"Spielman-Singleton Segments: 10 Clusters","tablename":"obs_65f29658e096ca1485bf683f65fdbc9f05ec3c5d","aggregate":null,"type":"Text","description":"Sociodemographic classes from Spielman and Singleton 2015, 10 clusters"}' as GetCategories_at_test_point_1
from result;
WITH result as (
SELECT array_agg(_OBS_GetCategories) as expected FROM
cdb_observatory._OBS_GetCategories(
ST_SetSRID(ST_Point(0,0), 4326),
Array['us.census.spielman_singleton_segments.X10'],
'us.census.tiger.census_tract'
)
)
select expected[0] is NULL as GetCategories_at_null_island
from result;
)::text is null as null_island_segmentation;
-- Point-based OBS_GetMeasure with zillow
SELECT abs(OBS_GetMeasure_zhvi_point - 597900) / 597900 < 5.0 AS OBS_GetMeasure_zhvi_point_test FROM cdb_observatory.OBS_GetMeasure(
@@ -196,7 +89,7 @@ SELECT (abs(cdb_observatory.OBS_GetMeasure(
-- Poly-based OBS_GetMeasure with denominator normalization
SELECT abs(cdb_observatory.OBS_GetMeasure(
cdb_observatory._TestArea(),
'us.census.acs.B01001002', 'denominator') - 0.49026340444793965457) / 0.49026340444793965457 < 0.001 As OBS_GetMeasure_total_male_poly_denominator;
'us.census.acs.B01001002', 'denominator', null, '2010 - 2014') - 0.49026340444793965457) / 0.49026340444793965457 < 0.001 As OBS_GetMeasure_total_male_poly_denominator;
-- Poly-based OBS_GetMeasure with one very bad geom
SELECT abs(cdb_observatory.OBS_GetMeasure(
@@ -213,13 +106,28 @@ SELECT cdb_observatory.OBS_GetMeasure(
ST_SetSRID(st_point(0, 0), 4326),
'us.census.acs.B01003001') IS NULL As OBS_GetMeasure_out_of_bounds_geometry;
-- OBS_GetMeasure over arbitrary area for a measure we cannot estimate
SELECT cdb_observatory.OBS_GetMeasure(
ST_Buffer(cdb_observatory._testpoint(), 0.1),
'us.census.acs.B19083001') IS NULL As OBS_GetMeasure_estimate_for_blank_aggregate;
-- OBS_GetMeasure over arbitrary area for an average measure we can estimate
SELECT abs(cdb_observatory.OBS_GetMeasure(
ST_Buffer(cdb_observatory._testpoint(), 0.01),
'us.census.acs.B19301001') - 20025) / 20025 < 0.001 As OBS_GetMeasure_per_capita_income_average;
-- OBS_GetMeasure over arbitrary area for a median measure we can estimate
SELECT abs(cdb_observatory.OBS_GetMeasure(
ST_Buffer(cdb_observatory._testpoint(), 0.01),
'us.census.acs.B19013001') - 39266) / 39266 < 0.001 As OBS_GetMeasure_median_capita_income_average;
-- Point-based OBS_GetCategory
SELECT cdb_observatory.OBS_GetCategory(
cdb_observatory._TestPoint(), 'us.census.spielman_singleton_segments.X10') = 'Wealthy, urban without Kids' As OBS_GetCategory_point;
-- Poly-based OBS_GetCategory
SELECT cdb_observatory.OBS_GetCategory(
cdb_observatory._TestArea(), 'us.census.spielman_singleton_segments.X10') = 'Wealthy, urban without Kids' As obs_getcategory_polygon;
cdb_observatory._TestArea(), 'us.census.spielman_singleton_segments.X10') = 'Hispanic and Young' As obs_getcategory_polygon;
-- NULL Input OBS_GetCategory
SELECT cdb_observatory.OBS_GetCategory(
@@ -276,7 +184,7 @@ SELECT cdb_observatory.OBS_GetUSCensusCategory(
-- Area-based OBS_GetUSCensusCategory
SELECT cdb_observatory.OBS_GetUSCensusCategory(
cdb_observatory._testarea(), 'Spielman-Singleton Segments: 10 Clusters') = 'Wealthy, urban without Kids' As OBS_GetUSCensusCategory_polygon;
cdb_observatory._testarea(), 'Spielman-Singleton Segments: 10 Clusters') = 'Hispanic and Young' As OBS_GetUSCensusCategory_polygon;
-- Null-input OBS_GetUSCensusCategory
SELECT cdb_observatory.OBS_GetUSCensusCategory(
@@ -323,3 +231,713 @@ SELECT cdb_observatory.OBS_GetMeasureById(
'us.census.tiger.block_group',
'2010 - 2014'
) IS NULL As OBS_GetMeasureById_null_id;
-- OBS_GetMeta null/null
SELECT cdb_observatory.OBS_GetMeta(NULL, NULL) IS NULL
AS OBS_GetMeta_null_null_is_null;
-- OBS_GetMeta null/empty array
SELECT cdb_observatory.OBS_GetMeta(NULL, '[]') IS NULL
AS OBS_GetMeta_null_empty_is_null;
-- OBS_GetMeta nullisland/null
SELECT cdb_observatory.OBS_GetMeta(ST_Point(0, 0), NULL) IS NULL
AS OBS_GetMeta_nullisland_null_is_null;
-- OBS_GetMeta nullisland/empty array
SELECT cdb_observatory.OBS_GetMeta(ST_Point(0, 0), '[]') IS NULL
AS OBS_GetMeta_nullisland_empty_is_null;
-- OBS_GetMeta nullisland/us_measure data
SELECT cdb_observatory.OBS_GetMeta(ST_Point(0, 0),
'[{"numer_id": "us.census.acs.B01003001"}]') IS NULL
AS OBS_GetMeta_nullisland_us_measure_is_null;
-- OBS_GetMeta for point completes one partial measure with "best" metadata
-- with no denominator
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01003001' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'total_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Total Population' numer_name,
(meta->0->>'denom_id') IS NULL denom_id,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for point completes one partial measure with "best" metadata
-- with a denominator
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'male_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Male Population' numer_name,
(meta->0->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->0->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->0->>'denom_colname') = 'total_pop' denom_colname,
(meta->0->>'denom_type') = 'Numeric' denom_type,
(meta->0->>'denom_name') = 'Total Population' denom_name,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for polygon completes one partial measure with "best" metadata
-- with no denominator
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01003001' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'total_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Total Population' numer_name,
(meta->0->>'denom_id') IS NULL denom_id,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for polygon completes one partial measure with "best" metadata
-- with a denominator
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01001002"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'male_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Male Population' numer_name,
(meta->0->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->0->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->0->>'denom_colname') = 'total_pop' denom_colname,
(meta->0->>'denom_type') = 'Numeric' denom_type,
(meta->0->>'denom_name') = 'Total Population' denom_name,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for point completes several partial measures with "best"
-- metadata, includes geom alternatives if asked
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002"}]', null, 2) meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'male_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Male Population' numer_name,
(meta->0->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->0->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->0->>'denom_colname') = 'total_pop' denom_colname,
(meta->0->>'denom_type') = 'Numeric' denom_type,
(meta->0->>'denom_name') = 'Total Population' denom_name,
(meta->0->>'geom_id') = 'us.census.tiger.block_group' geom_id,
(meta->0->>'normalization') IS NULL normalization,
(meta->1->>'id')::integer = 1 id,
(meta->1->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->1->>'timespan_rank')::integer = 1 timespan_rank,
(meta->1->>'score_rank')::integer = 2 score_rank,
(meta->1->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->1->>'numer_colname') = 'male_pop' numer_colname,
(meta->1->>'numer_type') = 'Numeric' numer_type,
(meta->1->>'numer_name') = 'Male Population' numer_name,
(meta->1->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->1->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->1->>'denom_colname') = 'total_pop' denom_colname,
(meta->1->>'denom_type') = 'Numeric' denom_type,
(meta->1->>'denom_name') = 'Total Population' denom_name,
(meta->1->>'geom_id') = 'us.census.tiger.census_tract' geom_id,
(meta->1->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for point completes several partial measures with "best" metadata
-- with pre-computed geom
WITH meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002", "geom_id": "us.census.tiger.census_tract"}]') meta)
SELECT
(meta->0->>'id')::integer = 1 id,
(meta->0->>'numer_id') = 'us.census.acs.B01001002' numer_id,
(meta->0->>'timespan_rank')::integer = 1 timespan_rank,
(meta->0->>'score_rank')::integer = 1 score_rank,
(meta->0->>'numer_aggregate') = 'sum' numer_aggregate,
(meta->0->>'numer_colname') = 'male_pop' numer_colname,
(meta->0->>'numer_type') = 'Numeric' numer_type,
(meta->0->>'numer_name') = 'Male Population' numer_name,
(meta->0->>'denom_id') = 'us.census.acs.B01003001' denom_id,
(meta->0->>'denom_aggregate') = 'sum' denom_aggregate,
(meta->0->>'denom_colname') = 'total_pop' denom_colname,
(meta->0->>'denom_type') = 'Numeric' denom_type,
(meta->0->>'denom_name') = 'Total Population' denom_name,
(meta->0->>'geom_id') = 'us.census.tiger.census_tract' geom_id,
(meta->0->>'normalization') IS NULL normalization
FROM meta;
-- OBS_GetMeta for point completes several partial measures with conflicting
-- metadata
SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002", "denom_id": "us.census.acs.B01001002", "geom_id": "us.census.tiger.census_tract"}]') IS NULL
AS obs_getmeta_conflicting_metadata;
-- OBS_GetData/OBS_GetMeta by id with empty list/null
WITH data AS (SELECT * FROM cdb_observatory.OBS_GetData(ARRAY[]::TEXT[], null))
SELECT ARRAY_AGG(data) IS NULL AS obs_getdata_geomval_empty_null FROM data;
-- OBS_GetData/OBS_GetMeta by geom with empty list/null
WITH data AS (SELECT * FROM cdb_observatory.OBS_GetData(ARRAY[]::GEOMVAL[], null))
SELECT ARRAY_AGG(data) IS NULL AS obs_getdata_text_empty_null FROM data;
-- OBS_GetData/OBS_GetMeta by geom with empty list
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(ARRAY[]::GEOMVAL[],
(SELECT meta FROM meta)))
SELECT ARRAY_AGG(data) IS NULL AS obs_getdata_geomval_empty_one_measure FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with one standard measure NULL
-- normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 10923) / 10923 < 0.001 data_point_measure_null,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one standard measure NULL
-- normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_null,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with one standard measure area
-- normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "area"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 10923) / 10923 < 0.001 data_point_measure_area,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one standard measure area
-- normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "area"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_area,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with one standard measure predenom
-- called "prednormalized"
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "prenormalized"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 1900) / 1900 < 0.001 data_point_measure_prenormalized,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with one standard measure predenom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "predenominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 1900) / 1900 < 0.001 data_point_measure_predenominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one standard measure predenom
-- called "prenormalized"
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "prenormalized"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 12327) / 12327 < 0.001 data_polygon_measure_prenormalized,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one standard measure predenom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "predenominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 12327) / 12327 < 0.001 data_polygon_measure_predenominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with impossible denom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "denominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' IS NULL data_point_measure_impossible_denominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one impossible denom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "denominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' IS NULL data_polygon_measure_impossible_denominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with denom
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.acs.B01001002", "normalization": "denominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 0.6215) / 0.6215 < 0.001 data_point_measure_denominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one denom measure
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01001002", "normalization": "denominated"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 0.4902) / 0.4902 < 0.001 data_polygon_measure_denominated,
data->1 IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with two standard measures NULL normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001"}, {"numer_id": "us.census.acs.B01001002"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_one_null,
abs((data->1->>'value')::Numeric - 0.4902) / 0.4902 < 0.001 data_polygon_measure_two_null
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with two standard measures predenom normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "predenom"}, {"numer_id": "us.census.acs.B01001002", "normalization": "predenom"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 12327) / 12327 < 0.001 data_polygon_measure_one_predenom,
abs((data->1->>'value')::Numeric - 6043) / 6043 < 0.001 data_polygon_measure_two_predenom
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with two standard measures area normalization
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "normalization": "area"}, {"numer_id": "us.census.acs.B01001002", "normalization": "area"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_one_area,
abs((data->1->>'value')::Numeric - 7739) / 7739 < 0.001 data_polygon_measure_two_area
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with two standard measures different geoms
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.census_tract"}, {"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.block_group"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
abs((data->0->>'value')::Numeric - 16960) / 16960 < 0.001 data_polygon_measure_tract,
abs((data->1->>'value')::Numeric - 15787) / 15787 < 0.001 data_polygon_measure_bg
FROM data;
-- OBS_GetData/OBS_GetMeta by point geom with one categorical
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestPoint(),
'[{"numer_id": "us.census.spielman_singleton_segments.X55"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestPoint(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' = 'Wealthy transplants displacing long-term local residents' data_point_categorical,
data->1->>'value' IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by polygon geom with one categorical
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.spielman_singleton_segments.X55"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' = 'Hispanic Black mix multilingual, high poverty, renters, uses public transport' data_poly_categorical,
data->1->>'value' IS NULL nullcol
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with one categorical and one measure
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"numer_id": "us.census.spielman_singleton_segments.X55"}, {"numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta)))
SELECT id = 1 id,
data->0->>'value' = 'Hispanic Black mix multilingual, high poverty, renters, uses public transport' data_poly_categorical,
abs((data->1->>'value')::Numeric - 15787) / 15787 < 0.0001 valcol
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with polygons inside a polygon
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.block_group"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) is TRUE id,
count(distinct (data->0->>'value')::geometry) = 16 correct_num_geoms
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with polygons inside a polygon + one measure
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.block_group"}, {"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.block_group"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) is TRUE id,
count(distinct (data->0->>'value')::geometry) = 16 correct_num_geoms,
abs(sum((data->1->>'value')::numeric) - 15787) / 15787 < 0.001 correct_pop
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with polygons inside a polygon + one measure + one text
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.block_group"}, {"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.block_group"}, {"numer_id": "us.census.tiger.name", "geom_id": "us.census.tiger.block_group"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) is TRUE id,
count(distinct (data->0->>'value')::geometry) = 16 correct_num_geoms,
abs(sum((data->1->>'value')::numeric) - 15787) / 15787 < 0.001 correct_pop,
array_agg(distinct data->2->>'value') = '{"Block Group 1","Block Group 2","Block Group 3","Block Group 4","Block Group 5"}' correct_bg_names
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with points inside a polygon
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.pointlm_geom"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) AS id,
count(distinct (data->0->>'value')::geometry(point, 4326)) = 3 correct_num_points
FROM data;
-- OBS_GetData/OBS_GetMeta by geom with points inside a polygon + one text
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.pointlm_geom"}, {"geom_id": "us.census.tiger.pointlm_geom", "numer_id": "us.census.tiger.fullname"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY[(cdb_observatory._TestArea(), 1)::geomval],
(SELECT meta FROM meta), false))
SELECT every(id = 1) AS id,
count(distinct (data->0->>'value')::geometry(point, 4326)) = 3 correct_num_points,
array_agg(data->1->>'value') = '{"Bushwick Yards","Edward Block Square","Bushwick Houses"}' pointgeom_names
FROM data;
-- OBS_GetData by id with one standard measure
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
(abs((data->0->>'value')::numeric) - 5578) / 5578 < 0.001 obs_getdata_by_id_one_measure_null
FROM data;
-- OBS_GetData by id with one standard measure, predenominated
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"normalization": "predenominated", "geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.acs.B01003001"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
(abs((data->0->>'value')::numeric) - 3241) / 3241 < 0.001 obs_getdata_by_id_one_measure_predenom
FROM data;
-- OBS_GetData/OBS_GetMeta by id with two standard measures
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.acs.B01003001"}, {"geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.acs.B01001002"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
(abs((data->0->>'value')::numeric) - 5578) / 5578 < 0.001 obs_getdata_by_id_one_measure_null,
(abs((data->1->>'value')::numeric) - 0.6053) / 0.6053 < 0.001 obs_getdata_by_id_two_measure_null
FROM data;
-- OBS_GetData/OBS_GetMeta by id with one categorical
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.census_tract", "numer_id": "us.census.spielman_singleton_segments.X55"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
data->0->>'value' = 'Wealthy transplants displacing long-term local residents' obs_getdata_by_id_categorical
FROM data;
-- OBS_GetData/OBS_GetMeta by id with one geometry
WITH
meta AS (SELECT cdb_observatory.OBS_GetMeta(cdb_observatory._TestArea(),
'[{"geom_id": "us.census.tiger.census_tract"}]') meta),
data AS (SELECT * FROM cdb_observatory.OBS_GetData(
ARRAY['36047048500'],
(SELECT meta FROM meta)))
SELECT id = '36047048500' AS id,
ST_GeometryType((data->0->>'value')::geometry) = 'ST_MultiPolygon' obs_getdata_by_id_geometry
FROM data;
-- OBS_GetData with an API + geomvals, no args
SELECT (SELECT array_agg(json_array_elements::text) @> array['"us.census.tiger.census_tract"']
FROM json_array_elements(data->0->'value'))
AS OBS_GetData_API_geomvals_no_args
FROM cdb_observatory.obs_getdata(array[(cdb_observatory._testarea(), 1)::geomval],
'[{"numer_type": "text", "numer_colname": "boundary_id", "api_method": "obs_getavailableboundaries"}]');
-- OBS_GetData with an API + geomvals, args, numeric
SELECT json_typeof(data->0->'value') = 'array' ary_type,
json_typeof(data->0->'value'->0) = 'number'
AS OBS_GetData_API_geomvals_args_numer_return
FROM cdb_observatory.obs_getdata(array[(cdb_observatory._testarea(), 1)::geomval],
'[{"numer_type": "numeric", "numer_colname": "obs_getmeasure", "api_method": "obs_getmeasure", "api_args": ["us.census.acs.B01003001"]}]');
-- OBS_GetData with an API + geomvals, args, text
SELECT json_typeof(data->0->'value') = 'array' ary_type,
json_typeof(data->0->'value'->0) = 'string'
AS OBS_GetData_API_geomvals_args_string_return
FROM cdb_observatory.obs_getdata(array[(cdb_observatory._testarea(), 1)::geomval],
'[{"numer_type": "text", "numer_colname": "obs_getcategory", "api_method": "obs_getcategory", "api_args": ["us.census.spielman_singleton_segments.X55"]}]');
-- OBS_GetData with an API + geomrefs, args, numeric
SELECT json_typeof(data->0->'value') = 'array' ary_type,
json_typeof(data->0->'value'->0) = 'number'
AS OBS_GetData_API_geomrefs_args_numer_return
FROM cdb_observatory.obs_getdata(array['36047076200'],
'[{"numer_type": "numeric", "numer_colname": "obs_getmeasurebyid", "api_method": "obs_getmeasurebyid", "api_args": ["us.census.acs.B01003001", "us.census.tiger.census_tract"]}]');
-- OBS_GetData with an API + geomrefs, args, text
SELECT json_typeof(data->0->'value') = 'array' ary_type,
json_typeof(data->0->'value'->0) = 'string'
AS OBS_GetData_API_geomrefs_args_string_return
FROM cdb_observatory.obs_getdata(array['36047'],
'[{"numer_type": "text", "numer_colname": "obs_getboundarybyid", "api_method": "obs_getboundarybyid", "api_args": ["us.census.tiger.county"]}]');
-- Ensure consistent results below.
select setseed(0);
-- Check that random assortment of block groups in Brooklyn return accurate data
WITH _geoms AS (
SELECT
(data->0->>'value')::geometry the_geom,
data->0->>'geomref' geom_ref,
(data->1->>'value')::numeric total_pop
FROM cdb_observatory.OBS_GetData(
array[(st_buffer(cdb_observatory._testpoint(), 0.2), 1)::geomval],
(SELECT cdb_observatory.OBS_GetMeta(ST_MakeEnvelope(-179, 89, 179, -89, 4326),
'[{"geom_id": "us.census.tiger.block_group"},
{"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.block_group", "normalization": "predenom"}]')),
FALSE
)
WHERE data->0->>'geomref' LIKE '36047%'
ORDER BY RANDOM()
), geoms AS (
SELECT *, row_number() OVER () cartodb_id FROM _geoms
), samples AS (
SELECT COUNT(*) cnt, unnest(ARRAY[1, 2, 3, 5, 10, 25, 50, 100, COUNT(*)]) sample FROM geoms
), filtered AS (
SELECT * FROM geoms, samples WHERE cartodb_id % (cnt / sample) = 0
), summary AS (
SELECT sample, ST_SetSRID(ST_Extent(the_geom), 4326) extent,
COUNT(*)::INT cnt,
ARRAY_AGG((the_geom, cartodb_id)::geomval) geomvals,
SUM(ST_Area(the_geom))::Numeric sumarea
FROM filtered
GROUP BY sample
), meta AS (
SELECT sample, cdb_observatory.OBS_GetMeta(extent,
('[{"numer_id": "us.census.acs.B01003001", "normalization": "predenom", "target_area": ' || sumarea || '}]')::JSON,
1, 1, cnt) meta
FROM summary
GROUP BY sample, extent, cnt, sumarea
), results AS (
SELECT summary.sample, id, meta->0->>'geom_id' geom_id, (data->0->>'value')::Numeric as val
FROM summary, meta, LATERAL cdb_observatory.OBS_GetData(geomvals, meta) data
WHERE summary.sample = meta.sample
) SELECT sample bg_sample
, MAX(100 * abs((geoms.total_pop - val) / Coalesce(NullIf(total_pop, 0), NULL)))::Numeric(10, 2) < 10 bg_max_error
, AVG(100 * abs((geoms.total_pop - val) / Coalesce(NullIf(total_pop, 0), NULL)))::Numeric(10, 2) < 10 bg_avg_error
, MIN(100 * abs((geoms.total_pop - val) / Coalesce(NullIf(total_pop, 0), NULL)))::Numeric(10, 2) < 10 bg_min_error
FROM geoms, results
WHERE cartodb_id = id
GROUP BY sample
ORDER BY sample
;
-- Check that random assortment of tracts in Brooklyn return accurate data
WITH _geoms AS (
SELECT
(data->0->>'value')::geometry the_geom,
data->0->>'geomref' geom_ref,
(data->1->>'value')::numeric total_pop
FROM cdb_observatory.OBS_GetData(
array[(st_buffer(cdb_observatory._testpoint(), 0.2), 1)::geomval],
(SELECT cdb_observatory.OBS_GetMeta(ST_MakeEnvelope(-179, 89, 179, -89, 4326),
'[{"geom_id": "us.census.tiger.census_tract"},
{"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.census_tract", "normalization": "predenom"}]')),
FALSE
)
WHERE data->0->>'geomref' LIKE '36047%'
ORDER BY RANDOM()
), geoms AS (
SELECT *, row_number() OVER () cartodb_id FROM _geoms
), samples AS (
SELECT COUNT(*) cnt, unnest(ARRAY[1, 2, 3, 5, 10, 25, 50, 100, COUNT(*)]) sample FROM geoms
), filtered AS (
SELECT * FROM geoms, samples WHERE cartodb_id % (cnt / sample) = 0
), summary AS (
SELECT sample, ST_SetSRID(ST_Extent(the_geom), 4326) extent,
COUNT(*)::INT cnt,
ARRAY_AGG((the_geom, cartodb_id)::geomval) geomvals,
SUM(ST_Area(the_geom))::Numeric sumarea
FROM filtered
GROUP BY sample
), meta AS (
SELECT sample, cdb_observatory.OBS_GetMeta(extent,
('[{"numer_id": "us.census.acs.B01003001", "normalization": "predenom", "target_area": ' || sumarea || '}]')::JSON,
1, 1, cnt) meta
FROM summary
GROUP BY sample, extent, cnt, sumarea
), results AS (
SELECT summary.sample, id, meta->0->>'geom_id' geom_id, (data->0->>'value')::Numeric as val
FROM summary, meta, LATERAL cdb_observatory.OBS_GetData(geomvals, meta) data
WHERE summary.sample = meta.sample
) SELECT sample tract_sample
, MAX(100 * abs((geoms.total_pop - val) / Coalesce(NullIf(total_pop, 0), NULL)))::Numeric(10, 2) < 10 tract_max_error
, AVG(100 * abs((geoms.total_pop - val) / Coalesce(NullIf(total_pop, 0), NULL)))::Numeric(10, 2) < 10 tract_avg_error
, MIN(100 * abs((geoms.total_pop - val) / Coalesce(NullIf(total_pop, 0), NULL)))::Numeric(10, 2) < 10 tract_min_error
FROM geoms, results
WHERE cartodb_id = id
GROUP BY sample
ORDER BY sample
;
-- Check that random assortment of block group points in Brooklyn return accurate data
WITH _geoms AS (
SELECT
ST_PointOnSurface((data->0->>'value')::geometry) the_geom,
data->0->>'geomref' geom_ref,
(data->1->>'value')::numeric total_pop
FROM cdb_observatory.OBS_GetData(
array[(st_buffer(cdb_observatory._testpoint(), 0.2), 1)::geomval],
(SELECT cdb_observatory.OBS_GetMeta(ST_MakeEnvelope(-179, 89, 179, -89, 4326),
'[{"geom_id": "us.census.tiger.block_group"},
{"numer_id": "us.census.acs.B01003001", "geom_id": "us.census.tiger.block_group", "normalization": "predenom"}]')),
FALSE
)
WHERE data->0->>'geomref' LIKE '36047%'
), geoms AS (
SELECT *, row_number() OVER () cartodb_id FROM _geoms
), samples AS (
SELECT COUNT(*) cnt, unnest(ARRAY[1, 2, 3, 5, 10, 25, 50, 100, COUNT(*)]) sample FROM geoms
), filtered AS (
SELECT * FROM geoms, samples WHERE cartodb_id % (cnt / sample) = 0
), summary AS (
SELECT sample, ST_SetSRID(ST_Extent(the_geom), 4326) extent,
COUNT(*)::INT cnt,
ARRAY_AGG((the_geom, cartodb_id)::geomval) geomvals,
SUM(ST_Area(the_geom))::Numeric sumarea
FROM filtered
GROUP BY sample
), meta AS (
SELECT sample, cdb_observatory.OBS_GetMeta(extent,
('[{"numer_id": "us.census.acs.B01003001", "normalization": "predenom", "target_area": ' || sumarea || '}]')::JSON,
1, 1, cnt) meta
FROM summary
GROUP BY sample, extent, cnt, sumarea
), results AS (
SELECT summary.sample, id, meta->0->>'geom_id' geom_id, (data->0->>'value')::Numeric as val
FROM summary, meta, LATERAL cdb_observatory.OBS_GetData(geomvals, meta) data
WHERE summary.sample = meta.sample
) SELECT
BOOL_AND(abs((geoms.total_pop - val) /
Coalesce(NullIf(total_pop, 0), 1)) = 0) is True no_bg_point_error
FROM geoms, results
WHERE cartodb_id = id
;

View File

@@ -10,11 +10,11 @@ SET client_min_messages TO WARNING;
-- _OBS_SearchTables tests
SELECT
t.table_name = 'obs_1babf5a26a1ecda5fb74963e88408f71d0364b81' As _OBS_SearchTables_tables_match,
t.timespan = '2014' As _OBS_SearchTables_timespan_matches
t.table_name = 'obs_0310c639744a2014bb1af82709228f05b59e7d3d' As _OBS_SearchTables_tables_match,
t.timespan = '2015' As _OBS_SearchTables_timespan_matches
FROM cdb_observatory._OBS_SearchTables(
'us.census.tiger.county',
'2014'
'2015'
) As t(table_name, timespan);
-- _OBS_SearchTables tests
@@ -278,9 +278,9 @@ AS _obs_getavailablegeometries_foobarbaz_denom_not_in_usa_bg;
SELECT 'us.census.tiger.block_group' IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326),
NULL, NULL, NULL, '2014'
NULL, NULL, NULL, '2015'
) WHERE valid_timespan = True)
AS _obs_getavailablegeometries_bg_2014;
AS _obs_getavailablegeometries_bg_2015;
SELECT 'us.census.tiger.block_group' NOT IN (SELECT geom_id
FROM cdb_observatory.OBS_GetAvailableGeometries(
@@ -350,126 +350,173 @@ AS _obs_getavailablegeometries_foobarbaz_denom_not_in_2010_2014;
-- _OBS_GetGeometryScores tests
--
SELECT ARRAY_AGG(geom_id ORDER BY score DESC) =
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']
'us.census.tiger.county', 'us.census.tiger.zcta5']
AS _obs_geometryscores_500m_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 500)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']);
'us.census.tiger.county', 'us.census.tiger.zcta5'])
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(geom_id ORDER BY score DESC) =
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']
SELECT ARRAY_AGG(column_id ORDER BY score DESC)
= ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.county', 'us.census.tiger.zcta5']
AS _obs_geometryscores_5km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 5000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']);
'us.census.tiger.county', 'us.census.tiger.zcta5'])
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(geom_id ORDER BY score DESC) =
ARRAY['us.census.tiger.census_tract', 'us.census.tiger.zcta5',
'us.census.tiger.county', 'us.census.tiger.block_group']
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.census_tract', 'us.census.tiger.block_group',
'us.census.tiger.zcta5', 'us.census.tiger.county']
AS _obs_geometryscores_50km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']);
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(geom_id ORDER BY score DESC) =
ARRAY[ 'us.census.tiger.county', 'us.census.tiger.zcta5',
'us.census.tiger.census_tract', 'us.census.tiger.block_group']
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY[ 'us.census.tiger.zcta5', 'us.census.tiger.census_tract',
'us.census.tiger.county', 'us.census.tiger.block_group' ]
AS _obs_geometryscores_500km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 500000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']);
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(geom_id ORDER BY score DESC) =
ARRAY['us.census.tiger.county', 'us.census.tiger.zcta5',
'us.census.tiger.census_tract', 'us.census.tiger.block_group']
SELECT ARRAY_AGG(column_id ORDER BY score DESC)
= ARRAY['us.census.tiger.county', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.block_group']
AS _obs_geometryscores_2500km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 2500000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']);
ARRAY['us.census.tiger.county', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.block_group'])
WHERE table_id LIKE '%2015%';
SELECT JSON_Object_Agg(geom_id, numgeoms::int ORDER BY numgeoms DESC)::Text
= '{ "us.census.tiger.block_group" : 9, "us.census.tiger.census_tract" : 3, "us.census.tiger.zcta5" : 0, "us.census.tiger.county" : 0 }'
AS _obs_geometryscores_numgeoms_500m_buffer
SELECT column_id, numgeoms::int AS _obs_geometryscores_numgeoms_500m_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 500)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']);
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%'
ORDER BY numgeoms DESC;
SELECT JSON_Object_Agg(geom_id, numgeoms::int ORDER BY numgeoms DESC)::Text =
'{ "us.census.tiger.block_group" : 899, "us.census.tiger.census_tract" : 328, "us.census.tiger.zcta5" : 45, "us.census.tiger.county" : 1 }'
AS _obs_geometryscores_numgeoms_5km_buffer
SELECT column_id, numgeoms::int AS _obs_geometryscores_numgeoms_5km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 5000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']);
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%'
ORDER BY numgeoms DESC;
SELECT JSON_Object_Agg(geom_id, numgeoms::int ORDER BY numgeoms DESC)::Text =
'{ "us.census.tiger.block_group" : 12112, "us.census.tiger.census_tract" : 3792, "us.census.tiger.zcta5" : 550, "us.census.tiger.county" : 13 }'
AS _obs_geometryscores_numgeoms_50km_buffer
SELECT column_id, numgeoms::int AS _obs_geometryscores_numgeoms_50km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']);
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%'
ORDER BY numgeoms DESC;
SELECT JSON_Object_Agg(geom_id, numgeoms::int ORDER BY numgeoms DESC)::Text =
'{ "us.census.tiger.block_group" : 48415, "us.census.tiger.census_tract" : 15776, "us.census.tiger.zcta5" : 6534, "us.census.tiger.county" : 295 }'
AS _obs_geometryscores_numgeoms_500km_buffer
SELECT column_id, numgeoms::int AS _obs_geometryscores_numgeoms_500km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 500000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']);
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%'
ORDER BY numgeoms DESC;
SELECT JSON_Object_Agg(geom_id, numgeoms::int ORDER BY numgeoms DESC)::Text =
'{ "us.census.tiger.block_group" : 165489, "us.census.tiger.census_tract" : 55152, "us.census.tiger.zcta5" : 26500, "us.census.tiger.county" : 2551 }'
AS _obs_geometryscores_numgeoms_2500km_buffer
SELECT column_id, numgeoms::int AS _obs_geometryscores_numgeoms_2500km_buffer
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 2500000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']);
'us.census.tiger.zcta5', 'us.census.tiger.county'])
WHERE table_id LIKE '%2015%'
ORDER BY numgeoms DESC;
SELECT ARRAY_AGG(geom_id ORDER BY score DESC) =
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.county', 'us.census.tiger.zcta5',
'us.census.tiger.census_tract', 'us.census.tiger.block_group']
AS _obs_geometryscores_500km_buffer_50_geoms
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'], 50);
'us.census.tiger.zcta5', 'us.census.tiger.county'], 50)
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(geom_id ORDER BY score DESC)
= ARRAY['us.census.tiger.zcta5', 'us.census.tiger.county',
'us.census.tiger.census_tract', 'us.census.tiger.block_group']
SELECT ARRAY_AGG(column_id ORDER BY score DESC)
= ARRAY['us.census.tiger.zcta5', 'us.census.tiger.census_tract',
'us.census.tiger.county', 'us.census.tiger.block_group']
AS _obs_geometryscores_500km_buffer_500_geoms
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'], 500);
'us.census.tiger.zcta5', 'us.census.tiger.county'], 500)
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(geom_id ORDER BY score DESC) =
ARRAY['us.census.tiger.census_tract', 'us.census.tiger.zcta5',
'us.census.tiger.county', 'us.census.tiger.block_group']
SELECT ARRAY_AGG(column_id ORDER BY score DESC) =
ARRAY['us.census.tiger.census_tract', 'us.census.tiger.block_group',
'us.census.tiger.zcta5', 'us.census.tiger.county']
AS _obs_geometryscores_500km_buffer_2500_geoms
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'], 2500);
'us.census.tiger.zcta5', 'us.census.tiger.county'], 2500)
WHERE table_id LIKE '%2015%';
SELECT ARRAY_AGG(geom_id ORDER BY score DESC) =
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county']
SELECT ARRAY_AGG(column_id ORDER BY score DESC)
= ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.county', 'us.census.tiger.zcta5']
AS _obs_geometryscores_500km_buffer_25000_geoms
FROM cdb_observatory._OBS_GetGeometryScores(
ST_Buffer(ST_SetSRID(ST_MakePoint(-73.9, 40.7), 4326)::Geography, 50000)::Geometry(Geometry, 4326),
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'], 25000);
'us.census.tiger.zcta5', 'us.census.tiger.county'], 25000)
WHERE table_id LIKE '%2015%';
-- Check that one small geom approximates tract data
WITH geoms AS (SELECT cdb_observatory._testarea() the_geom),
summary AS (SELECT ST_SetSRID(ST_Extent(the_geom), 4326) extent,
COUNT(*)::INT cnt,
SUM(ST_Area(the_geom))::Numeric sumarea
FROM geoms)
SELECT column_id = 'us.census.tiger.census_tract' testarea_uses_tract
FROM summary, LATERAL (
SELECT *
FROM cdb_observatory._OBS_GetGeometryScores(extent,
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'],
cnt, sumarea)) foo
ORDER BY score DESC LIMIT 1;
-- Check that randomly distributed points always use smallest geometry if we
-- order by numgeoms desc
WITH geoms as (SELECT UNNEST(ARRAY[
cdb_observatory._testpoint(),
st_translate(cdb_observatory._testpoint(), -0.003, 0),
st_translate(cdb_observatory._testpoint(), -0.006, 0)
]) the_geom),
summary as (SELECT
ST_SetSRID(ST_Extent(the_geom), 4326) extent,
SUM(ST_Area(the_geom))::Numeric area,
COUNT(*)::INTEGER cnt
FROM geoms
)
SELECT column_id = 'us.census.tiger.block_group' points_use_bg
FROM summary, LATERAL (
SELECT * FROM cdb_observatory._OBS_GetGeometryScores(
extent,
ARRAY['us.census.tiger.block_group', 'us.census.tiger.census_tract',
'us.census.tiger.zcta5', 'us.census.tiger.county'],
cnt, area)) foo
WHERE table_id LIKE '%2015%'
ORDER BY numgeoms DESC LIMIT 1;
--
-- OBS_LegacyBuilderMetadata tests
@@ -485,15 +532,25 @@ SELECT 'us.census.acs.B19013001' IN (SELECT
FROM cdb_observatory.OBS_LegacyBuilderMetadata()
) AS _median_income_in_legacy_builder_metadata;
SELECT 'us.census.acs.B19083001' IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata()
) AS _gini_in_legacy_builder_metadata;
SELECT 'us.census.acs.B01003001' IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata('sum')
) AS _total_pop_in_legacy_builder_metadata_sums;
SELECT 'us.census.acs.B19013001' NOT IN (SELECT
SELECT 'us.census.acs.B19013001' IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata('sum')
) AS _median_income_not_in_legacy_builder_metadata_sums;
) AS _median_income_in_legacy_builder_metadata_sums;
SELECT 'us.census.acs.B19083001' NOT IN (SELECT
(jsonb_array_elements(((jsonb_array_elements(subsection))->'f1')->'columns')->'f1')->>'id' AS id
FROM cdb_observatory.OBS_LegacyBuilderMetadata('sum')
) AS _gini_not_in_legacy_builder_metadata_sums;
SELECT COUNT(*) = 0 _no_dupe_subsections_in_legacy_builder_metadata FROM (
SELECT name, subsection, count(*) FROM

View File

@@ -42,7 +42,7 @@ SELECT cdb_observatory.OBS_GetBoundary(
SELECT cdb_observatory.OBS_GetBoundary(
cdb_observatory._TestPoint(),
'us.census.tiger.census_tract',
'2014'
'2015'
) = :'cartodb_census_tract_geometry' As OBS_GetBoundary_year_census_tract;
-- should return null
@@ -65,7 +65,7 @@ SELECT cdb_observatory.OBS_GetBoundaryId(
SELECT cdb_observatory.OBS_GetBoundaryId(
cdb_observatory._TestPoint(),
'us.census.tiger.census_tract',
'2014'
'2015'
) = '36047048500'::text As OBS_GetBoundaryId_cartodb_census_tract_with_year;
-- should give back '36047', the geoid of cartodb's county (King's/
@@ -73,7 +73,7 @@ SELECT cdb_observatory.OBS_GetBoundaryId(
SELECT cdb_observatory.OBS_GetBoundaryId(
cdb_observatory._TestPoint(),
'us.census.tiger.county',
'2014'
'2015'
) = '36047'::text As OBS_GetBoundaryId_cartodb_county_with_year;
-- should give back null since there is not a census tract at null island
@@ -104,7 +104,7 @@ SELECT cdb_observatory.OBS_GetBoundaryById(
SELECT cdb_observatory.OBS_GetBoundaryById(
'36047',
'us.census.tiger.county',
'2014'
'2015'
) = :'cartodb_county_geometry' OBS_GetBoundaryById_boundary_id_mismatch_geom_id;
-- should give null since boundary_id does not match geometry reference id
@@ -115,6 +115,34 @@ SELECT cdb_observatory.OBS_GetBoundaryById(
-- _OBS_GetBoundariesByGeometry
SELECT array_agg(geom_refs) = Array[ '1104486618765', '1104486642837',
'1104991798384', '1105044325367',
'1105089330200', '1105089331758']
As _OBS_GetBoundariesByGeometry_roads_around_cartodb
FROM (
SELECT *
FROM cdb_observatory._OBS_GetBoundariesByGeometry(
-- near CartoDB's office
ST_MakeEnvelope(-74,40.69,-73.99,40.7,
4326),
'us.census.tiger.prisecroads_geom')
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
SELECT
array_agg(geom_refs) = Array['1102654301684', '1102654307106',
'1102654326686', '1102654351507' ]
As _OBS_GetBoundariesByGeometry_points_around_cartodb
FROM (
SELECT *
FROM cdb_observatory._OBS_GetBoundariesByGeometry(
-- near CartoDB's office
ST_MakeEnvelope(-73.9452409744,40.6988851644,-73.9280319214,40.7101254524,
4326),
'us.census.tiger.pointlm_geom')
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
-- check that all census tracts intersecting with the geometry are returned
-- order them to ensure that the same values are returned
SELECT
@@ -270,7 +298,7 @@ FROM (
-73.9280319214,40.7101254524,
4326),
'us.census.tiger.census_tract',
'2014')
'2015')
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
@@ -313,7 +341,7 @@ FROM (
cdb_observatory._testpoint(),
500,
'us.census.tiger.census_tract',
'2014')
'2015')
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
@@ -330,21 +358,4 @@ FROM (
ORDER BY geom_refs ASC
) As m(the_geom, geom_refs);
-- _OBS_GetGeometryMetadata
-- get metadata for census tracts
SELECT
geoid_colname = 'geoid' As geoid_name_matches,
target_table = 'obs_fc050f0b8673cfe3c6aa1040f749eb40975691b7' As table_name_matches,
geom_colname = 'the_geom' As geom_name_matches
FROM cdb_observatory._OBS_GetGeometryMetadata('us.census.tiger.census_tract')
As m(geoid_colname, target_table, geom_colname);
-- get metadata for boundaries with clipped geometries
SELECT
geoid_colname = 'geoid' As geoid_name_matches,
target_table = 'obs_fcd4e4f5610f6764973ef8c0c215b2e80bec8963' As table_name_matches,
geom_colname = 'the_geom' As geom_name_matches
FROM cdb_observatory._OBS_GetGeometryMetadata('us.census.tiger.census_tract_clipped') As m(geoid_colname, target_table, geom_colname);
\i test/fixtures/drop_fixtures.sql

View File

@@ -1,3 +1,4 @@
nose
nose-timer
nose_parameterized
psycopg2

View File

@@ -2,38 +2,21 @@ from nose.tools import assert_equal, assert_is_not_none
from nose.plugins.skip import SkipTest
from nose_parameterized import parameterized
from itertools import izip_longest
from util import query
from collections import OrderedDict
import json
def grouper(iterable, n, fillvalue=None):
"Collect data into fixed-length chunks or blocks"
# grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx
args = [iter(iterable)] * n
return izip_longest(fillvalue=fillvalue, *args)
USE_SCHEMA = True
MEASURE_COLUMNS = query('''
SELECT distinct numer_id, numer_aggregate NOT ILIKE 'sum' as point_only
FROM observatory.obs_meta
WHERE numer_type ILIKE 'numeric'
AND numer_weight > 0
''').fetchall()
CATEGORY_COLUMNS = query('''
SELECT distinct numer_id
FROM observatory.obs_meta
WHERE numer_type ILIKE 'text'
AND numer_weight > 0
''').fetchall()
BOUNDARY_COLUMNS = query('''
SELECT id FROM observatory.obs_column
WHERE type ILIKE 'geometry'
AND weight > 0
''').fetchall()
US_CENSUS_MEASURE_COLUMNS = query('''
SELECT distinct numer_name
FROM observatory.obs_meta
WHERE numer_type ILIKE 'numeric'
AND 'us.census.acs.acs' = ANY (subsection_tags)
AND numer_weight > 0
''').fetchall()
SKIP_COLUMNS = set([
u'mx.inegi_columns.INDI18',
u'mx.inegi_columns.ECO40',
@@ -61,8 +44,72 @@ SKIP_COLUMNS = set([
u'mx.inegi_columns.POB33',
u'mx.inegi_columns.POB58',
u'mx.inegi_columns.DISC4',
u'mx.inegi_columns.VIV41',
u'mx.inegi_columns.VIV40',
u'mx.inegi_columns.VIV17',
u'mx.inegi_columns.VIV25',
u'mx.inegi_columns.EDU10',
u'whosonfirst.wof_disputed_name',
u'us.census.tiger.fullname',
u'whosonfirst.wof_marinearea_name',
u'us.census.tiger.mtfcc',
u'whosonfirst.wof_county_name',
u'whosonfirst.wof_region_name',
'fr.insee.P12_RP_CHOS', 'fr.insee.P12_RP_HABFOR'
, 'fr.insee.P12_RP_EAUCH', 'fr.insee.P12_RP_BDWC'
, 'fr.insee.P12_RP_MIDUR', 'fr.insee.P12_RP_CLIM'
, 'fr.insee.P12_RP_MIBOIS', 'fr.insee.P12_RP_CASE'
, 'fr.insee.P12_RP_TTEGOU', 'fr.insee.P12_RP_ELEC'
, 'fr.insee.P12_ACTOCC15P_ILT45D'
, 'fr.insee.P12_RP_CHOS', 'fr.insee.P12_RP_HABFOR'
, 'fr.insee.P12_RP_EAUCH', 'fr.insee.P12_RP_BDWC'
, 'fr.insee.P12_RP_MIDUR', 'fr.insee.P12_RP_CLIM'
, 'fr.insee.P12_RP_MIBOIS', 'fr.insee.P12_RP_CASE'
, 'fr.insee.P12_RP_TTEGOU', 'fr.insee.P12_RP_ELEC'
, 'fr.insee.P12_ACTOCC15P_ILT45D'
, 'uk.ons.LC3202WA0007'
, 'uk.ons.LC3202WA0010'
, 'uk.ons.LC3202WA0004'
, 'uk.ons.LC3204WA0004'
, 'uk.ons.LC3204WA0007'
, 'uk.ons.LC3204WA0010'
])
MEASURE_COLUMNS = query('''
SELECT ARRAY_AGG(DISTINCT numer_id) numer_ids,
numer_aggregate,
denom_reltype,
section_tags
FROM observatory.obs_meta
WHERE numer_weight > 0
AND numer_id NOT IN ('{skip}')
AND section_tags IS NOT NULL
AND subsection_tags IS NOT NULL
GROUP BY numer_aggregate, section_tags, denom_reltype
'''.format(skip="', '".join(SKIP_COLUMNS))).fetchall()
#CATEGORY_COLUMNS = query('''
#SELECT distinct numer_id
#FROM observatory.obs_meta
#WHERE numer_type ILIKE 'text'
#AND numer_weight > 0
#''').fetchall()
#
#BOUNDARY_COLUMNS = query('''
#SELECT id FROM observatory.obs_column
#WHERE type ILIKE 'geometry'
#AND weight > 0
#''').fetchall()
#
#US_CENSUS_MEASURE_COLUMNS = query('''
#SELECT distinct numer_name
#FROM observatory.obs_meta
#WHERE numer_type ILIKE 'numeric'
#AND 'us.census.acs' = ANY (subsection_tags)
#AND numer_weight > 0
#''').fetchall()
#def default_geometry_id(column_id):
# '''
# Returns default test point for the column_id.
@@ -113,40 +160,43 @@ def default_lonlat(column_id):
elif column_id.startswith('th.'):
return (13.725377712079784, 100.49263000488281)
# cols for French Guyana only
elif column_id in ('fr.insee.P12_RP_CHOS', 'fr.insee.P12_RP_HABFOR'
, 'fr.insee.P12_RP_EAUCH', 'fr.insee.P12_RP_BDWC'
, 'fr.insee.P12_RP_MIDUR', 'fr.insee.P12_RP_CLIM'
, 'fr.insee.P12_RP_MIBOIS', 'fr.insee.P12_RP_CASE'
, 'fr.insee.P12_RP_TTEGOU', 'fr.insee.P12_RP_ELEC'
, 'fr.insee.P12_ACTOCC15P_ILT45D'
, 'fr.insee.P12_RP_CHOS', 'fr.insee.P12_RP_HABFOR'
, 'fr.insee.P12_RP_EAUCH', 'fr.insee.P12_RP_BDWC'
, 'fr.insee.P12_RP_MIDUR', 'fr.insee.P12_RP_CLIM'
, 'fr.insee.P12_RP_MIBOIS', 'fr.insee.P12_RP_CASE'
, 'fr.insee.P12_RP_TTEGOU', 'fr.insee.P12_RP_ELEC'
, 'fr.insee.P12_ACTOCC15P_ILT45D'):
return (4.938408371206558, -52.32908248901367)
#elif column_id in ('fr.insee.P12_RP_CHOS', 'fr.insee.P12_RP_HABFOR'
# , 'fr.insee.P12_RP_EAUCH', 'fr.insee.P12_RP_BDWC'
# , 'fr.insee.P12_RP_MIDUR', 'fr.insee.P12_RP_CLIM'
# , 'fr.insee.P12_RP_MIBOIS', 'fr.insee.P12_RP_CASE'
# , 'fr.insee.P12_RP_TTEGOU', 'fr.insee.P12_RP_ELEC'
# , 'fr.insee.P12_ACTOCC15P_ILT45D'
# , 'fr.insee.P12_RP_CHOS', 'fr.insee.P12_RP_HABFOR'
# , 'fr.insee.P12_RP_EAUCH', 'fr.insee.P12_RP_BDWC'
# , 'fr.insee.P12_RP_MIDUR', 'fr.insee.P12_RP_CLIM'
# , 'fr.insee.P12_RP_MIBOIS', 'fr.insee.P12_RP_CASE'
# , 'fr.insee.P12_RP_TTEGOU', 'fr.insee.P12_RP_ELEC'
# , 'fr.insee.P12_ACTOCC15P_ILT45D'):
# return (4.938408371206558, -52.32908248901367)
elif column_id.startswith('fr.'):
return (48.860875144709475, 2.3613739013671875)
elif column_id.startswith('ca.'):
return (43.65594991256823, -79.37965393066406)
elif column_id.startswith('us.census.'):
return (40.7, -73.9)
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('us.dma.'):
return (40.7, -73.9)
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('us.ihme.'):
return (40.7, -73.9)
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('us.bls.'):
return (40.7, -73.9)
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('us.qcew.'):
return (40.7, -73.9)
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('whosonfirst.'):
return (40.7, -73.9)
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('us.epa.'):
return (40.7, -73.9)
return (28.3305906291771, -81.3544048197256)
elif column_id.startswith('eu.'):
raise SkipTest('No tests for Eurostat!')
#return (52.52207036136366, 13.40606689453125)
elif column_id.startswith('br.'):
return (-23.53, -46.63)
elif column_id.startswith('au.'):
return (-33.8806, 151.2131)
else:
raise Exception('No catalog point set for {}'.format(column_id))
@@ -166,46 +216,74 @@ def default_area(column_id):
point=point)
return area
@parameterized(US_CENSUS_MEASURE_COLUMNS)
def test_get_us_census_measure_points(name):
resp = query('''
SELECT * FROM {schema}OBS_GetUSCensusMeasure({point}, '{name}')
'''.format(name=name.replace("'", "''"),
schema='cdb_observatory.' if USE_SCHEMA else '',
point=default_point('')))
rows = resp.fetchall()
assert_equal(1, len(rows))
assert_is_not_none(rows[0][0])
#@parameterized(US_CENSUS_MEASURE_COLUMNS)
#def test_get_us_census_measure_points(name):
# resp = query('''
#SELECT * FROM {schema}OBS_GetUSCensusMeasure({point}, '{name}')
# '''.format(name=name.replace("'", "''"),
# schema='cdb_observatory.' if USE_SCHEMA else '',
# point=default_point('')))
# rows = resp.fetchall()
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
@parameterized(MEASURE_COLUMNS)
def test_get_measure_areas(column_id, point_only):
if column_id in SKIP_COLUMNS:
raise SkipTest('Column {} should be skipped'.format(column_id))
if point_only:
def grouped_measure_columns():
for numer_ids, numer_aggregate, denom_reltype, section_tags in MEASURE_COLUMNS:
for colgroup in grouper(numer_ids, 50):
yield [c for c in colgroup if c], numer_aggregate, denom_reltype, section_tags
@parameterized(grouped_measure_columns())
def test_get_measure_points(numer_ids, numer_aggregate, denom_reltype, section_tags):
_test_measures(numer_ids, numer_aggregate, section_tags, denom_reltype, default_point(numer_ids[0]))
@parameterized(grouped_measure_columns())
def test_get_measure_areas(numer_ids, numer_aggregate, denom_reltype, section_tags):
if numer_aggregate is None or numer_aggregate.lower() not in ('sum', 'median', 'average'):
return
resp = query('''
SELECT * FROM {schema}OBS_GetMeasure({area}, '{column_id}')
'''.format(column_id=column_id,
schema='cdb_observatory.' if USE_SCHEMA else '',
area=default_area(column_id)))
rows = resp.fetchall()
assert_equal(1, len(rows))
assert_is_not_none(rows[0][0])
if numer_aggregate.lower() in ('median', 'average') \
and (denom_reltype is None \
or denom_reltype.lower() != 'universe'):
return
_test_measures(numer_ids, numer_aggregate, section_tags, denom_reltype, default_area(numer_ids[0]))
@parameterized(MEASURE_COLUMNS)
def test_get_measure_points(column_id, point_only):
if column_id in SKIP_COLUMNS:
raise SkipTest('Column {} should be skipped'.format(column_id))
resp = query('''
SELECT * FROM {schema}OBS_GetMeasure({point}, '{column_id}')
'''.format(column_id=column_id,
schema='cdb_observatory.' if USE_SCHEMA else '',
point=default_point(column_id)))
rows = resp.fetchall()
assert_equal(1, len(rows))
assert_is_not_none(rows[0][0])
def _test_measures(numer_ids, numer_aggregate, section_tags, denom_reltype, geom):
in_params = []
for numer_id in numer_ids:
in_params.append({
'numer_id': numer_id,
'normalization': 'predenominated'
})
params = query(u'''
SELECT {schema}OBS_GetMeta({geom}, '{in_params}')
'''.format(schema='cdb_observatory.' if USE_SCHEMA else '',
geom=geom,
in_params=json.dumps(in_params))).fetchone()[0]
# We can get duplicate IDs from multi-denominators, so for now we
# compress those measures into a single
params = OrderedDict([(p['id'], p) for p in params]).values()
assert_equal(len(params), len(in_params),
'Inconsistent out and in params for {}'.format(in_params))
q = u'''
SELECT * FROM {schema}OBS_GetData(ARRAY[({geom}, 1)::geomval], '{params}')
'''.format(schema='cdb_observatory.' if USE_SCHEMA else '',
geom=geom,
params=json.dumps(params).replace(u"'", "''"))
resp = query(q).fetchone()
assert_is_not_none(resp, 'NULL returned for {}'.format(in_params))
rawvals = resp[1]
vals = [v['value'] for v in rawvals]
assert_equal(len(vals), len(in_params))
for i, val in enumerate(vals):
assert_is_not_none(val, 'NULL for {}'.format(in_params[i]['numer_id']))
#@parameterized(CATEGORY_COLUMNS)
#def test_get_category_areas(column_id):
@@ -219,18 +297,18 @@ SELECT * FROM {schema}OBS_GetMeasure({point}, '{column_id}')
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
@parameterized(CATEGORY_COLUMNS)
def test_get_category_points(column_id):
if column_id in SKIP_COLUMNS:
raise SkipTest('Column {} should be skipped'.format(column_id))
resp = query('''
SELECT * FROM {schema}OBS_GetCategory({point}, '{column_id}')
'''.format(column_id=column_id,
schema='cdb_observatory.' if USE_SCHEMA else '',
point=default_point(column_id)))
rows = resp.fetchall()
assert_equal(1, len(rows))
assert_is_not_none(rows[0][0])
#@parameterized(CATEGORY_COLUMNS)
#def test_get_category_points(column_id):
# if column_id in SKIP_COLUMNS:
# raise SkipTest('Column {} should be skipped'.format(column_id))
# resp = query('''
#SELECT * FROM {schema}OBS_GetCategory({point}, '{column_id}')
# '''.format(column_id=column_id,
# schema='cdb_observatory.' if USE_SCHEMA else '',
# point=default_point(column_id)))
# rows = resp.fetchall()
# assert_equal(1, len(rows))
# assert_is_not_none(rows[0][0])
#@parameterized(BOUNDARY_COLUMNS)
#def test_get_boundaries_by_geometry(column_id):

View File

@@ -5,58 +5,348 @@ from util import query, commit
from time import time
import json
import os
USE_SCHEMA = True
for q in (
'DROP TABLE IF EXISTS obs_censustest',
'''CREATE TABLE obs_censustest (cartodb_id SERIAL PRIMARY KEY,
the_geom GEOMETRY, name TEXT, measure NUMERIC, category TEXT)''',
'''INSERT INTO obs_censustest (the_geom, name)
SELECT * FROM {schema}OBS_GetBoundariesByGeometry(
st_makeenvelope(-74.05437469482422,40.66319159533881,
-73.81885528564453,40.745696344339564, 4326),
'us.census.tiger.block_group_clipped') As m(the_geom, geoid)'''
'DROP TABLE IF EXISTS obs_perftest_simple',
'''CREATE TABLE obs_perftest_simple (cartodb_id SERIAL PRIMARY KEY,
point GEOMETRY,
geom GEOMETRY,
offset_geom GEOMETRY,
name TEXT, measure NUMERIC, category TEXT)''',
'''INSERT INTO obs_perftest_simple (point, geom, offset_geom, name)
SELECT ST_PointOnSurface(the_geom) point,
the_geom geom,
ST_Translate(the_geom, -0.1, 0.1) offset_geom,
geom_refs AS name
FROM (SELECT * FROM {schema}OBS_GetBoundariesByGeometry(
st_makeenvelope(-74.1, 40.5,
-73.8, 40.9, 4326),
'us.census.tiger.census_tract_clipped')) foo
ORDER BY ST_NPoints(the_geom) ASC
LIMIT 1000''',
'DROP TABLE IF EXISTS obs_perftest_complex',
'''CREATE TABLE obs_perftest_complex (cartodb_id SERIAL PRIMARY KEY,
point GEOMETRY,
geom GEOMETRY,
offset_geom GEOMETRY,
name TEXT, measure NUMERIC, category TEXT)''',
'''INSERT INTO obs_perftest_complex (point, geom, offset_geom, name)
SELECT ST_PointOnSurface(the_geom) point,
the_geom geom,
ST_Translate(the_geom, -0.1, 0.1) offset_geom,
geom_refs AS name
FROM (SELECT * FROM {schema}OBS_GetBoundariesByGeometry(
st_makeenvelope(-75.05437469482422,40.66319159533881,
-73.81885528564453,41.745696344339564, 4326),
'us.census.tiger.county_clipped')) foo
ORDER BY ST_NPoints(the_geom) DESC
LIMIT 50;''',
'DROP TABLE IF EXISTS obs_perftest_country_simple',
'''CREATE TABLE obs_perftest_country_simple (cartodb_id SERIAL PRIMARY KEY,
geom GEOMETRY,
name TEXT) ''',
'''INSERT INTO obs_perftest_country_simple (geom, name)
SELECT the_geom geom,
geom_refs AS name
FROM (SELECT * FROM {schema}OBS_GetBoundariesByGeometry(
st_makeenvelope(-179,-89, 179,89, 4326),
'whosonfirst.wof_country_geom')) foo
ORDER BY ST_NPoints(the_geom) ASC
LIMIT 50;''',
'DROP TABLE IF EXISTS obs_perftest_country_complex',
'''CREATE TABLE obs_perftest_country_complex (cartodb_id SERIAL PRIMARY KEY,
geom GEOMETRY,
name TEXT) ''',
'''INSERT INTO obs_perftest_country_complex (geom, name)
SELECT the_geom geom,
geom_refs AS name
FROM (SELECT * FROM {schema}OBS_GetBoundariesByGeometry(
st_makeenvelope(-179,-89, 179,89, 4326),
'whosonfirst.wof_country_geom')) foo
ORDER BY ST_NPoints(the_geom) DESC
LIMIT 50;''',
#'''SET statement_timeout = 5000;'''
):
query(q.format(
q_formatted = q.format(
schema='cdb_observatory.' if USE_SCHEMA else '',
))
)
start = time()
resp = query(q_formatted)
end = time()
print('{} for {}'.format(int(end - start), q_formatted))
if q.lower().startswith('insert'):
if resp.rowcount == 0:
raise Exception('''Performance fixture creation "{}" inserted 0 rows,
this will break tests. Check the query to determine
what is going wrong.'''.format(q_formatted))
commit()
ARGS = {
'OBS_GetMeasureByID': "name, 'us.census.acs.B01001002', '{}'",
'OBS_GetMeasure': "{}, 'us.census.acs.B01001002'",
'OBS_GetCategory': "{}, 'us.census.spielman_singleton_segments.X10'",
('OBS_GetMeasureByID', None): "name, 'us.census.acs.B01001002', '{}'",
('OBS_GetMeasure', 'predenominated'): "{}, 'us.census.acs.B01003001', null, {}",
('OBS_GetMeasure', 'area'): "{}, 'us.census.acs.B01001002', 'area', {}",
('OBS_GetMeasure', 'denominator'): "{}, 'us.census.acs.B01001002', 'denominator', {}",
('OBS_GetCategory', None): "{}, 'us.census.spielman_singleton_segments.X10', {}",
('_OBS_GetGeometryScores', None): "{}, NULL"
}
GEOMS = {
'point': 'ST_PointOnSurface(the_geom)',
'polygon_match': 'the_geom',
'polygon_buffered': 'ST_Buffer(the_geom::GEOGRAPHY, 1000)::GEOMETRY(GEOMETRY, 4326)',
}
def record(params, results):
sha = os.environ['OBS_EXTENSION_SHA']
msg = os.environ.get('OBS_EXTENSION_MSG')
fpath = os.path.join(os.environ['OBS_PERFTEST_DIR'], sha + '.json')
if os.path.isfile(fpath):
tests = json.load(open(fpath, 'r'))
else:
tests = {}
with open(fpath, 'w') as fhandle:
tests[json.dumps(params)] = {
'params': params,
'results': results
}
json.dump(tests, fhandle)
@parameterized([
('simple', '_OBS_GetGeometryScores', 'NULL', 1),
('simple', '_OBS_GetGeometryScores', 'NULL', 500),
('simple', '_OBS_GetGeometryScores', 'NULL', 3000),
('complex', '_OBS_GetGeometryScores', 'NULL', 1),
('complex', '_OBS_GetGeometryScores', 'NULL', 500),
('complex', '_OBS_GetGeometryScores', 'NULL', 3000),
('country_simple', '_OBS_GetGeometryScores', 'NULL', 1),
('country_simple', '_OBS_GetGeometryScores', 'NULL', 500),
('country_simple', '_OBS_GetGeometryScores', 'NULL', 5000),
('country_complex', '_OBS_GetGeometryScores', 'NULL', 1),
('country_complex', '_OBS_GetGeometryScores', 'NULL', 500),
('country_complex', '_OBS_GetGeometryScores', 'NULL', 5000),
])
def test_getgeometryscores_performance(geom_complexity, api_method, filters, target_geoms):
print api_method, geom_complexity, filters, target_geoms
rownums = (1, 5, 10, ) if 'complex' in geom_complexity else (5, 25, 50,)
results = []
for rows in rownums:
stmt = '''SELECT {schema}{api_method}(geom, {filters}, {target_geoms})
FROM obs_perftest_{complexity}
WHERE cartodb_id <= {n}'''.format(
complexity=geom_complexity,
schema='cdb_observatory.' if USE_SCHEMA else '',
api_method=api_method,
filters=filters,
target_geoms=target_geoms,
n=rows)
start = time()
query(stmt)
end = time()
qps = (rows / (end - start))
results.append({
'rows': rows,
'qps': qps,
'stmt': stmt
})
print rows, ': ', qps, ' QPS'
if 'OBS_RECORD_TEST' in os.environ:
record({
'geom_complexity': geom_complexity,
'api_method': api_method,
'filters': filters,
'target_geoms': target_geoms
}, results)
@parameterized([
('simple', 'OBS_GetMeasureByID', None, 'us.census.tiger.census_tract', None),
('complex', 'OBS_GetMeasureByID', None, 'us.census.tiger.county', None),
('simple', 'OBS_GetMeasure', 'predenominated', 'point', 'NULL'),
('simple', 'OBS_GetMeasure', 'predenominated', 'geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'predenominated', 'offset_geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'area', 'point', 'NULL'),
('simple', 'OBS_GetMeasure', 'area', 'geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'area', 'offset_geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'denominator', 'point', 'NULL'),
('simple', 'OBS_GetMeasure', 'denominator', 'geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'denominator', 'offset_geom', 'NULL'),
('simple', 'OBS_GetCategory', None, 'point', 'NULL'),
('simple', 'OBS_GetCategory', None, 'geom', 'NULL'),
('simple', 'OBS_GetCategory', None, 'offset_geom', 'NULL'),
('simple', 'OBS_GetMeasure', 'predenominated', 'point', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'predenominated', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'predenominated', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'area', 'point', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'area', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'area', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'denominator', 'point', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'denominator', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetMeasure', 'denominator', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetCategory', None, 'point', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetCategory', None, 'geom', "'us.census.tiger.census_tract'"),
('simple', 'OBS_GetCategory', None, 'offset_geom', "'us.census.tiger.census_tract'"),
('complex', 'OBS_GetMeasure', 'predenominated', 'geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'predenominated', 'offset_geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'area', 'geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'area', 'offset_geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'denominator', 'geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'denominator', 'offset_geom', 'NULL'),
('complex', 'OBS_GetCategory', None, 'geom', 'NULL'),
('complex', 'OBS_GetCategory', None, 'offset_geom', 'NULL'),
('complex', 'OBS_GetMeasure', 'predenominated', 'geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'predenominated', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'area', 'geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'area', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'denominator', 'geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetMeasure', 'denominator', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'OBS_GetCategory', None, 'geom', "'us.census.tiger.census_tract'"),
('complex', 'OBS_GetCategory', None, 'offset_geom', "'us.census.tiger.census_tract'"),
])
def test_getmeasure_performance(geom_complexity, api_method, normalization, geom, boundary):
print api_method, geom_complexity, normalization, geom, boundary
col = 'measure' if 'measure' in api_method.lower() else 'category'
results = []
rownums = (1, 5, 10, ) if geom_complexity == 'complex' else (5, 25, 50, )
for rows in rownums:
stmt = '''UPDATE obs_perftest_{complexity}
SET {col} = {schema}{api_method}({args})
WHERE cartodb_id <= {n}'''.format(
col=col,
complexity=geom_complexity,
schema='cdb_observatory.' if USE_SCHEMA else '',
api_method=api_method,
args=ARGS[api_method, normalization].format(geom, boundary),
n=rows)
start = time()
query(stmt)
end = time()
qps = (rows / (end - start))
results.append({
'rows': rows,
'qps': qps,
'stmt': stmt
})
print rows, ': ', qps, ' QPS'
if 'OBS_RECORD_TEST' in os.environ:
record({
'geom_complexity': geom_complexity,
'api_method': api_method,
'normalization': normalization,
'boundary': boundary,
'geom': geom
}, results)
@parameterized([
('OBS_GetMeasureByID', 'us.census.tiger.block_group_clipped'),
('OBS_GetMeasureByID', 'us.census.tiger.county'),
('OBS_GetMeasure', GEOMS['point']),
('OBS_GetMeasure', GEOMS['polygon_match']),
('OBS_GetMeasure', GEOMS['polygon_buffered']),
('OBS_GetCategory', GEOMS['point']),
('OBS_GetCategory', GEOMS['polygon_match']),
('OBS_GetCategory', GEOMS['polygon_buffered']),
('simple', 'predenominated', 'point', 'null'),
('simple', 'predenominated', 'geom', 'null'),
('simple', 'predenominated', 'offset_geom', 'null'),
('simple', 'area', 'point', 'null'),
('simple', 'area', 'geom', 'null'),
('simple', 'area', 'offset_geom', 'null'),
('simple', 'denominator', 'point', 'null'),
('simple', 'denominator', 'geom', 'null'),
('simple', 'denominator', 'offset_geom', 'null'),
('simple', 'predenominated', 'point', "'us.census.tiger.census_tract'"),
('simple', 'predenominated', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'predenominated', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'area', 'point', "'us.census.tiger.census_tract'"),
('simple', 'area', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'area', 'offset_geom', "'us.census.tiger.census_tract'"),
('simple', 'denominator', 'point', "'us.census.tiger.census_tract'"),
('simple', 'denominator', 'geom', "'us.census.tiger.census_tract'"),
('simple', 'denominator', 'offset_geom', "'us.census.tiger.census_tract'"),
('complex', 'predenominated', 'geom', 'null'),
('complex', 'predenominated', 'offset_geom', 'null'),
('complex', 'area', 'geom', 'null'),
('complex', 'area', 'offset_geom', 'null'),
('complex', 'denominator', 'geom', 'null'),
('complex', 'denominator', 'offset_geom', 'null'),
('complex', 'predenominated', 'geom', "'us.census.tiger.county'"),
('complex', 'predenominated', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'area', 'geom', "'us.census.tiger.county'"),
('complex', 'area', 'offset_geom', "'us.census.tiger.county'"),
('complex', 'denominator', 'geom', "'us.census.tiger.county'"),
('complex', 'denominator', 'offset_geom', "'us.census.tiger.county'"),
])
def test_performance(api_method, arg):
print api_method, arg
col = 'measure' if 'measure' in api_method.lower() else 'category'
for rows in (1, 10, 50, 100):
q = 'UPDATE obs_censustest SET {col} = {schema}{api_method}({args}) WHERE cartodb_id < {n}'.format(
col=col,
schema='cdb_observatory.' if USE_SCHEMA else '',
api_method=api_method,
args=ARGS[api_method].format(arg),
n=rows+1)
start = time()
query(q)
end = time()
print rows, ': ', (rows / (end - start)), ' QPS'
def test_getdata_performance(geom_complexity, normalization, geom, boundary):
print geom_complexity, normalization, geom, boundary
cols = ['us.census.acs.B01001002',
'us.census.acs.B01001003',
'us.census.acs.B01001004',
'us.census.acs.B01001005',
'us.census.acs.B01001006',
'us.census.acs.B01001007',
'us.census.acs.B01001008',
'us.census.acs.B01001009',
'us.census.acs.B01001010',
'us.census.acs.B01001011', ]
in_meta = [{"numer_id": col,
"normalization": normalization,
"geom_id": None if boundary.lower() == 'null' else boundary.replace("'", '')}
for col in cols]
rownums = (1, 5, 10, ) if geom_complexity == 'complex' else (10, 50, 100)
for num_meta in (1, 10, ):
results = []
for rows in rownums:
stmt = '''
with data as (
SELECT id, data FROM {schema}OBS_GetData(
(SELECT array_agg(({geom}, cartodb_id)::geomval)
FROM obs_perftest_{complexity}
WHERE cartodb_id <= {n}),
(SELECT {schema}OBS_GetMeta(
(SELECT st_setsrid(st_extent({geom}), 4326)
FROM obs_perftest_{complexity}
WHERE cartodb_id <= {n}),
'{in_meta}'::JSON
))
))
UPDATE obs_perftest_{complexity}
SET measure = (data->0->>'value')::Numeric
FROM data
WHERE obs_perftest_{complexity}.cartodb_id = data.id
;
'''.format(
point_or_poly='point' if geom == 'point' else 'polygon',
complexity=geom_complexity,
schema='cdb_observatory.' if USE_SCHEMA else '',
geom=geom,
in_meta=json.dumps(in_meta[0:num_meta]),
n=rows)
start = time()
query(stmt)
end = time()
qps = (rows / (end - start))
results.append({
'rows': rows,
'qps': qps,
'stmt': stmt
})
print rows, ': ', qps, ' QPS'
if 'OBS_RECORD_TEST' in os.environ:
record({
'geom_complexity': geom_complexity,
'api_method': 'OBS_GetData',
'normalization': normalization,
'boundary': boundary,
'geom': geom,
'num_meta': str(num_meta)
}, results)