Compare commits
151 Commits
add-salesf
...
pysal_gwr
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e52dd64dad | ||
|
|
d404a66d99 | ||
|
|
34161fd8a4 | ||
|
|
850f3f6a31 | ||
|
|
021738d9f8 | ||
|
|
161bb14c08 | ||
|
|
f8739b6a68 | ||
|
|
5df846fe66 | ||
|
|
b9c4e6e8ef | ||
|
|
5c34e08c7d | ||
|
|
3c8ac7d45d | ||
|
|
59dc9434f7 | ||
|
|
2c6fcfc294 | ||
|
|
15b460eeb9 | ||
|
|
b0dcd7f572 | ||
|
|
2547318f59 | ||
|
|
25e453a882 | ||
|
|
62076bb48c | ||
|
|
6ab1c285d9 | ||
|
|
7efb064fd9 | ||
|
|
77b7217368 | ||
|
|
413e6aa5c7 | ||
|
|
22ce970062 | ||
|
|
f4ccfe712b | ||
|
|
e6a9397373 | ||
|
|
a9b7d2a9cc | ||
|
|
a84806e820 | ||
|
|
4a1efc4e3c | ||
|
|
b22f79b0cc | ||
|
|
8aca98433b | ||
|
|
b8d08d5a96 | ||
|
|
7c63b66fdd | ||
|
|
8beb7220b2 | ||
|
|
b39d0150c7 | ||
|
|
b399e883ad | ||
|
|
6f400ee2b7 | ||
|
|
c3e99cda30 | ||
|
|
5be5a48894 | ||
|
|
1c0e4fae47 | ||
|
|
8b061bac72 | ||
|
|
76bd7ff783 | ||
|
|
d7b4eaf110 | ||
|
|
1b969f6735 | ||
|
|
6e50e43e1c | ||
|
|
cfa9111052 | ||
|
|
01c9195ea5 | ||
|
|
db501a2f02 | ||
|
|
6fe4fc9668 | ||
|
|
280a5193ef | ||
|
|
c27ec58948 | ||
|
|
bb3ff43f0f | ||
|
|
2f27622a6d | ||
|
|
c5a2746a53 | ||
|
|
538ab9a071 | ||
|
|
c8f5448b7c | ||
|
|
224fbc2fc5 | ||
|
|
2738c1f29c | ||
|
|
a8bd122762 | ||
|
|
a9add4b49c | ||
|
|
83f1900512 | ||
|
|
7eee4faac1 | ||
|
|
84d33d841f | ||
|
|
ded26dc46b | ||
|
|
0d40080f6c | ||
|
|
0867e69d1f | ||
|
|
cbe8571546 | ||
|
|
af536757fe | ||
|
|
b6dae5e380 | ||
|
|
64c4b6611c | ||
|
|
a188b2e104 | ||
|
|
4389c9538d | ||
|
|
2bc6b0782a | ||
|
|
3c6d73b7e2 | ||
|
|
3e0dba3522 | ||
|
|
5d8641732f | ||
|
|
f0c6cca766 | ||
|
|
f800a35fd1 | ||
|
|
54bbd18b02 | ||
|
|
da23b002cf | ||
|
|
a370a2da52 | ||
|
|
5404589058 | ||
|
|
b255fd3e06 | ||
|
|
0feaf36cf6 | ||
|
|
5d2a1881b1 | ||
|
|
a95423174c | ||
|
|
4314f0f066 | ||
|
|
c2e2359e65 | ||
|
|
361505fca9 | ||
|
|
c47116571f | ||
|
|
3e1cef9958 | ||
|
|
947d6ba798 | ||
|
|
ffd651b91a | ||
|
|
a271593fe9 | ||
|
|
83219270ae | ||
|
|
215e61396a | ||
|
|
c7e690980f | ||
|
|
da1449331c | ||
|
|
c7f5c24510 | ||
|
|
11c33ce3fa | ||
|
|
0a53a6e71d | ||
|
|
fa4e5ae686 | ||
|
|
ecb4bd9606 | ||
|
|
ecc9814a88 | ||
|
|
6846014a4f | ||
|
|
23b2ad57c5 | ||
|
|
99856ce956 | ||
|
|
f11982f531 | ||
|
|
bd05e7739d | ||
|
|
5754087140 | ||
|
|
8bc6f69a1b | ||
|
|
b54c62890f | ||
|
|
acde384157 | ||
|
|
b8accb48fc | ||
|
|
f2bb0b496b | ||
|
|
aaa36569de | ||
|
|
803816f5c9 | ||
|
|
1ef3f86474 | ||
|
|
f1d420a6f7 | ||
|
|
06452562b9 | ||
|
|
07e4062237 | ||
|
|
5443b67470 | ||
|
|
795413e46d | ||
|
|
e5ea836493 | ||
|
|
258322fcca | ||
|
|
166e9e223f | ||
|
|
29de72de33 | ||
|
|
eff548dec9 | ||
|
|
dcb364c3ee | ||
|
|
1d09eac3e7 | ||
|
|
5127845100 | ||
|
|
ee4eb795b7 | ||
|
|
2ede55d165 | ||
|
|
df5faa6745 | ||
|
|
06f0cb0dc4 | ||
|
|
11176b71b3 | ||
|
|
b5445da303 | ||
|
|
5d109acd8d | ||
|
|
2937c97fea | ||
|
|
c392aec98a | ||
|
|
4e42625d79 | ||
|
|
b71152a884 | ||
|
|
ce4cc637ae | ||
|
|
ccccf68066 | ||
|
|
60f52633fa | ||
|
|
1148aa417a | ||
|
|
e29f6f2861 | ||
|
|
44dc5811b5 | ||
|
|
40481f1286 | ||
|
|
622235d787 | ||
|
|
623613aa5c | ||
|
|
a451fb5b6a |
9
.github/PULL_REQUEST_TEMPLATE.md
vendored
9
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -2,6 +2,9 @@
|
||||
- [ ] All declared geometries are `geometry(Geometry, 4326)` for general geoms, or `geometry(Point, 4326)`
|
||||
- [ ] Existing functions in crankshaft python library called from the extension are kept at least from version N to version N+1 (to avoid breakage during upgrades).
|
||||
- [ ] Docs for public-facing functions are written
|
||||
- [ ] New functions follow the naming conventions: `CDB_NameOfFunction`. Where internal functions begin with an underscore `_`.
|
||||
- [ ] If appropriate, new functions accepts an arbitrary query as an input (see [Crankshaft Issue #6](https://github.com/CartoDB/crankshaft/issues/6) for more information)
|
||||
|
||||
- [ ] New functions follow the naming conventions: `CDB_NameOfFunction`. Where internal functions begin with an underscore
|
||||
- [ ] Video explaining the analysis and showing examples
|
||||
- [ ] Analysis Documentation written [template](https://docs.google.com/a/cartodb.com/document/d/1X2KOtaiEBKWNMp8UjwcLB-kE9aIOw09aOjX3oaCjeME/edit?usp=sharing)
|
||||
- [ ] Smoke test written
|
||||
- [ ] Hand-off document for camshaft node written
|
||||
- [ ] If function is in Python, code conforms to [PEP8 Style Guide](https://www.python.org/dev/peps/pep-0008/)
|
||||
|
||||
14
.travis.yml
14
.travis.yml
@@ -35,14 +35,18 @@ before_install:
|
||||
- sudo apt-get -y remove --purge postgresql-9.2
|
||||
- sudo apt-get -y remove --purge postgresql-9.3
|
||||
- sudo apt-get -y remove --purge postgresql-9.4
|
||||
- sudo apt-get -y remove --purge postgis
|
||||
- sudo apt-get -y remove --purge postgresql-9.5
|
||||
- sudo rm -rf /var/lib/postgresql/
|
||||
- sudo rm -rf /var/log/postgresql/
|
||||
- sudo rm -rf /etc/postgresql/
|
||||
- sudo apt-get -y remove --purge postgis-2.2
|
||||
- sudo apt-get -y autoremove
|
||||
|
||||
- sudo apt-get -y install postgresql-9.5=9.5.2-2ubuntu1
|
||||
- sudo apt-get -y install postgresql-server-dev-9.5=9.5.2-2ubuntu1
|
||||
- sudo apt-get -y install postgresql-plpython-9.5=9.5.2-2ubuntu1
|
||||
- sudo apt-get -y install postgresql-9.5-postgis-2.2=2.2.2.0-cdb2
|
||||
- sudo apt-get -y install postgresql-9.5=9.5.2-3cdb2
|
||||
- sudo apt-get -y install postgresql-server-dev-9.5=9.5.2-3cdb2
|
||||
- sudo apt-get -y install postgresql-plpython-9.5=9.5.2-3cdb2
|
||||
- sudo apt-get -y install postgresql-9.5-postgis-scripts=2.2.2.0-cdb2
|
||||
- sudo apt-get -y install postgresql-9.5-postgis-2.2=2.2.2.0-cdb2
|
||||
|
||||
# configure it to accept local connections from postgres
|
||||
- echo -e "# TYPE DATABASE USER ADDRESS METHOD \nlocal all postgres trust\nlocal all all trust\nhost all all 127.0.0.1/32 trust" \
|
||||
|
||||
8
NEWS.md
8
NEWS.md
@@ -1,3 +1,11 @@
|
||||
0.5.0 (2016-12-15)
|
||||
------------------
|
||||
* Updated PULL_REQUEST_TEMPLATE
|
||||
* Fixed a bug that flips the order of the numerator in denominator for calculating using Moran Local Rate because previously the code sorted the keys alphabetically.
|
||||
* Add new CDB_GetisOrdsG functions. Getis-Ord's G\* is a geo-statistical measurement of the intensity of clustering of high or low values
|
||||
* Add new outlier detection functions: CDB_StaticOutlier, CDB_PercentOutlier and CDB_StdDevOutlier
|
||||
* Updates in the framework for accessing the Python functions.
|
||||
|
||||
0.4.2 (2016-09-22)
|
||||
------------------
|
||||
* Bugfix for cdb_areasofinterestglobal: import correct modules
|
||||
|
||||
40
doc/16_getis_ord_gstar.md
Normal file
40
doc/16_getis_ord_gstar.md
Normal file
@@ -0,0 +1,40 @@
|
||||
## Getis-Ord's G\*
|
||||
|
||||
Getis-Ord's G\* is a geo-statistical measurement of the intensity of clustering of high or low values. The clustering of high values can be referred to as "hotspots" because these are areas of high activity or large (relative to the global mean) measurement values. Coldspots are clustered areas with low activity or small measurement values.
|
||||
|
||||
### CDB_GetisOrdsG(subquery text, column_name text)
|
||||
|
||||
#### Arguments
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| subquery | text | A query of the data you want to pass to the function. It must include `column_name`, a geometry column (usually `the_geom`) and an id column (usually `cartodb_id`) |
|
||||
| column_name | text | This is the column of interest for performing this analysis on. This column should be a numeric type. |
|
||||
| w_type (optional) | text | Type of weight to use when finding neighbors. Currently available options are 'knn' (default) and 'queen'. Read more about weight types in [PySAL's weights documentation.](https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/weights.html) |
|
||||
| num_ngbrs (optional) | integer | Default: 5. If `knn` is chosen, this will set the number of neighbors. If `knn` is not chosen, any entered value will be ignored. Use `NULL` if not choosing `knn`. |
|
||||
| permutations (optional) | integer | The number of permutations for calculating p-values. Default: 999 |
|
||||
| geom_col (optional) | text | The column where the geometry information is stored. The format must be PostGIS Geometry type (SRID 4326). Default: `the_geom`. |
|
||||
| id_col (optional) | text | The column that has the unique row identifier. |
|
||||
|
||||
### Returns
|
||||
|
||||
Returns a table with the following columns.
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| z_score | numeric | z-score, a measure of the intensity of clustering of high values (hotspots) or low values (coldspots). Positive values represent 'hotspots', while negative values represent 'coldspots'. |
|
||||
| p_value | numeric | p-value, a measure of the significance of the intensity of clustering |
|
||||
| p_z_sim | numeric | p-value based on standard normal approximation from permutations |
|
||||
| rowid | integer | The original `id_col` that can be used to associate the outputs with the original geometry and inputs |
|
||||
|
||||
#### Example Usage
|
||||
|
||||
The following query returns the original table augmented with the values calculated from the Getis-Ord's G\* analysis.
|
||||
|
||||
```sql
|
||||
SELECT i.*, m.z_score, m.p_value
|
||||
FROM cdb_crankshaft.CDB_GetisOrdsG('SELECT * FROM incident_reports_clustered',
|
||||
'num_incidents') As m
|
||||
JOIN incident_reports_clustered As i
|
||||
ON i.cartodb_id = m.rowid;
|
||||
```
|
||||
163
doc/18_outliers.md
Normal file
163
doc/18_outliers.md
Normal file
@@ -0,0 +1,163 @@
|
||||
## Outlier Detection
|
||||
|
||||
This set of functions detects the presence of outliers. There are three functions for finding outliers from non-spatial data:
|
||||
|
||||
1. Static Outliers
|
||||
1. Percentage Outliers
|
||||
1. Standard Deviation Outliers
|
||||
|
||||
### CDB_StaticOutlier(column_value numeric, threshold numeric)
|
||||
|
||||
#### Arguments
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| column_value | numeric | The column of values on which to apply the threshold |
|
||||
| threshold | numeric | The static threshold which is used to indicate whether a `column_value` is an outlier or not |
|
||||
|
||||
### Returns
|
||||
|
||||
Returns a boolean (true/false) depending on whether a value is above or below (or equal to) the threshold
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| outlier | boolean | classification of whether a row is an outlier or not |
|
||||
|
||||
#### Example Usage
|
||||
|
||||
With a table `website_visits` and a column of the number of website visits in units of 10,000 visits:
|
||||
|
||||
```
|
||||
| id | visits_10k |
|
||||
|----|------------|
|
||||
| 1 | 1 |
|
||||
| 2 | 3 |
|
||||
| 3 | 5 |
|
||||
| 4 | 1 |
|
||||
| 5 | 32 |
|
||||
| 6 | 3 |
|
||||
| 7 | 57 |
|
||||
| 8 | 2 |
|
||||
```
|
||||
|
||||
```sql
|
||||
SELECT
|
||||
id,
|
||||
CDB_StaticOutlier(visits_10k, 11.0) As outlier,
|
||||
visits_10k
|
||||
FROM website_visits
|
||||
```
|
||||
|
||||
```
|
||||
| id | outlier | visits_10k |
|
||||
|----|---------|------------|
|
||||
| 1 | f | 1 |
|
||||
| 2 | f | 3 |
|
||||
| 3 | f | 5 |
|
||||
| 4 | f | 1 |
|
||||
| 5 | t | 32 |
|
||||
| 6 | f | 3 |
|
||||
| 7 | t | 57 |
|
||||
| 8 | f | 2 |
|
||||
```
|
||||
|
||||
### CDB_PercentOutlier(column_values numeric[], outlier_fraction numeric, ids int[])
|
||||
|
||||
`CDB_PercentOutlier` calculates whether or not a value falls above a given threshold based on a percentage above the mean value of the input values.
|
||||
|
||||
#### Arguments
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| column_values | numeric[] | An array of the values to calculate the outlier classification on |
|
||||
| outlier_fraction | numeric | The threshold above which a column value divided by the mean of all values is considered an outlier |
|
||||
| ids | int[] | An array of the unique row ids of the input data (usually `cartodb_id`) |
|
||||
|
||||
### Returns
|
||||
|
||||
Returns a table of the outlier classification with the following columns
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| is_outlier | boolean | classification of whether a row is an outlier or not |
|
||||
| rowid | int | original row id (e.g., input `cartodb_id`) of the row which has the outlier classification |
|
||||
|
||||
#### Example Usage
|
||||
|
||||
This example find outliers which are more than 100% larger than the average (that is, more than 2.0 times larger).
|
||||
|
||||
```sql
|
||||
WITH cte As (
|
||||
SELECT
|
||||
unnest(Array[1,2,3,4,5,6,7,8]) As id,
|
||||
unnest(Array[1,3,5,1,32,3,57,2]) As visits_10k
|
||||
)
|
||||
SELECT
|
||||
(CDB_PercentOutlier(array_agg(visits_10k), 2.0, array_agg(id))).*
|
||||
FROM cte;
|
||||
```
|
||||
|
||||
Output
|
||||
```
|
||||
| outlier | rowid |
|
||||
|---------+-------|
|
||||
| f | 1 |
|
||||
| f | 2 |
|
||||
| f | 3 |
|
||||
| f | 4 |
|
||||
| t | 5 |
|
||||
| f | 6 |
|
||||
| t | 7 |
|
||||
| f | 8 |
|
||||
```
|
||||
|
||||
### CDB_StdDevOutlier(column_values numeric[], num_deviations numeric, ids int[], is_symmetric boolean DEFAULT true)
|
||||
|
||||
`CDB_StdDevOutlier` calculates whether or not a value falls above or below a given threshold based on the number of standard deviations from the mean.
|
||||
|
||||
#### Arguments
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| column_values | numeric[] | An array of the values to calculate the outlier classification on |
|
||||
| num_deviations | numeric | The threshold in units of standard deviation |
|
||||
| ids | int[] | An array of the unique row ids of the input data (usually `cartodb_id`) |
|
||||
| is_symmetric (optional) | boolean | Consider outliers that are symmetric about the mean (default: true) |
|
||||
|
||||
### Returns
|
||||
|
||||
Returns a table of the outlier classification with the following columns
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| is_outlier | boolean | classification of whether a row is an outlier or not |
|
||||
| rowid | int | original row id (e.g., input `cartodb_id`) of the row which has the outlier classification |
|
||||
|
||||
#### Example Usage
|
||||
|
||||
This example find outliers which are more than 100% larger than the average (that is, more than 2.0 times larger).
|
||||
|
||||
```sql
|
||||
WITH cte As (
|
||||
SELECT
|
||||
unnest(Array[1,2,3,4,5,6,7,8]) As id,
|
||||
unnest(Array[1,3,5,1,32,3,57,2]) As visits_10k
|
||||
)
|
||||
SELECT
|
||||
(CDB_StdDevOutlier(array_agg(visits_10k), 2.0, array_agg(id))).*
|
||||
FROM cte;
|
||||
```
|
||||
|
||||
Output
|
||||
```
|
||||
| outlier | rowid |
|
||||
|---------+-------|
|
||||
| f | 1 |
|
||||
| f | 2 |
|
||||
| f | 3 |
|
||||
| f | 4 |
|
||||
| f | 5 |
|
||||
| f | 6 |
|
||||
| t | 7 |
|
||||
| f | 8 |
|
||||
```
|
||||
1965
release/crankshaft--0.4.2--0.5.0.sql
Normal file
1965
release/crankshaft--0.4.2--0.5.0.sql
Normal file
File diff suppressed because it is too large
Load Diff
2070
release/crankshaft--0.5.0--0.5.1.sql
Normal file
2070
release/crankshaft--0.5.0--0.5.1.sql
Normal file
File diff suppressed because it is too large
Load Diff
2070
release/crankshaft--0.5.0.sql
Normal file
2070
release/crankshaft--0.5.0.sql
Normal file
File diff suppressed because it is too large
Load Diff
2070
release/crankshaft--0.5.1.sql
Normal file
2070
release/crankshaft--0.5.1.sql
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1,5 +1,5 @@
|
||||
comment = 'CartoDB Spatial Analysis extension'
|
||||
default_version = '0.4.2'
|
||||
default_version = '0.5.1'
|
||||
requires = 'plpythonu, postgis'
|
||||
superuser = true
|
||||
schema = cdb_crankshaft
|
||||
|
||||
5
release/python/0.4.2/crankshaft/requirements.txt
Normal file
5
release/python/0.4.2/crankshaft/requirements.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
joblib==0.8.3
|
||||
numpy==1.6.1
|
||||
scipy==0.14.0
|
||||
pysal==1.11.2
|
||||
scikit-learn==0.14.1
|
||||
6
release/python/0.5.0/crankshaft/crankshaft/__init__.py
Normal file
6
release/python/0.5.0/crankshaft/crankshaft/__init__.py
Normal file
@@ -0,0 +1,6 @@
|
||||
"""Import all modules"""
|
||||
import crankshaft.random_seeds
|
||||
import crankshaft.clustering
|
||||
import crankshaft.space_time_dynamics
|
||||
import crankshaft.segmentation
|
||||
import analysis_data_provider
|
||||
@@ -0,0 +1,67 @@
|
||||
"""class for fetching data"""
|
||||
import plpy
|
||||
import pysal_utils as pu
|
||||
|
||||
|
||||
class AnalysisDataProvider:
|
||||
def get_getis(self, w_type, params):
|
||||
"""fetch data for getis ord's g"""
|
||||
try:
|
||||
query = pu.construct_neighbor_query(w_type, params)
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(4)
|
||||
else:
|
||||
return result
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
def get_markov(self, w_type, params):
|
||||
"""fetch data for spatial markov"""
|
||||
try:
|
||||
query = pu.construct_neighbor_query(w_type, params)
|
||||
data = plpy.execute(query)
|
||||
|
||||
if len(data) == 0:
|
||||
return pu.empty_zipped_array(4)
|
||||
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
def get_moran(self, w_type, params):
|
||||
"""fetch data for moran's i analyses"""
|
||||
try:
|
||||
query = pu.construct_neighbor_query(w_type, params)
|
||||
data = plpy.execute(query)
|
||||
|
||||
# if there are no neighbors, exit
|
||||
if len(data) == 0:
|
||||
return pu.empty_zipped_array(2)
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % e)
|
||||
return pu.empty_zipped_array(2)
|
||||
|
||||
def get_nonspatial_kmeans(self, query):
|
||||
"""fetch data for non-spatial kmeans"""
|
||||
try:
|
||||
data = plpy.execute(query)
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
def get_spatial_kmeans(self, params):
|
||||
"""fetch data for spatial kmeans"""
|
||||
query = ("SELECT "
|
||||
"array_agg({id_col} ORDER BY {id_col}) as ids,"
|
||||
"array_agg(ST_X({geom_col}) ORDER BY {id_col}) As xs,"
|
||||
"array_agg(ST_Y({geom_col}) ORDER BY {id_col}) As ys "
|
||||
"FROM ({subquery}) As a "
|
||||
"WHERE {geom_col} IS NOT NULL").format(**params)
|
||||
try:
|
||||
data = plpy.execute(query)
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
@@ -0,0 +1,4 @@
|
||||
"""Import all functions from for clustering"""
|
||||
from moran import *
|
||||
from kmeans import *
|
||||
from getis import *
|
||||
@@ -0,0 +1,50 @@
|
||||
"""
|
||||
Getis-Ord's G geostatistics (hotspot/coldspot analysis)
|
||||
"""
|
||||
|
||||
import pysal as ps
|
||||
from collections import OrderedDict
|
||||
|
||||
# crankshaft modules
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
# High level interface ---------------------------------------
|
||||
|
||||
|
||||
class Getis:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
def getis_ord(self, subquery, attr,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Getis-Ord's G*
|
||||
Implementation building neighbors with a PostGIS database and PySAL's
|
||||
Getis-Ord's G* hotspot/coldspot module.
|
||||
Andy Eschbacher
|
||||
"""
|
||||
|
||||
# geometries with attributes that are null are ignored
|
||||
# resulting in a collection of not as near neighbors if kNN is chosen
|
||||
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_getis(w_type, qvals)
|
||||
attr_vals = pu.get_attributes(result)
|
||||
|
||||
# build PySAL weight object
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate Getis-Ord's G* z- and p-values
|
||||
getis = ps.esda.getisord.G_Local(attr_vals, weight,
|
||||
star=True, permutations=permutations)
|
||||
|
||||
return zip(getis.z_sim, getis.p_sim, getis.p_z_sim, weight.id_order)
|
||||
@@ -0,0 +1,32 @@
|
||||
from sklearn.cluster import KMeans
|
||||
import numpy as np
|
||||
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
|
||||
class Kmeans:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
def spatial(self, query, no_clusters, no_init=20):
|
||||
"""
|
||||
find centers based on clusters of latitude/longitude pairs
|
||||
query: SQL query that has a WGS84 geometry (the_geom)
|
||||
"""
|
||||
params = {"subquery": query,
|
||||
"geom_col": "the_geom",
|
||||
"id_col": "cartodb_id"}
|
||||
|
||||
data = self.data_provider.get_spatial_kmeans(params)
|
||||
|
||||
# Unpack query response
|
||||
xs = data[0]['xs']
|
||||
ys = data[0]['ys']
|
||||
ids = data[0]['ids']
|
||||
|
||||
km = KMeans(n_clusters=no_clusters, n_init=no_init)
|
||||
labels = km.fit_predict(zip(xs, ys))
|
||||
return zip(ids, labels)
|
||||
208
release/python/0.5.0/crankshaft/crankshaft/clustering/moran.py
Normal file
208
release/python/0.5.0/crankshaft/crankshaft/clustering/moran.py
Normal file
@@ -0,0 +1,208 @@
|
||||
"""
|
||||
Moran's I geostatistics (global clustering & outliers presence)
|
||||
"""
|
||||
|
||||
# TODO: Fill in local neighbors which have null/NoneType values with the
|
||||
# average of the their neighborhood
|
||||
|
||||
import pysal as ps
|
||||
from collections import OrderedDict
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
# crankshaft module
|
||||
import crankshaft.pysal_utils as pu
|
||||
|
||||
# High level interface ---------------------------------------
|
||||
|
||||
|
||||
class Moran:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
def global_stat(self, subquery, attr_name,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I (global)
|
||||
Implementation building neighbors with a PostGIS database and Moran's I
|
||||
core clusters with PySAL.
|
||||
Andy Eschbacher
|
||||
"""
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr_name),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# collect attributes
|
||||
attr_vals = pu.get_attributes(result)
|
||||
|
||||
# calculate weights
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate moran global
|
||||
moran_global = ps.esda.moran.Moran(attr_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
return zip([moran_global.I], [moran_global.EI])
|
||||
|
||||
def local_stat(self, subquery, attr,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I implementation for PL/Python
|
||||
Andy Eschbacher
|
||||
"""
|
||||
|
||||
# geometries with attributes that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
attr_vals = pu.get_attributes(result)
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find quadrants for each geometry
|
||||
quads = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||
|
||||
def global_rate_stat(self, subquery, numerator, denominator,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I Rate (global)
|
||||
Andy Eschbacher
|
||||
"""
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", numerator),
|
||||
("attr2", denominator)
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# collect attributes
|
||||
numer = pu.get_attributes(result, 1)
|
||||
denom = pu.get_attributes(result, 2)
|
||||
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate moran global rate
|
||||
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
|
||||
permutations=permutations)
|
||||
|
||||
return zip([lisa_rate.I], [lisa_rate.EI])
|
||||
|
||||
def local_rate_stat(self, subquery, numerator, denominator,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I Local Rate
|
||||
Andy Eschbacher
|
||||
"""
|
||||
# geometries with values that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("numerator", numerator),
|
||||
("denominator", denominator),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# collect attributes
|
||||
numer = pu.get_attributes(result, 1)
|
||||
denom = pu.get_attributes(result, 2)
|
||||
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find quadrants for each geometry
|
||||
quads = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||
|
||||
def local_bivariate_stat(self, subquery, attr1, attr2,
|
||||
permutations, geom_col, id_col,
|
||||
w_type, num_ngbrs):
|
||||
"""
|
||||
Moran's I (local) Bivariate (untested)
|
||||
"""
|
||||
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr1),
|
||||
("attr2", attr2),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# collect attributes
|
||||
attr1_vals = pu.get_attributes(result, 1)
|
||||
attr2_vals = pu.get_attributes(result, 2)
|
||||
|
||||
# create weights
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find clustering of significance
|
||||
lisa_sig = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
|
||||
|
||||
# Low level functions ----------------------------------------
|
||||
|
||||
|
||||
def map_quads(coord):
|
||||
"""
|
||||
Map a quadrant number to Moran's I designation
|
||||
HH=1, LH=2, LL=3, HL=4
|
||||
Input:
|
||||
@param coord (int): quadrant of a specific measurement
|
||||
Output:
|
||||
classification (one of 'HH', 'LH', 'LL', or 'HL')
|
||||
"""
|
||||
if coord == 1:
|
||||
return 'HH'
|
||||
elif coord == 2:
|
||||
return 'LH'
|
||||
elif coord == 3:
|
||||
return 'LL'
|
||||
elif coord == 4:
|
||||
return 'HL'
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def quad_position(quads):
|
||||
"""
|
||||
Produce Moran's I classification based of n
|
||||
Input:
|
||||
@param quads ndarray: an array of quads classified by
|
||||
1-4 (PySAL default)
|
||||
Output:
|
||||
@param list: an array of quads classied by 'HH', 'LL', etc.
|
||||
"""
|
||||
return [map_quads(q) for q in quads]
|
||||
@@ -0,0 +1,2 @@
|
||||
"""Import all functions for pysal_utils"""
|
||||
from crankshaft.pysal_utils.pysal_utils import *
|
||||
@@ -0,0 +1,211 @@
|
||||
"""
|
||||
Utilities module for generic PySAL functionality, mainly centered on
|
||||
translating queries into numpy arrays or PySAL weights objects
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import pysal as ps
|
||||
|
||||
|
||||
def construct_neighbor_query(w_type, query_vals):
|
||||
"""Return query (a string) used for finding neighbors
|
||||
@param w_type text: type of neighbors to calculate ('knn' or 'queen')
|
||||
@param query_vals dict: values used to construct the query
|
||||
"""
|
||||
|
||||
if w_type.lower() == 'knn':
|
||||
return knn(query_vals)
|
||||
else:
|
||||
return queen(query_vals)
|
||||
|
||||
|
||||
# Build weight object
|
||||
def get_weight(query_res, w_type='knn', num_ngbrs=5):
|
||||
"""
|
||||
Construct PySAL weight from return value of query
|
||||
@param query_res dict-like: query results with attributes and neighbors
|
||||
"""
|
||||
# if w_type.lower() == 'knn':
|
||||
# row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
|
||||
# weights = {x['id']: row_normed_weights for x in query_res}
|
||||
# else:
|
||||
# weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
|
||||
# if len(x['neighbors']) > 0
|
||||
# else [] for x in query_res}
|
||||
|
||||
neighbors = {x['id']: x['neighbors'] for x in query_res}
|
||||
print 'len of neighbors: %d' % len(neighbors)
|
||||
|
||||
built_weight = ps.W(neighbors)
|
||||
built_weight.transform = 'r'
|
||||
|
||||
return built_weight
|
||||
|
||||
|
||||
def query_attr_select(params):
|
||||
"""
|
||||
Create portion of SELECT statement for attributes inolved in query.
|
||||
Defaults to order in the params
|
||||
@param params: dict of information used in query (column names,
|
||||
table name, etc.)
|
||||
Example:
|
||||
OrderedDict([('numerator', 'price'),
|
||||
('denominator', 'sq_meters'),
|
||||
('subquery', 'SELECT * FROM interesting_data')])
|
||||
Output:
|
||||
"i.\"price\"::numeric As attr1, " \
|
||||
"i.\"sq_meters\"::numeric As attr2, "
|
||||
"""
|
||||
|
||||
attr_string = ""
|
||||
template = "i.\"%(col)s\"::numeric As attr%(alias_num)s, "
|
||||
|
||||
if 'time_cols' in params:
|
||||
# if markov analysis
|
||||
attrs = params['time_cols']
|
||||
|
||||
for idx, val in enumerate(attrs):
|
||||
attr_string += template % {"col": val, "alias_num": idx + 1}
|
||||
else:
|
||||
# if moran's analysis
|
||||
attrs = [k for k in params
|
||||
if k not in ('id_col', 'geom_col', 'subquery',
|
||||
'num_ngbrs', 'subquery')]
|
||||
|
||||
for idx, val in enumerate(attrs):
|
||||
attr_string += template % {"col": params[val],
|
||||
"alias_num": idx + 1}
|
||||
|
||||
return attr_string
|
||||
|
||||
|
||||
def query_attr_where(params):
|
||||
"""
|
||||
Construct where conditions when building neighbors query
|
||||
Create portion of WHERE clauses for weeding out NULL-valued geometries
|
||||
Input: dict of params:
|
||||
{'subquery': ...,
|
||||
'numerator': 'data1',
|
||||
'denominator': 'data2',
|
||||
'': ...}
|
||||
Output:
|
||||
'idx_replace."data1" IS NOT NULL AND idx_replace."data2" IS NOT NULL'
|
||||
Input:
|
||||
{'subquery': ...,
|
||||
'time_cols': ['time1', 'time2', 'time3'],
|
||||
'etc': ...}
|
||||
Output: 'idx_replace."time1" IS NOT NULL AND idx_replace."time2" IS NOT
|
||||
NULL AND idx_replace."time3" IS NOT NULL'
|
||||
"""
|
||||
attr_string = []
|
||||
template = "idx_replace.\"%s\" IS NOT NULL"
|
||||
|
||||
if 'time_cols' in params:
|
||||
# markov where clauses
|
||||
attrs = params['time_cols']
|
||||
# add values to template
|
||||
for attr in attrs:
|
||||
attr_string.append(template % attr)
|
||||
else:
|
||||
# moran where clauses
|
||||
|
||||
# get keys
|
||||
attrs = [k for k in params
|
||||
if k not in ('id_col', 'geom_col', 'subquery',
|
||||
'num_ngbrs', 'subquery')]
|
||||
|
||||
# add values to template
|
||||
for attr in attrs:
|
||||
attr_string.append(template % params[attr])
|
||||
|
||||
if 'denominator' in attrs:
|
||||
attr_string.append(
|
||||
"idx_replace.\"%s\" <> 0" % params['denominator'])
|
||||
|
||||
out = " AND ".join(attr_string)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def knn(params):
|
||||
"""SQL query for k-nearest neighbors.
|
||||
@param vars: dict of values to fill template
|
||||
"""
|
||||
|
||||
attr_select = query_attr_select(params)
|
||||
attr_where = query_attr_where(params)
|
||||
|
||||
replacements = {"attr_select": attr_select,
|
||||
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
||||
"attr_where_j": attr_where.replace("idx_replace", "j")}
|
||||
|
||||
query = "SELECT " \
|
||||
"i.\"{id_col}\" As id, " \
|
||||
"%(attr_select)s" \
|
||||
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
|
||||
"FROM ({subquery}) As j " \
|
||||
"WHERE " \
|
||||
"i.\"{id_col}\" <> j.\"{id_col}\" AND " \
|
||||
"%(attr_where_j)s " \
|
||||
"ORDER BY " \
|
||||
"j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
|
||||
"LIMIT {num_ngbrs})" \
|
||||
") As neighbors " \
|
||||
"FROM ({subquery}) As i " \
|
||||
"WHERE " \
|
||||
"%(attr_where_i)s " \
|
||||
"ORDER BY i.\"{id_col}\" ASC;" % replacements
|
||||
|
||||
return query.format(**params)
|
||||
|
||||
|
||||
# SQL query for finding queens neighbors (all contiguous polygons)
|
||||
def queen(params):
|
||||
"""SQL query for queen neighbors.
|
||||
@param params dict: information to fill query
|
||||
"""
|
||||
attr_select = query_attr_select(params)
|
||||
attr_where = query_attr_where(params)
|
||||
|
||||
replacements = {"attr_select": attr_select,
|
||||
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
||||
"attr_where_j": attr_where.replace("idx_replace", "j")}
|
||||
|
||||
query = "SELECT " \
|
||||
"i.\"{id_col}\" As id, " \
|
||||
"%(attr_select)s" \
|
||||
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
|
||||
"FROM ({subquery}) As j " \
|
||||
"WHERE i.\"{id_col}\" <> j.\"{id_col}\" AND " \
|
||||
"ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
|
||||
"%(attr_where_j)s)" \
|
||||
") As neighbors " \
|
||||
"FROM ({subquery}) As i " \
|
||||
"WHERE " \
|
||||
"%(attr_where_i)s " \
|
||||
"ORDER BY i.\"{id_col}\" ASC;" % replacements
|
||||
|
||||
return query.format(**params)
|
||||
|
||||
# to add more weight methods open a ticket or pull request
|
||||
|
||||
|
||||
def get_attributes(query_res, attr_num=1):
|
||||
"""
|
||||
@param query_res: query results with attributes and neighbors
|
||||
@param attr_num: attribute number (1, 2, ...)
|
||||
"""
|
||||
return np.array([x['attr' + str(attr_num)] for x in query_res],
|
||||
dtype=np.float)
|
||||
|
||||
|
||||
def empty_zipped_array(num_nones):
|
||||
"""
|
||||
prepare return values for cases of empty weights objects (no neighbors)
|
||||
Input:
|
||||
@param num_nones int: number of columns (e.g., 4)
|
||||
Output:
|
||||
[(None, None, None, None)]
|
||||
"""
|
||||
|
||||
return [tuple([None] * num_nones)]
|
||||
11
release/python/0.5.0/crankshaft/crankshaft/random_seeds.py
Normal file
11
release/python/0.5.0/crankshaft/crankshaft/random_seeds.py
Normal file
@@ -0,0 +1,11 @@
|
||||
"""Random seed generator used for non-deterministic functions in crankshaft"""
|
||||
import random
|
||||
import numpy
|
||||
|
||||
def set_random_seeds(value):
|
||||
"""
|
||||
Set the seeds of the RNGs (Random Number Generators)
|
||||
used internally.
|
||||
"""
|
||||
random.seed(value)
|
||||
numpy.random.seed(value)
|
||||
@@ -0,0 +1 @@
|
||||
from segmentation import *
|
||||
@@ -0,0 +1,176 @@
|
||||
"""
|
||||
Segmentation creation and prediction
|
||||
"""
|
||||
|
||||
import sklearn
|
||||
import numpy as np
|
||||
import plpy
|
||||
from sklearn.ensemble import GradientBoostingRegressor
|
||||
from sklearn import metrics
|
||||
from sklearn.cross_validation import train_test_split
|
||||
|
||||
# Lower level functions
|
||||
#----------------------
|
||||
|
||||
def replace_nan_with_mean(array):
|
||||
"""
|
||||
Input:
|
||||
@param array: an array of floats which may have null-valued entries
|
||||
Output:
|
||||
array with nans filled in with the mean of the dataset
|
||||
"""
|
||||
# returns an array of rows and column indices
|
||||
indices = np.where(np.isnan(array))
|
||||
|
||||
# iterate through entries which have nan values
|
||||
for row, col in zip(*indices):
|
||||
array[row, col] = np.mean(array[~np.isnan(array[:, col]), col])
|
||||
|
||||
return array
|
||||
|
||||
def get_data(variable, feature_columns, query):
|
||||
"""
|
||||
Fetch data from the database, clean, and package into
|
||||
numpy arrays
|
||||
Input:
|
||||
@param variable: name of the target variable
|
||||
@param feature_columns: list of column names
|
||||
@param query: subquery that data is pulled from for the packaging
|
||||
Output:
|
||||
prepared data, packaged into NumPy arrays
|
||||
"""
|
||||
|
||||
columns = ','.join(['array_agg("{col}") As "{col}"'.format(col=col) for col in feature_columns])
|
||||
|
||||
try:
|
||||
data = plpy.execute('''SELECT array_agg("{variable}") As target, {columns} FROM ({query}) As a'''.format(
|
||||
variable=variable,
|
||||
columns=columns,
|
||||
query=query))
|
||||
except Exception, e:
|
||||
plpy.error('Failed to access data to build segmentation model: %s' % e)
|
||||
|
||||
# extract target data from plpy object
|
||||
target = np.array(data[0]['target'])
|
||||
|
||||
# put n feature data arrays into an n x m array of arrays
|
||||
features = np.column_stack([np.array(data[0][col], dtype=float) for col in feature_columns])
|
||||
|
||||
return replace_nan_with_mean(target), replace_nan_with_mean(features)
|
||||
|
||||
# High level interface
|
||||
# --------------------
|
||||
|
||||
def create_and_predict_segment_agg(target, features, target_features, target_ids, model_parameters):
|
||||
"""
|
||||
Version of create_and_predict_segment that works on arrays that come stright form the SQL calling
|
||||
the function.
|
||||
|
||||
Input:
|
||||
@param target: The 1D array of lenth NSamples containing the target variable we want the model to predict
|
||||
@param features: Thw 2D array of size NSamples * NFeatures that form the imput to the model
|
||||
@param target_ids: A 1D array of target_ids that will be used to associate the results of the prediction with the rows which they come from
|
||||
@param model_parameters: A dictionary containing parameters for the model.
|
||||
"""
|
||||
|
||||
clean_target = replace_nan_with_mean(target)
|
||||
clean_features = replace_nan_with_mean(features)
|
||||
target_features = replace_nan_with_mean(target_features)
|
||||
|
||||
model, accuracy = train_model(clean_target, clean_features, model_parameters, 0.2)
|
||||
prediction = model.predict(target_features)
|
||||
accuracy_array = [accuracy]*prediction.shape[0]
|
||||
return zip(target_ids, prediction, np.full(prediction.shape, accuracy_array))
|
||||
|
||||
|
||||
|
||||
def create_and_predict_segment(query, variable, target_query, model_params):
|
||||
"""
|
||||
generate a segment with machine learning
|
||||
Stuart Lynn
|
||||
"""
|
||||
|
||||
## fetch column names
|
||||
try:
|
||||
columns = plpy.execute('SELECT * FROM ({query}) As a LIMIT 1 '.format(query=query))[0].keys()
|
||||
except Exception, e:
|
||||
plpy.error('Failed to build segmentation model: %s' % e)
|
||||
|
||||
## extract column names to be used in building the segmentation model
|
||||
feature_columns = set(columns) - set([variable, 'cartodb_id', 'the_geom', 'the_geom_webmercator'])
|
||||
## get data from database
|
||||
target, features = get_data(variable, feature_columns, query)
|
||||
|
||||
model, accuracy = train_model(target, features, model_params, 0.2)
|
||||
cartodb_ids, result = predict_segment(model, feature_columns, target_query)
|
||||
accuracy_array = [accuracy]*result.shape[0]
|
||||
return zip(cartodb_ids, result, accuracy_array)
|
||||
|
||||
|
||||
def train_model(target, features, model_params, test_split):
|
||||
"""
|
||||
Train the Gradient Boosting model on the provided data and calculate the accuracy of the model
|
||||
Input:
|
||||
@param target: 1D Array of the variable that the model is to be trianed to predict
|
||||
@param features: 2D Array NSamples * NFeatures to use in trining the model
|
||||
@param model_params: A dictionary of model parameters, the full specification can be found on the
|
||||
scikit learn page for [GradientBoostingRegressor](http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html)
|
||||
@parma test_split: The fraction of the data to be withheld for testing the model / calculating the accuray
|
||||
"""
|
||||
features_train, features_test, target_train, target_test = train_test_split(features, target, test_size=test_split)
|
||||
model = GradientBoostingRegressor(**model_params)
|
||||
model.fit(features_train, target_train)
|
||||
accuracy = calculate_model_accuracy(model, features, target)
|
||||
return model, accuracy
|
||||
|
||||
def calculate_model_accuracy(model, features, target):
|
||||
"""
|
||||
Calculate the mean squared error of the model prediction
|
||||
Input:
|
||||
@param model: model trained from input features
|
||||
@param features: features to make a prediction from
|
||||
@param target: target to compare prediction to
|
||||
Output:
|
||||
mean squared error of the model prection compared to the target
|
||||
"""
|
||||
prediction = model.predict(features)
|
||||
return metrics.mean_squared_error(prediction, target)
|
||||
|
||||
def predict_segment(model, features, target_query):
|
||||
"""
|
||||
Use the provided model to predict the values for the new feature set
|
||||
Input:
|
||||
@param model: The pretrained model
|
||||
@features: A list of features to use in the model prediction (list of column names)
|
||||
@target_query: The query to run to obtain the data to predict on and the cartdb_ids associated with it.
|
||||
"""
|
||||
|
||||
batch_size = 1000
|
||||
joined_features = ','.join(['"{0}"::numeric'.format(a) for a in features])
|
||||
|
||||
try:
|
||||
cursor = plpy.cursor('SELECT Array[{joined_features}] As features FROM ({target_query}) As a'.format(
|
||||
joined_features=joined_features,
|
||||
target_query=target_query))
|
||||
except Exception, e:
|
||||
plpy.error('Failed to build segmentation model: %s' % e)
|
||||
|
||||
results = []
|
||||
|
||||
while True:
|
||||
rows = cursor.fetch(batch_size)
|
||||
if not rows:
|
||||
break
|
||||
batch = np.row_stack([np.array(row['features'], dtype=float) for row in rows])
|
||||
|
||||
#Need to fix this. Should be global mean. This will cause weird effects
|
||||
batch = replace_nan_with_mean(batch)
|
||||
prediction = model.predict(batch)
|
||||
results.append(prediction)
|
||||
|
||||
try:
|
||||
cartodb_ids = plpy.execute('''SELECT array_agg(cartodb_id ORDER BY cartodb_id) As cartodb_ids FROM ({0}) As a'''.format(target_query))[0]['cartodb_ids']
|
||||
except Exception, e:
|
||||
plpy.error('Failed to build segmentation model: %s' % e)
|
||||
|
||||
return cartodb_ids, np.concatenate(results)
|
||||
@@ -0,0 +1,2 @@
|
||||
"""Import all functions from clustering libraries."""
|
||||
from markov import *
|
||||
@@ -0,0 +1,194 @@
|
||||
"""
|
||||
Spatial dynamics measurements using Spatial Markov
|
||||
"""
|
||||
|
||||
# TODO: remove all plpy dependencies
|
||||
|
||||
import numpy as np
|
||||
import pysal as ps
|
||||
import plpy
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
|
||||
class Markov:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
def spatial_trend(self, subquery, time_cols, num_classes=7,
|
||||
w_type='knn', num_ngbrs=5, permutations=0,
|
||||
geom_col='the_geom', id_col='cartodb_id'):
|
||||
"""
|
||||
Predict the trends of a unit based on:
|
||||
1. history of its transitions to different classes (e.g., 1st
|
||||
quantile -> 2nd quantile)
|
||||
2. average class of its neighbors
|
||||
|
||||
Inputs:
|
||||
@param subquery string: e.g., SELECT the_geom, cartodb_id,
|
||||
interesting_time_column FROM table_name
|
||||
@param time_cols list of strings: list of strings of column names
|
||||
@param num_classes (optional): number of classes to break
|
||||
distribution of values into. Currently uses quantile bins.
|
||||
@param w_type string (optional): weight type ('knn' or 'queen')
|
||||
@param num_ngbrs int (optional): number of neighbors (if knn type)
|
||||
@param permutations int (optional): number of permutations for test
|
||||
stats
|
||||
@param geom_col string (optional): name of column which contains
|
||||
the geometries
|
||||
@param id_col string (optional): name of column which has the ids
|
||||
of the table
|
||||
|
||||
Outputs:
|
||||
@param trend_up float: probablity that a geom will move to a higher
|
||||
class
|
||||
@param trend_down float: probablity that a geom will move to a
|
||||
lower class
|
||||
@param trend float: (trend_up - trend_down) / trend_static
|
||||
@param volatility float: a measure of the volatility based on
|
||||
probability stddev(prob array)
|
||||
"""
|
||||
|
||||
if len(time_cols) < 2:
|
||||
plpy.error('More than one time column needs to be passed')
|
||||
|
||||
params = {"id_col": id_col,
|
||||
"time_cols": time_cols,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs}
|
||||
|
||||
query_result = self.data_provider.get_markov(w_type, params)
|
||||
|
||||
# build weight
|
||||
weights = pu.get_weight(query_result, w_type)
|
||||
weights.transform = 'r'
|
||||
|
||||
# prep time data
|
||||
t_data = get_time_data(query_result, time_cols)
|
||||
|
||||
sp_markov_result = ps.Spatial_Markov(t_data,
|
||||
weights,
|
||||
k=num_classes,
|
||||
fixed=False,
|
||||
permutations=permutations)
|
||||
|
||||
# get lag classes
|
||||
lag_classes = ps.Quantiles(
|
||||
ps.lag_spatial(weights, t_data[:, -1]),
|
||||
k=num_classes).yb
|
||||
|
||||
# look up probablity distribution for each unit according to class and
|
||||
# lag class
|
||||
prob_dist = get_prob_dist(sp_markov_result.P,
|
||||
lag_classes,
|
||||
sp_markov_result.classes[:, -1])
|
||||
|
||||
# find the ups and down and overall distribution of each cell
|
||||
trend_up, trend_down, trend, volatility = get_prob_stats(prob_dist, sp_markov_result.classes[:, -1])
|
||||
|
||||
# output the results
|
||||
return zip(trend, trend_up, trend_down, volatility, weights.id_order)
|
||||
|
||||
|
||||
|
||||
def get_time_data(markov_data, time_cols):
|
||||
"""
|
||||
Extract the time columns and bin appropriately
|
||||
"""
|
||||
num_attrs = len(time_cols)
|
||||
return np.array([[x['attr' + str(i)] for x in markov_data]
|
||||
for i in range(1, num_attrs+1)], dtype=float).transpose()
|
||||
|
||||
|
||||
# not currently used
|
||||
def rebin_data(time_data, num_time_per_bin):
|
||||
"""
|
||||
Convert an n x l matrix into an (n/m) x l matrix where the values are
|
||||
reduced (averaged) for the intervening states:
|
||||
1 2 3 4 1.5 3.5
|
||||
5 6 7 8 -> 5.5 7.5
|
||||
9 8 7 6 8.5 6.5
|
||||
5 4 3 2 4.5 2.5
|
||||
|
||||
if m = 2, the 4 x 4 matrix is transformed to a 2 x 4 matrix.
|
||||
|
||||
This process effectively resamples the data at a longer time span n
|
||||
units longer than the input data.
|
||||
For cases when there is a remainder (remainder(5/3) = 2), the remaining
|
||||
two columns are binned together as the last time period, while the
|
||||
first three are binned together for the first period.
|
||||
|
||||
Input:
|
||||
@param time_data n x l ndarray: measurements of an attribute at
|
||||
different time intervals
|
||||
@param num_time_per_bin int: number of columns to average into a new
|
||||
column
|
||||
Output:
|
||||
ceil(n / m) x l ndarray of resampled time series
|
||||
"""
|
||||
|
||||
if time_data.shape[1] % num_time_per_bin == 0:
|
||||
# if fit is perfect, then use it
|
||||
n_max = time_data.shape[1] / num_time_per_bin
|
||||
else:
|
||||
# fit remainders into an additional column
|
||||
n_max = time_data.shape[1] / num_time_per_bin + 1
|
||||
|
||||
return np.array(
|
||||
[time_data[:, num_time_per_bin * i:num_time_per_bin * (i+1)].mean(axis=1)
|
||||
for i in range(n_max)]).T
|
||||
|
||||
|
||||
def get_prob_dist(transition_matrix, lag_indices, unit_indices):
|
||||
"""
|
||||
Given an array of transition matrices, look up the probability
|
||||
associated with the arrangements passed
|
||||
|
||||
Input:
|
||||
@param transition_matrix ndarray[k,k,k]:
|
||||
@param lag_indices ndarray:
|
||||
@param unit_indices ndarray:
|
||||
|
||||
Output:
|
||||
Array of probability distributions
|
||||
"""
|
||||
|
||||
return np.array([transition_matrix[(lag_indices[i], unit_indices[i])]
|
||||
for i in range(len(lag_indices))])
|
||||
|
||||
|
||||
def get_prob_stats(prob_dist, unit_indices):
|
||||
"""
|
||||
get the statistics of the probability distributions
|
||||
|
||||
Outputs:
|
||||
@param trend_up ndarray(float): sum of probabilities for upward
|
||||
movement (relative to the unit index of that prob)
|
||||
@param trend_down ndarray(float): sum of probabilities for downward
|
||||
movement (relative to the unit index of that prob)
|
||||
@param trend ndarray(float): difference of upward and downward
|
||||
movements
|
||||
"""
|
||||
|
||||
num_elements = len(unit_indices)
|
||||
trend_up = np.empty(num_elements, dtype=float)
|
||||
trend_down = np.empty(num_elements, dtype=float)
|
||||
trend = np.empty(num_elements, dtype=float)
|
||||
|
||||
for i in range(num_elements):
|
||||
trend_up[i] = prob_dist[i, (unit_indices[i]+1):].sum()
|
||||
trend_down[i] = prob_dist[i, :unit_indices[i]].sum()
|
||||
if prob_dist[i, unit_indices[i]] > 0.0:
|
||||
trend[i] = (trend_up[i] - trend_down[i]) / (
|
||||
prob_dist[i, unit_indices[i]])
|
||||
else:
|
||||
trend[i] = None
|
||||
|
||||
# calculate volatility of distribution
|
||||
volatility = prob_dist.std(axis=1)
|
||||
|
||||
return trend_up, trend_down, trend, volatility
|
||||
5
release/python/0.5.0/crankshaft/requirements.txt
Normal file
5
release/python/0.5.0/crankshaft/requirements.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
joblib==0.8.3
|
||||
numpy==1.6.1
|
||||
scipy==0.14.0
|
||||
pysal==1.11.2
|
||||
scikit-learn==0.14.1
|
||||
49
release/python/0.5.0/crankshaft/setup.py
Normal file
49
release/python/0.5.0/crankshaft/setup.py
Normal file
@@ -0,0 +1,49 @@
|
||||
|
||||
"""
|
||||
CartoDB Spatial Analysis Python Library
|
||||
See:
|
||||
https://github.com/CartoDB/crankshaft
|
||||
"""
|
||||
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
setup(
|
||||
name='crankshaft',
|
||||
|
||||
version='0.5.0',
|
||||
|
||||
description='CartoDB Spatial Analysis Python Library',
|
||||
|
||||
url='https://github.com/CartoDB/crankshaft',
|
||||
|
||||
author='Data Services Team - CartoDB',
|
||||
author_email='dataservices@cartodb.com',
|
||||
|
||||
license='MIT',
|
||||
|
||||
classifiers=[
|
||||
'Development Status :: 3 - Alpha',
|
||||
'Intended Audience :: Mapping comunity',
|
||||
'Topic :: Maps :: Mapping Tools',
|
||||
'License :: OSI Approved :: MIT License',
|
||||
'Programming Language :: Python :: 2.7',
|
||||
],
|
||||
|
||||
keywords='maps mapping tools spatial analysis geostatistics',
|
||||
|
||||
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
|
||||
|
||||
extras_require={
|
||||
'dev': ['unittest'],
|
||||
'test': ['unittest', 'nose', 'mock'],
|
||||
},
|
||||
|
||||
# The choice of component versions is dictated by what's
|
||||
# provisioned in the production servers.
|
||||
# IMPORTANT NOTE: please don't change this line. Instead issue a ticket to systems for evaluation.
|
||||
install_requires=['joblib==0.8.3', 'numpy==1.6.1', 'scipy==0.14.0', 'pysal==1.11.2', 'scikit-learn==0.14.1'],
|
||||
|
||||
requires=['pysal', 'numpy', 'sklearn'],
|
||||
|
||||
test_suite='test'
|
||||
)
|
||||
1
release/python/0.5.0/crankshaft/test/fixtures/getis.json
vendored
Normal file
1
release/python/0.5.0/crankshaft/test/fixtures/getis.json
vendored
Normal file
@@ -0,0 +1 @@
|
||||
[[0.004793783909323601, 0.17999999999999999, 0.49808756424021061], [-1.0701189472090842, 0.079000000000000001, 0.14228288580832316], [-0.67867750971877305, 0.42099999999999999, 0.24867110969448558], [-0.67407386707620487, 0.246, 0.25013217644612995], [-0.79495689068870035, 0.33200000000000002, 0.21331928959090596], [-0.49279481022182703, 0.058999999999999997, 0.31107878905057329], [-0.38075627530057132, 0.28399999999999997, 0.35169205342069643], [-0.86710921611314895, 0.23699999999999999, 0.19294108571294855], [-0.78618647240956485, 0.050000000000000003, 0.2158791250244505], [-0.76108527223116984, 0.064000000000000001, 0.22330306830813684], [-0.13340753531942209, 0.247, 0.44693554317763651], [-0.57584545722033043, 0.48999999999999999, 0.28235982246156488], [-0.78882694661192831, 0.433, 0.2151065788731219], [-0.38769767950046219, 0.375, 0.34911988661484239], [-0.56057819488052207, 0.41399999999999998, 0.28754255985169652], [-0.41354017495644935, 0.45500000000000002, 0.339605447117173], [-0.23993577722243081, 0.49099999999999999, 0.40519002230969337], [-0.1389080156677496, 0.40400000000000003, 0.44476141839645233], [-0.25485737510500855, 0.376, 0.39941662953554224], [-0.71218610582902353, 0.17399999999999999, 0.23817476979886087], [-0.54533105995872144, 0.13700000000000001, 0.2927629228714812], [-0.39547917847510977, 0.033000000000000002, 0.34624464252424236], [-0.43052658996257548, 0.35399999999999998, 0.33340631435564982], [-0.37296719193774736, 0.40300000000000002, 0.35458643102865428], [-0.66482612169465694, 0.31900000000000001, 0.25308085650392698], [-0.13772133540823422, 0.34699999999999998, 0.44523032843016275], [-0.6765304487868502, 0.20999999999999999, 0.24935196033890672], [-0.64518763494323472, 0.32200000000000001, 0.25940279912025543], [-0.5078622084312413, 0.41099999999999998, 0.30577498972600159], [-0.12652006733772059, 0.42899999999999999, 0.44966013262301163], [-0.32691133022814595, 0.498, 0.37186747562269029], [0.25533848511500978, 0.42399999999999999, 0.39923083899077472], [2.7045138116476508, 0.0050000000000000001, 0.0034202212972238577], [-0.1551614486076057, 0.44400000000000001, 0.43834701985429037], [1.9524487722567723, 0.012999999999999999, 0.025442473674991528], [-1.2055816465306763, 0.017000000000000001, 0.11398941970467646], [3.478472976017831, 0.002, 0.00025213964072468009], [-1.4621715757903719, 0.002, 0.071847099325659136], [-0.84010307600180256, 0.085000000000000006, 0.20042529779230778], [5.7097646237318243, 0.0030000000000000001, 5.6566262784940591e-09], [1.5082367956567375, 0.065000000000000002, 0.065746966514827365], [-0.58337270103430816, 0.44, 0.27982121546450034], [-0.083271860457022437, 0.45100000000000001, 0.46681768733385554], [-0.46872337815000953, 0.34599999999999997, 0.31963368715684204], [0.18490279849545319, 0.23799999999999999, 0.42665263797981101], [3.470424529947997, 0.012, 0.00025981817437825683], [-0.99942612137154796, 0.032000000000000001, 0.15879415560388499], [-1.3650387953594485, 0.034000000000000002, 0.08612042845912049], [1.8617160516432014, 0.081000000000000003, 0.03132156240215267], [1.1321188945775384, 0.11600000000000001, 0.12879222611766061], [0.064116686050580601, 0.27300000000000002, 0.4744386578180424], [-0.42032194540259099, 0.29999999999999999, 0.33712514016213468], [-0.79581215423980922, 0.123, 0.21307061309098785], [-0.42792753720906046, 0.45600000000000002, 0.33435193892883741], [-1.0629378527428395, 0.051999999999999998, 0.14390506780140866], [-0.54164761752225477, 0.33700000000000002, 0.29403064095211839], [1.0934778886820793, 0.13700000000000001, 0.13709201601893539], [-0.094068785378413719, 0.38200000000000001, 0.46252725802998929], [0.13482026574801856, 0.36799999999999999, 0.44637699118865737], [-0.13976995315653129, 0.34699999999999998, 0.44442087706276601], [-0.051047663924746682, 0.32000000000000001, 0.47964376985626245], [-0.21468297736730158, 0.41699999999999998, 0.41500724761906527], [-0.20873154637330626, 0.38800000000000001, 0.41732890604390893], [-0.32427876152583485, 0.49199999999999999, 0.37286349875557478], [-0.65254842943280977, 0.374, 0.25702372075306734], [-0.48611858196118796, 0.23300000000000001, 0.31344154643990074], [-0.14482354344529477, 0.32600000000000001, 0.44242509660469886], [-0.51052030974200002, 0.439, 0.30484349480873729], [0.56814382285283538, 0.14999999999999999, 0.28496865660103166], [0.58680919931668207, 0.161, 0.27866592887231878], [0.013390357044409013, 0.25800000000000001, 0.49465818005865647], [-0.19050728887961568, 0.41399999999999998, 0.4244558160399462], [-0.60531777422216049, 0.35199999999999998, 0.2724839368239631], [1.0899331115425805, 0.127, 0.13787130480311838], [0.17015055382651084, 0.36899999999999999, 0.43244586845546418], [-0.21738337124409801, 0.40600000000000003, 0.41395479459421991], [1.0329303331079593, 0.079000000000000001, 0.15081825117169467], [1.0218317101096221, 0.104, 0.15343027913308094]]
|
||||
1
release/python/0.5.0/crankshaft/test/fixtures/kmeans.json
vendored
Normal file
1
release/python/0.5.0/crankshaft/test/fixtures/kmeans.json
vendored
Normal file
@@ -0,0 +1 @@
|
||||
[{"xs": [9.917239463463458, 9.042767302696836, 10.798929825304187, 8.763751051762995, 11.383882954810852, 11.018206993460897, 8.939526075734316, 9.636159342565252, 10.136336896960058, 11.480610059427342, 12.115011910725082, 9.173267848893428, 10.239300931201738, 8.00012512174072, 8.979962292282131, 9.318376124429575, 10.82259513754284, 10.391747171927115, 10.04904588886165, 9.96007160443463, -0.78825626804569, -0.3511819898577426, -1.2796410003764271, -0.3977049391203402, 2.4792311265774667, 1.3670311632092624, 1.2963504112955613, 2.0404844103073025, -1.6439708506073223, 0.39122885445645805, 1.026031821452462, -0.04044477160482201, -0.7442346929085072, -0.34687120826243034, -0.23420359971379054, -0.5919629143336708, -0.202903054395391, -0.1893399644841902, 1.9331834251176807, -0.12321054392851609], "ys": [8.735627063679981, 9.857615954045011, 10.81439096759407, 10.586727233537191, 9.232919976568622, 11.54281262696508, 8.392787912674466, 9.355119689665944, 9.22380703532752, 10.542142541823122, 10.111980619367035, 10.760836265570738, 8.819773453269804, 10.25325722424816, 9.802077905695608, 8.955420161552611, 9.833801181904477, 10.491684241001613, 12.076108669877556, 11.74289693140474, -0.5685725015474191, -0.5715728344759778, -0.20180907868635137, 0.38431336480089595, -0.3402202083684184, -2.4652736827783586, 0.08295159401756182, 0.8503818775816505, 0.6488691600321166, 0.5794762568230527, -0.6770063922144103, -0.6557616416449478, -1.2834289177624947, 0.1096318195532717, -0.38986922166834853, -1.6224497706950238, 0.09429787743230483, 0.4005097316394031, -0.508002811195673, -1.2473463371366507], "ids": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]}]
|
||||
1
release/python/0.5.0/crankshaft/test/fixtures/markov.json
vendored
Normal file
1
release/python/0.5.0/crankshaft/test/fixtures/markov.json
vendored
Normal file
@@ -0,0 +1 @@
|
||||
[[0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 0], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 1], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 2], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 3], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 4], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 5], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 6], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 7], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 8], [0.19047619047619049, 0.16, 0.0, 0.32594478059941379, 9], [-0.23529411764705882, 0.0, 0.19047619047619047, 0.31356338348865387, 10], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 11], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 12], [0.027777777777777783, 0.11111111111111112, 0.088888888888888892, 0.30339641183779581, 13], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 14], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 15], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 16], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 17], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 18], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 19], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 20], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 21], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 22], [-0.16666666666666663, 0.18181818181818182, 0.27272727272727271, 0.20246415864836445, 23], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 24], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 25], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 26], [-0.043478260869565216, 0.0, 0.041666666666666664, 0.37950991789118999, 27], [0.22222222222222221, 0.18181818181818182, 0.0, 0.31701083225750354, 28], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 29], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 30], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 31], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 32], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 33], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 34], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 35], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 36], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 37], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 38], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 39], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 40], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 41], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 42], [0.0, 0.0, 0.0, 0.40000000000000002, 43], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 44], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 45], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 46], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 47]]
|
||||
52
release/python/0.5.0/crankshaft/test/fixtures/moran.json
vendored
Normal file
52
release/python/0.5.0/crankshaft/test/fixtures/moran.json
vendored
Normal file
@@ -0,0 +1,52 @@
|
||||
[[0.9319096128346788, "HH"],
|
||||
[-1.135787401862846, "HL"],
|
||||
[0.11732030672508517, "LL"],
|
||||
[0.6152779669180425, "LL"],
|
||||
[-0.14657336660125297, "LH"],
|
||||
[0.6967858120189607, "LL"],
|
||||
[0.07949310115714454, "HH"],
|
||||
[0.4703198759258987, "HH"],
|
||||
[0.4421125200498064, "HH"],
|
||||
[0.5724288737143592, "LL"],
|
||||
[0.8970743435692062, "LL"],
|
||||
[0.18327334401918674, "LL"],
|
||||
[-0.01466729201304962, "HL"],
|
||||
[0.3481559372544409, "LL"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.15482141569329988, "HH"],
|
||||
[0.4373841193538136, "HH"],
|
||||
[0.15971286468915544, "LL"],
|
||||
[1.0543588860308968, "HH"],
|
||||
[1.7372866900020818, "HH"],
|
||||
[1.091998586053999, "LL"],
|
||||
[0.1171572584252222, "HH"],
|
||||
[0.08438455015300014, "LL"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.15482141569329985, "HH"],
|
||||
[1.1627044812890683, "HH"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.795275137550483, "HH"],
|
||||
[0.18562939195219, "LL"],
|
||||
[0.3010757406693439, "LL"],
|
||||
[2.8205795942839376, "HH"],
|
||||
[0.11259190602909264, "LL"],
|
||||
[-0.07116352791516614, "HL"],
|
||||
[-0.09945240794119009, "LH"],
|
||||
[0.18562939195219, "LL"],
|
||||
[0.1832733440191868, "LL"],
|
||||
[-0.39054253768447705, "HL"],
|
||||
[-0.1672071289487642, "HL"],
|
||||
[0.3337669247916343, "HH"],
|
||||
[0.2584386102554792, "HH"],
|
||||
[-0.19733845476322634, "HL"],
|
||||
[-0.9379282899805409, "LH"],
|
||||
[-0.028770969951095866, "LH"],
|
||||
[0.051367269430983485, "LL"],
|
||||
[-0.2172548045913472, "LH"],
|
||||
[0.05136726943098351, "LL"],
|
||||
[0.04191046803899837, "LL"],
|
||||
[0.7482357030403517, "HH"],
|
||||
[-0.014585767863118111, "LH"],
|
||||
[0.5410013139159929, "HH"],
|
||||
[1.0223932668429925, "LL"],
|
||||
[1.4179402898927476, "LL"]]
|
||||
54
release/python/0.5.0/crankshaft/test/fixtures/neighbors.json
vendored
Normal file
54
release/python/0.5.0/crankshaft/test/fixtures/neighbors.json
vendored
Normal file
@@ -0,0 +1,54 @@
|
||||
[
|
||||
{"neighbors": [48, 26, 20, 9, 31], "id": 1, "value": 0.5},
|
||||
{"neighbors": [30, 16, 46, 3, 4], "id": 2, "value": 0.7},
|
||||
{"neighbors": [46, 30, 2, 12, 16], "id": 3, "value": 0.2},
|
||||
{"neighbors": [18, 30, 23, 2, 52], "id": 4, "value": 0.1},
|
||||
{"neighbors": [47, 40, 45, 37, 28], "id": 5, "value": 0.3},
|
||||
{"neighbors": [10, 21, 41, 14, 37], "id": 6, "value": 0.05},
|
||||
{"neighbors": [8, 17, 43, 25, 12], "id": 7, "value": 0.4},
|
||||
{"neighbors": [17, 25, 43, 22, 7], "id": 8, "value": 0.7},
|
||||
{"neighbors": [39, 34, 1, 26, 48], "id": 9, "value": 0.5},
|
||||
{"neighbors": [6, 37, 5, 45, 49], "id": 10, "value": 0.04},
|
||||
{"neighbors": [51, 41, 29, 21, 14], "id": 11, "value": 0.08},
|
||||
{"neighbors": [44, 46, 43, 50, 3], "id": 12, "value": 0.2},
|
||||
{"neighbors": [45, 23, 14, 28, 18], "id": 13, "value": 0.4},
|
||||
{"neighbors": [41, 29, 13, 23, 6], "id": 14, "value": 0.2},
|
||||
{"neighbors": [36, 27, 32, 33, 24], "id": 15, "value": 0.3},
|
||||
{"neighbors": [19, 2, 46, 44, 28], "id": 16, "value": 0.4},
|
||||
{"neighbors": [8, 25, 43, 7, 22], "id": 17, "value": 0.6},
|
||||
{"neighbors": [23, 4, 29, 14, 13], "id": 18, "value": 0.3},
|
||||
{"neighbors": [42, 16, 28, 26, 40], "id": 19, "value": 0.7},
|
||||
{"neighbors": [1, 48, 31, 26, 42], "id": 20, "value": 0.8},
|
||||
{"neighbors": [41, 6, 11, 14, 10], "id": 21, "value": 0.1},
|
||||
{"neighbors": [25, 50, 43, 31, 44], "id": 22, "value": 0.4},
|
||||
{"neighbors": [18, 13, 14, 4, 2], "id": 23, "value": 0.1},
|
||||
{"neighbors": [33, 49, 34, 47, 27], "id": 24, "value": 0.3},
|
||||
{"neighbors": [43, 8, 22, 17, 50], "id": 25, "value": 0.4},
|
||||
{"neighbors": [1, 42, 20, 31, 48], "id": 26, "value": 0.6},
|
||||
{"neighbors": [32, 15, 36, 33, 24], "id": 27, "value": 0.3},
|
||||
{"neighbors": [40, 45, 19, 5, 13], "id": 28, "value": 0.8},
|
||||
{"neighbors": [11, 51, 41, 14, 18], "id": 29, "value": 0.3},
|
||||
{"neighbors": [2, 3, 4, 46, 18], "id": 30, "value": 0.1},
|
||||
{"neighbors": [20, 26, 1, 50, 48], "id": 31, "value": 0.9},
|
||||
{"neighbors": [27, 36, 15, 49, 24], "id": 32, "value": 0.3},
|
||||
{"neighbors": [24, 27, 49, 34, 32], "id": 33, "value": 0.4},
|
||||
{"neighbors": [47, 9, 39, 40, 24], "id": 34, "value": 0.3},
|
||||
{"neighbors": [38, 51, 11, 21, 41], "id": 35, "value": 0.3},
|
||||
{"neighbors": [15, 32, 27, 49, 33], "id": 36, "value": 0.2},
|
||||
{"neighbors": [49, 10, 5, 47, 24], "id": 37, "value": 0.5},
|
||||
{"neighbors": [35, 21, 51, 11, 41], "id": 38, "value": 0.4},
|
||||
{"neighbors": [9, 34, 48, 1, 47], "id": 39, "value": 0.6},
|
||||
{"neighbors": [28, 47, 5, 9, 34], "id": 40, "value": 0.5},
|
||||
{"neighbors": [11, 14, 29, 21, 6], "id": 41, "value": 0.4},
|
||||
{"neighbors": [26, 19, 1, 9, 31], "id": 42, "value": 0.2},
|
||||
{"neighbors": [25, 12, 8, 22, 44], "id": 43, "value": 0.3},
|
||||
{"neighbors": [12, 50, 46, 16, 43], "id": 44, "value": 0.2},
|
||||
{"neighbors": [28, 13, 5, 40, 19], "id": 45, "value": 0.3},
|
||||
{"neighbors": [3, 12, 44, 2, 16], "id": 46, "value": 0.2},
|
||||
{"neighbors": [34, 40, 5, 49, 24], "id": 47, "value": 0.3},
|
||||
{"neighbors": [1, 20, 26, 9, 39], "id": 48, "value": 0.5},
|
||||
{"neighbors": [24, 37, 47, 5, 33], "id": 49, "value": 0.2},
|
||||
{"neighbors": [44, 22, 31, 42, 26], "id": 50, "value": 0.6},
|
||||
{"neighbors": [11, 29, 41, 14, 21], "id": 51, "value": 0.01},
|
||||
{"neighbors": [4, 18, 29, 51, 23], "id": 52, "value": 0.01}
|
||||
]
|
||||
1
release/python/0.5.0/crankshaft/test/fixtures/neighbors_getis.json
vendored
Normal file
1
release/python/0.5.0/crankshaft/test/fixtures/neighbors_getis.json
vendored
Normal file
File diff suppressed because one or more lines are too long
1
release/python/0.5.0/crankshaft/test/fixtures/neighbors_markov.json
vendored
Normal file
1
release/python/0.5.0/crankshaft/test/fixtures/neighbors_markov.json
vendored
Normal file
File diff suppressed because one or more lines are too long
13
release/python/0.5.0/crankshaft/test/helper.py
Normal file
13
release/python/0.5.0/crankshaft/test/helper.py
Normal file
@@ -0,0 +1,13 @@
|
||||
import unittest
|
||||
|
||||
from mock_plpy import MockPlPy
|
||||
plpy = MockPlPy()
|
||||
|
||||
import sys
|
||||
sys.modules['plpy'] = plpy
|
||||
|
||||
import os
|
||||
|
||||
def fixture_file(name):
|
||||
dir = os.path.dirname(os.path.realpath(__file__))
|
||||
return os.path.join(dir, 'fixtures', name)
|
||||
54
release/python/0.5.0/crankshaft/test/mock_plpy.py
Normal file
54
release/python/0.5.0/crankshaft/test/mock_plpy.py
Normal file
@@ -0,0 +1,54 @@
|
||||
import re
|
||||
|
||||
|
||||
class MockCursor:
|
||||
def __init__(self, data):
|
||||
self.cursor_pos = 0
|
||||
self.data = data
|
||||
|
||||
def fetch(self, batch_size):
|
||||
batch = self.data[self.cursor_pos:self.cursor_pos + batch_size]
|
||||
self.cursor_pos += batch_size
|
||||
return batch
|
||||
|
||||
|
||||
class MockPlPy:
|
||||
def __init__(self):
|
||||
self._reset()
|
||||
|
||||
def _reset(self):
|
||||
self.infos = []
|
||||
self.notices = []
|
||||
self.debugs = []
|
||||
self.logs = []
|
||||
self.warnings = []
|
||||
self.errors = []
|
||||
self.fatals = []
|
||||
self.executes = []
|
||||
self.results = []
|
||||
self.prepares = []
|
||||
self.results = []
|
||||
|
||||
def _define_result(self, query, result):
|
||||
pattern = re.compile(query, re.IGNORECASE | re.MULTILINE)
|
||||
self.results.append([pattern, result])
|
||||
|
||||
def notice(self, msg):
|
||||
self.notices.append(msg)
|
||||
|
||||
def debug(self, msg):
|
||||
self.notices.append(msg)
|
||||
|
||||
def info(self, msg):
|
||||
self.infos.append(msg)
|
||||
|
||||
def cursor(self, query):
|
||||
data = self.execute(query)
|
||||
return MockCursor(data)
|
||||
|
||||
# TODO: additional arguments
|
||||
def execute(self, query):
|
||||
for result in self.results:
|
||||
if result[0].match(query):
|
||||
return result[1]
|
||||
return []
|
||||
@@ -0,0 +1,78 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
from helper import fixture_file
|
||||
|
||||
from crankshaft.clustering import Getis
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
# Fixture files produced as follows
|
||||
#
|
||||
# import pysal as ps
|
||||
# import numpy as np
|
||||
# import random
|
||||
#
|
||||
# # setup variables
|
||||
# f = ps.open(ps.examples.get_path("stl_hom.dbf"))
|
||||
# y = np.array(f.by_col['HR8893'])
|
||||
# w_queen = ps.queen_from_shapefile(ps.examples.get_path("stl_hom.shp"))
|
||||
#
|
||||
# out_queen = [{"id": index + 1,
|
||||
# "neighbors": [x+1 for x in w_queen.neighbors[index]],
|
||||
# "value": val} for index, val in enumerate(y)]
|
||||
#
|
||||
# with open('neighbors_queen_getis.json', 'w') as f:
|
||||
# f.write(str(out_queen))
|
||||
#
|
||||
# random.seed(1234)
|
||||
# np.random.seed(1234)
|
||||
# lgstar_queen = ps.esda.getisord.G_Local(y, w_queen, star=True,
|
||||
# permutations=999)
|
||||
#
|
||||
# with open('getis_queen.json', 'w') as f:
|
||||
# f.write(str(zip(lgstar_queen.z_sim,
|
||||
# lgstar_queen.p_sim, lgstar_queen.p_z_sim)))
|
||||
|
||||
|
||||
class FakeDataProvider(AnalysisDataProvider):
|
||||
def __init__(self, mock_data):
|
||||
self.mock_result = mock_data
|
||||
|
||||
def get_getis(self, w_type, param):
|
||||
return self.mock_result
|
||||
|
||||
|
||||
class GetisTest(unittest.TestCase):
|
||||
"""Testing class for Getis-Ord's G* funtion
|
||||
This test replicates the work done in PySAL documentation:
|
||||
https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/autocorrelation.html#local-g-and-g
|
||||
"""
|
||||
|
||||
def setUp(self):
|
||||
# load raw data for analysis
|
||||
self.neighbors_data = json.loads(
|
||||
open(fixture_file('neighbors_getis.json')).read())
|
||||
|
||||
# load pre-computed/known values
|
||||
self.getis_data = json.loads(
|
||||
open(fixture_file('getis.json')).read())
|
||||
|
||||
def test_getis_ord(self):
|
||||
"""Test Getis-Ord's G*"""
|
||||
data = [{'id': d['id'],
|
||||
'attr1': d['value'],
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
|
||||
random_seeds.set_random_seeds(1234)
|
||||
getis = Getis(FakeDataProvider(data))
|
||||
|
||||
result = getis.getis_ord('subquery', 'value',
|
||||
'queen', None, 999, 'the_geom',
|
||||
'cartodb_id')
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
expected = np.array(self.getis_data)[:, 0:2]
|
||||
for ([res_z, res_p], [exp_z, exp_p]) in zip(result, expected):
|
||||
self.assertAlmostEqual(res_z, exp_z, delta=1e-2)
|
||||
@@ -0,0 +1,56 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
|
||||
# from mock_plpy import MockPlPy
|
||||
# plpy = MockPlPy()
|
||||
#
|
||||
# import sys
|
||||
# sys.modules['plpy'] = plpy
|
||||
from helper import fixture_file
|
||||
from crankshaft.clustering import Kmeans
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
import crankshaft.clustering as cc
|
||||
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class FakeDataProvider(AnalysisDataProvider):
|
||||
def __init__(self, mocked_result):
|
||||
self.mocked_result = mocked_result
|
||||
|
||||
def get_spatial_kmeans(self, query):
|
||||
return self.mocked_result
|
||||
|
||||
def get_nonspatial_kmeans(self, query, standarize):
|
||||
return self.mocked_result
|
||||
|
||||
|
||||
class KMeansTest(unittest.TestCase):
|
||||
"""Testing class for k-means spatial"""
|
||||
|
||||
def setUp(self):
|
||||
self.cluster_data = json.loads(
|
||||
open(fixture_file('kmeans.json')).read())
|
||||
self.params = {"subquery": "select * from table",
|
||||
"no_clusters": "10"}
|
||||
|
||||
def test_kmeans(self):
|
||||
"""
|
||||
"""
|
||||
data = [{'xs': d['xs'],
|
||||
'ys': d['ys'],
|
||||
'ids': d['ids']} for d in self.cluster_data]
|
||||
|
||||
random_seeds.set_random_seeds(1234)
|
||||
kmeans = Kmeans(FakeDataProvider(data))
|
||||
clusters = kmeans.spatial('subquery', 2)
|
||||
labels = [a[1] for a in clusters]
|
||||
c1 = [a for a in clusters if a[1] == 0]
|
||||
c2 = [a for a in clusters if a[1] == 1]
|
||||
|
||||
self.assertEqual(len(np.unique(labels)), 2)
|
||||
self.assertEqual(len(c1), 20)
|
||||
self.assertEqual(len(c2), 20)
|
||||
112
release/python/0.5.0/crankshaft/test/test_clustering_moran.py
Normal file
112
release/python/0.5.0/crankshaft/test/test_clustering_moran.py
Normal file
@@ -0,0 +1,112 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
from helper import fixture_file
|
||||
from crankshaft.clustering import Moran
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class FakeDataProvider(AnalysisDataProvider):
|
||||
def __init__(self, mock_data):
|
||||
self.mock_result = mock_data
|
||||
|
||||
def get_moran(self, w_type, params):
|
||||
return self.mock_result
|
||||
|
||||
|
||||
class MoranTest(unittest.TestCase):
|
||||
"""Testing class for Moran's I functions"""
|
||||
|
||||
def setUp(self):
|
||||
self.params = {"id_col": "cartodb_id",
|
||||
"attr1": "andy",
|
||||
"attr2": "jay_z",
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
self.params_markov = {"id_col": "cartodb_id",
|
||||
"time_cols": ["_2013_dec", "_2014_jan",
|
||||
"_2014_feb"],
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
self.neighbors_data = json.loads(
|
||||
open(fixture_file('neighbors.json')).read())
|
||||
self.moran_data = json.loads(
|
||||
open(fixture_file('moran.json')).read())
|
||||
|
||||
def test_map_quads(self):
|
||||
"""Test map_quads"""
|
||||
from crankshaft.clustering import map_quads
|
||||
self.assertEqual(map_quads(1), 'HH')
|
||||
self.assertEqual(map_quads(2), 'LH')
|
||||
self.assertEqual(map_quads(3), 'LL')
|
||||
self.assertEqual(map_quads(4), 'HL')
|
||||
self.assertEqual(map_quads(33), None)
|
||||
self.assertEqual(map_quads('andy'), None)
|
||||
|
||||
def test_quad_position(self):
|
||||
"""Test lisa_sig_vals"""
|
||||
from crankshaft.clustering import quad_position
|
||||
|
||||
quads = np.array([1, 2, 3, 4], np.int)
|
||||
|
||||
ans = np.array(['HH', 'LH', 'LL', 'HL'])
|
||||
test_ans = quad_position(quads)
|
||||
|
||||
self.assertTrue((test_ans == ans).all())
|
||||
|
||||
def test_local_stat(self):
|
||||
"""Test Moran's I local"""
|
||||
data = [OrderedDict([('id', d['id']),
|
||||
('attr1', d['value']),
|
||||
('neighbors', d['neighbors'])])
|
||||
for d in self.neighbors_data]
|
||||
|
||||
moran = Moran(FakeDataProvider(data))
|
||||
random_seeds.set_random_seeds(1234)
|
||||
result = moran.local_stat('subquery', 'value',
|
||||
'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
zipped_values = zip(result, self.moran_data)
|
||||
|
||||
for ([res_val, res_quad], [exp_val, exp_quad]) in zipped_values:
|
||||
self.assertAlmostEqual(res_val, exp_val)
|
||||
self.assertEqual(res_quad, exp_quad)
|
||||
|
||||
def test_moran_local_rate(self):
|
||||
"""Test Moran's I rate"""
|
||||
data = [{'id': d['id'],
|
||||
'attr1': d['value'],
|
||||
'attr2': 1,
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
|
||||
random_seeds.set_random_seeds(1234)
|
||||
moran = Moran(FakeDataProvider(data))
|
||||
result = moran.local_rate_stat('subquery', 'numerator', 'denominator',
|
||||
'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
|
||||
zipped_values = zip(result, self.moran_data)
|
||||
|
||||
for ([res_val, res_quad], [exp_val, exp_quad]) in zipped_values:
|
||||
self.assertAlmostEqual(res_val, exp_val)
|
||||
|
||||
def test_moran(self):
|
||||
"""Test Moran's I global"""
|
||||
data = [{'id': d['id'],
|
||||
'attr1': d['value'],
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
random_seeds.set_random_seeds(1235)
|
||||
moran = Moran(FakeDataProvider(data))
|
||||
result = moran.global_stat('table', 'value',
|
||||
'knn', 5, 99, 'the_geom',
|
||||
'cartodb_id')
|
||||
|
||||
result_moran = result[0][0]
|
||||
expected_moran = np.array([row[0] for row in self.moran_data]).mean()
|
||||
self.assertAlmostEqual(expected_moran, result_moran, delta=10e-2)
|
||||
160
release/python/0.5.0/crankshaft/test/test_pysal_utils.py
Normal file
160
release/python/0.5.0/crankshaft/test/test_pysal_utils.py
Normal file
@@ -0,0 +1,160 @@
|
||||
import unittest
|
||||
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class PysalUtilsTest(unittest.TestCase):
|
||||
"""Testing class for utility functions related to PySAL integrations"""
|
||||
|
||||
def setUp(self):
|
||||
self.params1 = OrderedDict([("id_col", "cartodb_id"),
|
||||
("attr1", "andy"),
|
||||
("attr2", "jay_z"),
|
||||
("subquery", "SELECT * FROM a_list"),
|
||||
("geom_col", "the_geom"),
|
||||
("num_ngbrs", 321)])
|
||||
|
||||
self.params2 = OrderedDict([("id_col", "cartodb_id"),
|
||||
("numerator", "price"),
|
||||
("denominator", "sq_meters"),
|
||||
("subquery", "SELECT * FROM pecan"),
|
||||
("geom_col", "the_geom"),
|
||||
("num_ngbrs", 321)])
|
||||
|
||||
self.params3 = OrderedDict([("id_col", "cartodb_id"),
|
||||
("numerator", "sq_meters"),
|
||||
("denominator", "price"),
|
||||
("subquery", "SELECT * FROM pecan"),
|
||||
("geom_col", "the_geom"),
|
||||
("num_ngbrs", 321)])
|
||||
|
||||
self.params_array = {"id_col": "cartodb_id",
|
||||
"time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"],
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
|
||||
def test_query_attr_select(self):
|
||||
"""Test query_attr_select"""
|
||||
|
||||
ans1 = ("i.\"andy\"::numeric As attr1, "
|
||||
"i.\"jay_z\"::numeric As attr2, ")
|
||||
|
||||
ans2 = ("i.\"price\"::numeric As attr1, "
|
||||
"i.\"sq_meters\"::numeric As attr2, ")
|
||||
|
||||
ans3 = ("i.\"sq_meters\"::numeric As attr1, "
|
||||
"i.\"price\"::numeric As attr2, ")
|
||||
|
||||
ans_array = ("i.\"_2013_dec\"::numeric As attr1, "
|
||||
"i.\"_2014_jan\"::numeric As attr2, "
|
||||
"i.\"_2014_feb\"::numeric As attr3, ")
|
||||
|
||||
self.assertEqual(pu.query_attr_select(self.params1), ans1)
|
||||
self.assertEqual(pu.query_attr_select(self.params2), ans2)
|
||||
self.assertEqual(pu.query_attr_select(self.params3), ans3)
|
||||
self.assertEqual(pu.query_attr_select(self.params_array), ans_array)
|
||||
|
||||
def test_query_attr_where(self):
|
||||
"""Test pu.query_attr_where"""
|
||||
|
||||
ans1 = ("idx_replace.\"andy\" IS NOT NULL AND "
|
||||
"idx_replace.\"jay_z\" IS NOT NULL")
|
||||
|
||||
ans_array = ("idx_replace.\"_2013_dec\" IS NOT NULL AND "
|
||||
"idx_replace.\"_2014_jan\" IS NOT NULL AND "
|
||||
"idx_replace.\"_2014_feb\" IS NOT NULL")
|
||||
|
||||
self.assertEqual(pu.query_attr_where(self.params1), ans1)
|
||||
self.assertEqual(pu.query_attr_where(self.params_array), ans_array)
|
||||
|
||||
def test_knn(self):
|
||||
"""Test knn neighbors constructor"""
|
||||
|
||||
ans1 = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"andy\"::numeric As attr1, " \
|
||||
"i.\"jay_z\"::numeric As attr2, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
"FROM (SELECT * FROM a_list) As j " \
|
||||
"WHERE " \
|
||||
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
|
||||
"j.\"andy\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" IS NOT NULL " \
|
||||
"ORDER BY " \
|
||||
"j.\"the_geom\" <-> i.\"the_geom\" ASC " \
|
||||
"LIMIT 321)) As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"andy\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" IS NOT NULL " \
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
ans_array = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"_2013_dec\"::numeric As attr1, " \
|
||||
"i.\"_2014_jan\"::numeric As attr2, " \
|
||||
"i.\"_2014_feb\"::numeric As attr3, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
"FROM (SELECT * FROM a_list) As j " \
|
||||
"WHERE i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
|
||||
"j.\"_2013_dec\" IS NOT NULL AND " \
|
||||
"j.\"_2014_jan\" IS NOT NULL AND " \
|
||||
"j.\"_2014_feb\" IS NOT NULL " \
|
||||
"ORDER BY j.\"the_geom\" <-> i.\"the_geom\" ASC " \
|
||||
"LIMIT 321)) As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"_2013_dec\" IS NOT NULL AND " \
|
||||
"i.\"_2014_jan\" IS NOT NULL AND " \
|
||||
"i.\"_2014_feb\" IS NOT NULL "\
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
self.assertEqual(pu.knn(self.params1), ans1)
|
||||
self.assertEqual(pu.knn(self.params_array), ans_array)
|
||||
|
||||
def test_queen(self):
|
||||
"""Test queen neighbors constructor"""
|
||||
|
||||
ans1 = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"andy\"::numeric As attr1, " \
|
||||
"i.\"jay_z\"::numeric As attr2, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
"FROM (SELECT * FROM a_list) As j " \
|
||||
"WHERE " \
|
||||
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
|
||||
"ST_Touches(i.\"the_geom\", " \
|
||||
"j.\"the_geom\") AND " \
|
||||
"j.\"andy\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" IS NOT NULL)" \
|
||||
") As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"andy\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" IS NOT NULL " \
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
self.assertEqual(pu.queen(self.params1), ans1)
|
||||
|
||||
def test_construct_neighbor_query(self):
|
||||
"""Test construct_neighbor_query"""
|
||||
|
||||
# Compare to raw knn query
|
||||
self.assertEqual(pu.construct_neighbor_query('knn', self.params1),
|
||||
pu.knn(self.params1))
|
||||
|
||||
def test_get_attributes(self):
|
||||
"""Test get_attributes"""
|
||||
|
||||
## need to add tests
|
||||
|
||||
self.assertEqual(True, True)
|
||||
|
||||
def test_get_weight(self):
|
||||
"""Test get_weight"""
|
||||
|
||||
self.assertEqual(True, True)
|
||||
|
||||
def test_empty_zipped_array(self):
|
||||
"""Test empty_zipped_array"""
|
||||
ans2 = [(None, None)]
|
||||
ans4 = [(None, None, None, None)]
|
||||
self.assertEqual(pu.empty_zipped_array(2), ans2)
|
||||
self.assertEqual(pu.empty_zipped_array(4), ans4)
|
||||
64
release/python/0.5.0/crankshaft/test/test_segmentation.py
Normal file
64
release/python/0.5.0/crankshaft/test/test_segmentation.py
Normal file
@@ -0,0 +1,64 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from helper import plpy, fixture_file
|
||||
import crankshaft.segmentation as segmentation
|
||||
import json
|
||||
|
||||
class SegmentationTest(unittest.TestCase):
|
||||
"""Testing class for Moran's I functions"""
|
||||
|
||||
def setUp(self):
|
||||
plpy._reset()
|
||||
|
||||
def generate_random_data(self,n_samples,random_state, row_type=False):
|
||||
x1 = random_state.uniform(size=n_samples)
|
||||
x2 = random_state.uniform(size=n_samples)
|
||||
x3 = random_state.randint(0, 4, size=n_samples)
|
||||
|
||||
y = x1+x2*x2+x3
|
||||
cartodb_id = range(len(x1))
|
||||
|
||||
if row_type:
|
||||
return [ {'features': vals} for vals in zip(x1,x2,x3)], y
|
||||
else:
|
||||
return [dict( zip(['x1','x2','x3','target', 'cartodb_id'],[x1,x2,x3,y,cartodb_id]))]
|
||||
|
||||
def test_replace_nan_with_mean(self):
|
||||
test_array = np.array([1.2, np.nan, 3.2, np.nan, np.nan])
|
||||
|
||||
def test_create_and_predict_segment(self):
|
||||
n_samples = 1000
|
||||
|
||||
random_state_train = np.random.RandomState(13)
|
||||
random_state_test = np.random.RandomState(134)
|
||||
training_data = self.generate_random_data(n_samples, random_state_train)
|
||||
test_data, test_y = self.generate_random_data(n_samples, random_state_test, row_type=True)
|
||||
|
||||
|
||||
ids = [{'cartodb_ids': range(len(test_data))}]
|
||||
rows = [{'x1': 0,'x2':0,'x3':0,'y':0,'cartodb_id':0}]
|
||||
|
||||
plpy._define_result('select \* from \(select \* from training\) a limit 1',rows)
|
||||
plpy._define_result('.*from \(select \* from training\) as a' ,training_data)
|
||||
plpy._define_result('select array_agg\(cartodb\_id order by cartodb\_id\) as cartodb_ids from \(.*\) a',ids)
|
||||
plpy._define_result('.*select \* from test.*' ,test_data)
|
||||
|
||||
model_parameters = {'n_estimators': 1200,
|
||||
'max_depth': 3,
|
||||
'subsample' : 0.5,
|
||||
'learning_rate': 0.01,
|
||||
'min_samples_leaf': 1}
|
||||
|
||||
result = segmentation.create_and_predict_segment(
|
||||
'select * from training',
|
||||
'target',
|
||||
'select * from test',
|
||||
model_parameters)
|
||||
|
||||
prediction = [r[1] for r in result]
|
||||
|
||||
accuracy =np.sqrt(np.mean( np.square( np.array(prediction) - np.array(test_y))))
|
||||
|
||||
self.assertEqual(len(result),len(test_data))
|
||||
self.assertTrue( result[0][2] < 0.01)
|
||||
self.assertTrue( accuracy < 0.5*np.mean(test_y) )
|
||||
349
release/python/0.5.0/crankshaft/test/test_space_time_dynamics.py
Normal file
349
release/python/0.5.0/crankshaft/test/test_space_time_dynamics.py
Normal file
@@ -0,0 +1,349 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import unittest
|
||||
|
||||
|
||||
from helper import fixture_file
|
||||
|
||||
from crankshaft.space_time_dynamics import Markov
|
||||
import crankshaft.space_time_dynamics as std
|
||||
from crankshaft import random_seeds
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
import json
|
||||
|
||||
|
||||
class FakeDataProvider(AnalysisDataProvider):
|
||||
def __init__(self, data):
|
||||
self.mock_result = data
|
||||
|
||||
def get_markov(self, w_type, params):
|
||||
return self.mock_result
|
||||
|
||||
|
||||
class SpaceTimeTests(unittest.TestCase):
|
||||
"""Testing class for Markov Functions."""
|
||||
|
||||
def setUp(self):
|
||||
self.params = {"id_col": "cartodb_id",
|
||||
"time_cols": ['dec_2013', 'jan_2014', 'feb_2014'],
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
self.neighbors_data = json.loads(
|
||||
open(fixture_file('neighbors_markov.json')).read())
|
||||
self.markov_data = json.loads(open(fixture_file('markov.json')).read())
|
||||
|
||||
self.time_data = np.array([i * np.ones(10, dtype=float)
|
||||
for i in range(10)]).T
|
||||
|
||||
self.transition_matrix = np.array([
|
||||
[[0.96341463, 0.0304878, 0.00609756, 0., 0.],
|
||||
[0.06040268, 0.83221477, 0.10738255, 0., 0.],
|
||||
[0., 0.14, 0.74, 0.12, 0.],
|
||||
[0., 0.03571429, 0.32142857, 0.57142857, 0.07142857],
|
||||
[0., 0., 0., 0.16666667, 0.83333333]],
|
||||
[[0.79831933, 0.16806723, 0.03361345, 0., 0.],
|
||||
[0.0754717, 0.88207547, 0.04245283, 0., 0.],
|
||||
[0.00537634, 0.06989247, 0.8655914, 0.05913978, 0.],
|
||||
[0., 0., 0.06372549, 0.90196078, 0.03431373],
|
||||
[0., 0., 0., 0.19444444, 0.80555556]],
|
||||
[[0.84693878, 0.15306122, 0., 0., 0.],
|
||||
[0.08133971, 0.78947368, 0.1291866, 0., 0.],
|
||||
[0.00518135, 0.0984456, 0.79274611, 0.0984456, 0.00518135],
|
||||
[0., 0., 0.09411765, 0.87058824, 0.03529412],
|
||||
[0., 0., 0., 0.10204082, 0.89795918]],
|
||||
[[0.8852459, 0.09836066, 0., 0.01639344, 0.],
|
||||
[0.03875969, 0.81395349, 0.13953488, 0., 0.00775194],
|
||||
[0.0049505, 0.09405941, 0.77722772, 0.11881188, 0.0049505],
|
||||
[0., 0.02339181, 0.12865497, 0.75438596, 0.09356725],
|
||||
[0., 0., 0., 0.09661836, 0.90338164]],
|
||||
[[0.33333333, 0.66666667, 0., 0., 0.],
|
||||
[0.0483871, 0.77419355, 0.16129032, 0.01612903, 0.],
|
||||
[0.01149425, 0.16091954, 0.74712644, 0.08045977, 0.],
|
||||
[0., 0.01036269, 0.06217617, 0.89637306, 0.03108808],
|
||||
[0., 0., 0., 0.02352941, 0.97647059]]]
|
||||
)
|
||||
|
||||
def test_spatial_markov(self):
|
||||
"""Test Spatial Markov."""
|
||||
data = [{'id': d['id'],
|
||||
'attr1': d['y1995'],
|
||||
'attr2': d['y1996'],
|
||||
'attr3': d['y1997'],
|
||||
'attr4': d['y1998'],
|
||||
'attr5': d['y1999'],
|
||||
'attr6': d['y2000'],
|
||||
'attr7': d['y2001'],
|
||||
'attr8': d['y2002'],
|
||||
'attr9': d['y2003'],
|
||||
'attr10': d['y2004'],
|
||||
'attr11': d['y2005'],
|
||||
'attr12': d['y2006'],
|
||||
'attr13': d['y2007'],
|
||||
'attr14': d['y2008'],
|
||||
'attr15': d['y2009'],
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
# print(str(data[0]))
|
||||
markov = Markov(FakeDataProvider(data))
|
||||
random_seeds.set_random_seeds(1234)
|
||||
|
||||
result = markov.spatial_trend('subquery',
|
||||
['y1995', 'y1996', 'y1997', 'y1998',
|
||||
'y1999', 'y2000', 'y2001', 'y2002',
|
||||
'y2003', 'y2004', 'y2005', 'y2006',
|
||||
'y2007', 'y2008', 'y2009'],
|
||||
5, 'knn', 5, 0, 'the_geom',
|
||||
'cartodb_id')
|
||||
|
||||
self.assertTrue(result is not None)
|
||||
result = [(row[0], row[1], row[2], row[3], row[4]) for row in result]
|
||||
print result[0]
|
||||
expected = self.markov_data
|
||||
for ([res_trend, res_up, res_down, res_vol, res_id],
|
||||
[exp_trend, exp_up, exp_down, exp_vol, exp_id]
|
||||
) in zip(result, expected):
|
||||
self.assertAlmostEqual(res_trend, exp_trend)
|
||||
|
||||
def test_get_time_data(self):
|
||||
"""Test get_time_data"""
|
||||
data = [{'attr1': d['y1995'],
|
||||
'attr2': d['y1996'],
|
||||
'attr3': d['y1997'],
|
||||
'attr4': d['y1998'],
|
||||
'attr5': d['y1999'],
|
||||
'attr6': d['y2000'],
|
||||
'attr7': d['y2001'],
|
||||
'attr8': d['y2002'],
|
||||
'attr9': d['y2003'],
|
||||
'attr10': d['y2004'],
|
||||
'attr11': d['y2005'],
|
||||
'attr12': d['y2006'],
|
||||
'attr13': d['y2007'],
|
||||
'attr14': d['y2008'],
|
||||
'attr15': d['y2009']} for d in self.neighbors_data]
|
||||
|
||||
result = std.get_time_data(data, ['y1995', 'y1996', 'y1997', 'y1998',
|
||||
'y1999', 'y2000', 'y2001', 'y2002',
|
||||
'y2003', 'y2004', 'y2005', 'y2006',
|
||||
'y2007', 'y2008', 'y2009'])
|
||||
|
||||
# expected was prepared from PySAL example:
|
||||
# f = ps.open(ps.examples.get_path("usjoin.csv"))
|
||||
# pci = np.array([f.by_col[str(y)]
|
||||
# for y in range(1995, 2010)]).transpose()
|
||||
# rpci = pci / (pci.mean(axis = 0))
|
||||
|
||||
expected = np.array(
|
||||
[[0.87654416, 0.863147, 0.85637567, 0.84811668, 0.8446154,
|
||||
0.83271652, 0.83786314, 0.85012593, 0.85509656, 0.86416612,
|
||||
0.87119375, 0.86302631, 0.86148267, 0.86252252, 0.86746356],
|
||||
[0.9188951, 0.91757931, 0.92333258, 0.92517289, 0.92552388,
|
||||
0.90746978, 0.89830489, 0.89431991, 0.88924794, 0.89815176,
|
||||
0.91832091, 0.91706054, 0.90139505, 0.87897455, 0.86216858],
|
||||
[0.82591007, 0.82548596, 0.81989793, 0.81503235, 0.81731522,
|
||||
0.78964559, 0.80584442, 0.8084998, 0.82258551, 0.82668196,
|
||||
0.82373724, 0.81814804, 0.83675961, 0.83574199, 0.84647177],
|
||||
[1.09088176, 1.08537689, 1.08456418, 1.08415404, 1.09898841,
|
||||
1.14506948, 1.12151133, 1.11160697, 1.10888621, 1.11399806,
|
||||
1.12168029, 1.13164797, 1.12958508, 1.11371818, 1.09936775],
|
||||
[1.10731446, 1.11373944, 1.13283638, 1.14472559, 1.15910025,
|
||||
1.16898201, 1.17212488, 1.14752303, 1.11843284, 1.11024964,
|
||||
1.11943471, 1.11736468, 1.10863242, 1.09642516, 1.07762337],
|
||||
[1.42269757, 1.42118434, 1.44273502, 1.43577571, 1.44400684,
|
||||
1.44184737, 1.44782832, 1.41978227, 1.39092208, 1.4059372,
|
||||
1.40788646, 1.44052766, 1.45241216, 1.43306098, 1.4174431],
|
||||
[1.13073885, 1.13110513, 1.11074708, 1.13364636, 1.13088149,
|
||||
1.10888138, 1.11856629, 1.13062931, 1.11944984, 1.12446239,
|
||||
1.11671008, 1.10880034, 1.08401709, 1.06959206, 1.07875225],
|
||||
[1.04706124, 1.04516831, 1.04253372, 1.03239987, 1.02072545,
|
||||
0.99854316, 0.9880258, 0.99669587, 0.99327676, 1.01400905,
|
||||
1.03176742, 1.040511, 1.01749645, 0.9936394, 0.98279746],
|
||||
[0.98996986, 1.00143564, 0.99491, 1.00188408, 1.00455845,
|
||||
0.99127006, 0.97925917, 0.9683482, 0.95335147, 0.93694787,
|
||||
0.94308213, 0.92232874, 0.91284091, 0.89689833, 0.88928858],
|
||||
[0.87418391, 0.86416601, 0.84425695, 0.8404494, 0.83903044,
|
||||
0.8578708, 0.86036185, 0.86107306, 0.8500772, 0.86981998,
|
||||
0.86837929, 0.87204141, 0.86633032, 0.84946077, 0.83287146],
|
||||
[1.14196118, 1.14660262, 1.14892712, 1.14909594, 1.14436624,
|
||||
1.14450183, 1.12349752, 1.12596664, 1.12213996, 1.1119989,
|
||||
1.10257792, 1.10491258, 1.11059842, 1.10509795, 1.10020097],
|
||||
[0.97282463, 0.96700147, 0.96252588, 0.9653878, 0.96057687,
|
||||
0.95831051, 0.94480909, 0.94804195, 0.95430286, 0.94103989,
|
||||
0.92122519, 0.91010201, 0.89280392, 0.89298243, 0.89165385],
|
||||
[0.94325468, 0.96436902, 0.96455242, 0.95243009, 0.94117647,
|
||||
0.9480927, 0.93539182, 0.95388718, 0.94597005, 0.96918424,
|
||||
0.94781281, 0.93466815, 0.94281559, 0.96520315, 0.96715441],
|
||||
[0.97478408, 0.98169225, 0.98712809, 0.98474769, 0.98559897,
|
||||
0.98687073, 0.99237486, 0.98209969, 0.9877653, 0.97399471,
|
||||
0.96910087, 0.98416665, 0.98423613, 0.99823861, 0.99545704],
|
||||
[0.85570269, 0.85575915, 0.85986132, 0.85693406, 0.8538012,
|
||||
0.86191535, 0.84981451, 0.85472102, 0.84564835, 0.83998883,
|
||||
0.83478547, 0.82803648, 0.8198736, 0.82265395, 0.8399404],
|
||||
[0.87022047, 0.85996258, 0.85961813, 0.85689572, 0.83947136,
|
||||
0.82785597, 0.86008789, 0.86776298, 0.86720209, 0.8676334,
|
||||
0.89179317, 0.94202108, 0.9422231, 0.93902708, 0.94479184],
|
||||
[0.90134907, 0.90407738, 0.90403991, 0.90201769, 0.90399238,
|
||||
0.90906632, 0.92693339, 0.93695966, 0.94242697, 0.94338265,
|
||||
0.91981796, 0.91108804, 0.90543476, 0.91737138, 0.94793657],
|
||||
[1.1977611, 1.18222564, 1.18439158, 1.18267865, 1.19286723,
|
||||
1.20172869, 1.21328691, 1.22624778, 1.22397075, 1.23857042,
|
||||
1.24419893, 1.23929384, 1.23418676, 1.23626739, 1.26754398],
|
||||
[1.24919678, 1.25754773, 1.26991161, 1.28020651, 1.30625667,
|
||||
1.34790023, 1.34399863, 1.32575181, 1.30795492, 1.30544841,
|
||||
1.30303302, 1.32107766, 1.32936244, 1.33001241, 1.33288462],
|
||||
[1.06768004, 1.03799276, 1.03637303, 1.02768449, 1.03296093,
|
||||
1.05059016, 1.03405057, 1.02747623, 1.03162734, 0.9961416,
|
||||
0.97356208, 0.94241549, 0.92754547, 0.92549227, 0.92138102],
|
||||
[1.09475614, 1.11526796, 1.11654299, 1.13103948, 1.13143264,
|
||||
1.13889622, 1.12442212, 1.13367018, 1.13982256, 1.14029944,
|
||||
1.11979401, 1.10905389, 1.10577769, 1.11166825, 1.09985155],
|
||||
[0.76530058, 0.76612841, 0.76542451, 0.76722683, 0.76014284,
|
||||
0.74480073, 0.76098396, 0.76156903, 0.76651952, 0.76533288,
|
||||
0.78205934, 0.76842416, 0.77487118, 0.77768683, 0.78801192],
|
||||
[0.98391336, 0.98075816, 0.98295341, 0.97386015, 0.96913803,
|
||||
0.97370819, 0.96419154, 0.97209861, 0.97441313, 0.96356162,
|
||||
0.94745352, 0.93965462, 0.93069645, 0.94020973, 0.94358232],
|
||||
[0.83561828, 0.82298088, 0.81738502, 0.81748588, 0.80904801,
|
||||
0.80071489, 0.83358256, 0.83451613, 0.85175032, 0.85954307,
|
||||
0.86790024, 0.87170334, 0.87863799, 0.87497981, 0.87888675],
|
||||
[0.98845573, 1.02092428, 0.99665283, 0.99141823, 0.99386619,
|
||||
0.98733195, 0.99644997, 0.99669587, 1.02559097, 1.01116651,
|
||||
0.99988024, 0.97906749, 0.99323123, 1.00204939, 0.99602148],
|
||||
[1.14930913, 1.15241949, 1.14300962, 1.14265542, 1.13984683,
|
||||
1.08312397, 1.05192626, 1.04230892, 1.05577278, 1.08569751,
|
||||
1.12443486, 1.08891079, 1.08603695, 1.05997314, 1.02160943],
|
||||
[1.11368269, 1.1057147, 1.11893431, 1.13778669, 1.1432272,
|
||||
1.18257029, 1.16226243, 1.16009196, 1.14467789, 1.14820235,
|
||||
1.12386598, 1.12680236, 1.12357937, 1.1159258, 1.12570828],
|
||||
[1.30379431, 1.30752186, 1.31206366, 1.31532267, 1.30625667,
|
||||
1.31210239, 1.29989156, 1.29203193, 1.27183516, 1.26830786,
|
||||
1.2617743, 1.28656675, 1.29734097, 1.29390205, 1.29345446],
|
||||
[0.83953719, 0.82701448, 0.82006005, 0.81188876, 0.80294864,
|
||||
0.78772975, 0.82848011, 0.8259679, 0.82435705, 0.83108634,
|
||||
0.84373784, 0.83891093, 0.84349247, 0.85637272, 0.86539395],
|
||||
[1.23450087, 1.2426022, 1.23537935, 1.23581293, 1.24522626,
|
||||
1.2256767, 1.21126648, 1.19377804, 1.18355337, 1.19674434,
|
||||
1.21536573, 1.23653297, 1.27962009, 1.27968392, 1.25907738],
|
||||
[0.9769662, 0.97400719, 0.98035944, 0.97581531, 0.95543282,
|
||||
0.96480308, 0.94686376, 0.93679073, 0.92540049, 0.92988835,
|
||||
0.93442917, 0.92100464, 0.91475304, 0.90249622, 0.9021363],
|
||||
[0.84986886, 0.8986851, 0.84295997, 0.87280534, 0.85659368,
|
||||
0.88937573, 0.894401, 0.90448993, 0.95495898, 0.92698333,
|
||||
0.94745352, 0.92562488, 0.96635366, 1.02520312, 1.0394296],
|
||||
[1.01922808, 1.00258203, 1.00974428, 1.00303417, 0.99765073,
|
||||
1.00759019, 0.99192968, 0.99747298, 0.99550759, 0.97583768,
|
||||
0.9610168, 0.94779638, 0.93759089, 0.93353431, 0.94121705],
|
||||
[0.86367411, 0.85558932, 0.85544346, 0.85103025, 0.84336613,
|
||||
0.83434854, 0.85813595, 0.84667961, 0.84374558, 0.85951183,
|
||||
0.87194227, 0.89455097, 0.88283929, 0.90349491, 0.90600675],
|
||||
[1.00947534, 1.00411055, 1.00698819, 0.99513687, 0.99291086,
|
||||
1.00581626, 0.98850522, 0.99291168, 0.98983209, 0.97511924,
|
||||
0.96134615, 0.96382634, 0.95011401, 0.9434686, 0.94637765],
|
||||
[1.05712571, 1.05459419, 1.05753012, 1.04880786, 1.05103857,
|
||||
1.04800023, 1.03024941, 1.04200483, 1.0402554, 1.03296979,
|
||||
1.02191682, 1.02476275, 1.02347523, 1.02517684, 1.04359571],
|
||||
[1.07084189, 1.06669497, 1.07937623, 1.07387988, 1.0794043,
|
||||
1.0531801, 1.07452771, 1.09383478, 1.1052447, 1.10322136,
|
||||
1.09167939, 1.08772756, 1.08859544, 1.09177338, 1.1096083],
|
||||
[0.86719222, 0.86628896, 0.86675156, 0.86425632, 0.86511809,
|
||||
0.86287327, 0.85169796, 0.85411285, 0.84886336, 0.84517414,
|
||||
0.84843858, 0.84488343, 0.83374329, 0.82812044, 0.82878599],
|
||||
[0.88389211, 0.92288667, 0.90282398, 0.91229186, 0.92023286,
|
||||
0.92652175, 0.94278865, 0.93682452, 0.98655146, 0.992237,
|
||||
0.9798497, 0.93869677, 0.96947771, 1.00362626, 0.98102351],
|
||||
[0.97082064, 0.95320233, 0.94534081, 0.94215593, 0.93967,
|
||||
0.93092109, 0.92662519, 0.93412152, 0.93501274, 0.92879506,
|
||||
0.92110542, 0.91035556, 0.90430364, 0.89994694, 0.90073864],
|
||||
[0.95861858, 0.95774543, 0.98254811, 0.98919472, 0.98684824,
|
||||
0.98882205, 0.97662234, 0.95601578, 0.94905385, 0.94934888,
|
||||
0.97152609, 0.97163004, 0.9700702, 0.97158948, 0.95884908],
|
||||
[0.83980439, 0.84726737, 0.85747, 0.85467221, 0.8556751,
|
||||
0.84818516, 0.85265681, 0.84502402, 0.82645665, 0.81743586,
|
||||
0.83550406, 0.83338919, 0.83511679, 0.82136617, 0.80921874],
|
||||
[0.95118156, 0.9466212, 0.94688098, 0.9508583, 0.9512441,
|
||||
0.95440787, 0.96364363, 0.96804412, 0.97136214, 0.97583768,
|
||||
0.95571724, 0.96895368, 0.97001634, 0.97082733, 0.98782366],
|
||||
[1.08910044, 1.08248968, 1.08492895, 1.08656923, 1.09454249,
|
||||
1.10558188, 1.1214086, 1.12292577, 1.13021031, 1.13342735,
|
||||
1.14686068, 1.14502975, 1.14474747, 1.14084037, 1.16142926],
|
||||
[1.06336033, 1.07365823, 1.08691496, 1.09764846, 1.11669863,
|
||||
1.11856702, 1.09764283, 1.08815849, 1.08044313, 1.09278827,
|
||||
1.07003204, 1.08398066, 1.09831768, 1.09298232, 1.09176125],
|
||||
[0.79772065, 0.78829196, 0.78581151, 0.77615922, 0.77035744,
|
||||
0.77751194, 0.79902974, 0.81437881, 0.80788828, 0.79603865,
|
||||
0.78966436, 0.79949807, 0.80172182, 0.82168155, 0.85587911],
|
||||
[1.0052447, 1.00007696, 1.00475899, 1.00613942, 1.00639561,
|
||||
1.00162979, 0.99860739, 1.00814981, 1.00574316, 0.99030032,
|
||||
0.97682565, 0.97292596, 0.96519561, 0.96173403, 0.95890284],
|
||||
[0.95808419, 0.9382568, 0.9654441, 0.95561201, 0.96987289,
|
||||
0.96608031, 0.99727185, 1.00781194, 1.03484236, 1.05333619,
|
||||
1.0983263, 1.1704974, 1.17025154, 1.18730553, 1.14242645]])
|
||||
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
self.assertTrue(type(result) == type(expected))
|
||||
self.assertTrue(result.shape == expected.shape)
|
||||
|
||||
def test_rebin_data(self):
|
||||
"""Test rebin_data"""
|
||||
# sample in double the time (even case since 10 % 2 = 0):
|
||||
# (0+1)/2, (2+3)/2, (4+5)/2, (6+7)/2, (8+9)/2
|
||||
# = 0.5, 2.5, 4.5, 6.5, 8.5
|
||||
ans_even = np.array([(i + 0.5) * np.ones(10, dtype=float)
|
||||
for i in range(0, 10, 2)]).T
|
||||
|
||||
self.assertTrue(
|
||||
np.array_equal(std.rebin_data(self.time_data, 2), ans_even))
|
||||
|
||||
# sample in triple the time (uneven since 10 % 3 = 1):
|
||||
# (0+1+2)/3, (3+4+5)/3, (6+7+8)/3, (9)/1
|
||||
# = 1, 4, 7, 9
|
||||
ans_odd = np.array([i * np.ones(10, dtype=float)
|
||||
for i in (1, 4, 7, 9)]).T
|
||||
self.assertTrue(
|
||||
np.array_equal(std.rebin_data(self.time_data, 3), ans_odd))
|
||||
|
||||
def test_get_prob_dist(self):
|
||||
"""Test get_prob_dist"""
|
||||
lag_indices = np.array([1, 2, 3, 4])
|
||||
unit_indices = np.array([1, 3, 2, 4])
|
||||
answer = np.array([
|
||||
[0.0754717, 0.88207547, 0.04245283, 0., 0.],
|
||||
[0., 0., 0.09411765, 0.87058824, 0.03529412],
|
||||
[0.0049505, 0.09405941, 0.77722772, 0.11881188, 0.0049505],
|
||||
[0., 0., 0., 0.02352941, 0.97647059]
|
||||
])
|
||||
result = std.get_prob_dist(self.transition_matrix,
|
||||
lag_indices, unit_indices)
|
||||
|
||||
self.assertTrue(np.array_equal(result, answer))
|
||||
|
||||
def test_get_prob_stats(self):
|
||||
"""Test get_prob_stats"""
|
||||
|
||||
probs = np.array([
|
||||
[0.0754717, 0.88207547, 0.04245283, 0., 0.],
|
||||
[0., 0., 0.09411765, 0.87058824, 0.03529412],
|
||||
[0.0049505, 0.09405941, 0.77722772, 0.11881188, 0.0049505],
|
||||
[0., 0., 0., 0.02352941, 0.97647059]
|
||||
])
|
||||
unit_indices = np.array([1, 3, 2, 4])
|
||||
answer_up = np.array([0.04245283, 0.03529412, 0.12376238, 0.])
|
||||
answer_down = np.array([0.0754717, 0.09411765, 0.0990099, 0.02352941])
|
||||
answer_trend = np.array([-0.03301887 / 0.88207547,
|
||||
-0.05882353 / 0.87058824,
|
||||
0.02475248 / 0.77722772,
|
||||
-0.02352941 / 0.97647059])
|
||||
answer_volatility = np.array([0.34221495, 0.33705421,
|
||||
0.29226542, 0.38834223])
|
||||
|
||||
result = std.get_prob_stats(probs, unit_indices)
|
||||
result_up = result[0]
|
||||
result_down = result[1]
|
||||
result_trend = result[2]
|
||||
result_volatility = result[3]
|
||||
|
||||
self.assertTrue(np.allclose(result_up, answer_up))
|
||||
self.assertTrue(np.allclose(result_down, answer_down))
|
||||
self.assertTrue(np.allclose(result_trend, answer_trend))
|
||||
self.assertTrue(np.allclose(result_volatility, answer_volatility))
|
||||
6
release/python/0.5.1/crankshaft/crankshaft/__init__.py
Normal file
6
release/python/0.5.1/crankshaft/crankshaft/__init__.py
Normal file
@@ -0,0 +1,6 @@
|
||||
"""Import all modules"""
|
||||
import crankshaft.random_seeds
|
||||
import crankshaft.clustering
|
||||
import crankshaft.space_time_dynamics
|
||||
import crankshaft.segmentation
|
||||
import analysis_data_provider
|
||||
@@ -0,0 +1,67 @@
|
||||
"""class for fetching data"""
|
||||
import plpy
|
||||
import pysal_utils as pu
|
||||
|
||||
|
||||
class AnalysisDataProvider:
|
||||
def get_getis(self, w_type, params):
|
||||
"""fetch data for getis ord's g"""
|
||||
try:
|
||||
query = pu.construct_neighbor_query(w_type, params)
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(4)
|
||||
else:
|
||||
return result
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
def get_markov(self, w_type, params):
|
||||
"""fetch data for spatial markov"""
|
||||
try:
|
||||
query = pu.construct_neighbor_query(w_type, params)
|
||||
data = plpy.execute(query)
|
||||
|
||||
if len(data) == 0:
|
||||
return pu.empty_zipped_array(4)
|
||||
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
def get_moran(self, w_type, params):
|
||||
"""fetch data for moran's i analyses"""
|
||||
try:
|
||||
query = pu.construct_neighbor_query(w_type, params)
|
||||
data = plpy.execute(query)
|
||||
|
||||
# if there are no neighbors, exit
|
||||
if len(data) == 0:
|
||||
return pu.empty_zipped_array(2)
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % e)
|
||||
return pu.empty_zipped_array(2)
|
||||
|
||||
def get_nonspatial_kmeans(self, query):
|
||||
"""fetch data for non-spatial kmeans"""
|
||||
try:
|
||||
data = plpy.execute(query)
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
def get_spatial_kmeans(self, params):
|
||||
"""fetch data for spatial kmeans"""
|
||||
query = ("SELECT "
|
||||
"array_agg({id_col} ORDER BY {id_col}) as ids,"
|
||||
"array_agg(ST_X({geom_col}) ORDER BY {id_col}) As xs,"
|
||||
"array_agg(ST_Y({geom_col}) ORDER BY {id_col}) As ys "
|
||||
"FROM ({subquery}) As a "
|
||||
"WHERE {geom_col} IS NOT NULL").format(**params)
|
||||
try:
|
||||
data = plpy.execute(query)
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
@@ -0,0 +1,4 @@
|
||||
"""Import all functions from for clustering"""
|
||||
from moran import *
|
||||
from kmeans import *
|
||||
from getis import *
|
||||
@@ -0,0 +1,50 @@
|
||||
"""
|
||||
Getis-Ord's G geostatistics (hotspot/coldspot analysis)
|
||||
"""
|
||||
|
||||
import pysal as ps
|
||||
from collections import OrderedDict
|
||||
|
||||
# crankshaft modules
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
# High level interface ---------------------------------------
|
||||
|
||||
|
||||
class Getis:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
def getis_ord(self, subquery, attr,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Getis-Ord's G*
|
||||
Implementation building neighbors with a PostGIS database and PySAL's
|
||||
Getis-Ord's G* hotspot/coldspot module.
|
||||
Andy Eschbacher
|
||||
"""
|
||||
|
||||
# geometries with attributes that are null are ignored
|
||||
# resulting in a collection of not as near neighbors if kNN is chosen
|
||||
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_getis(w_type, qvals)
|
||||
attr_vals = pu.get_attributes(result)
|
||||
|
||||
# build PySAL weight object
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate Getis-Ord's G* z- and p-values
|
||||
getis = ps.esda.getisord.G_Local(attr_vals, weight,
|
||||
star=True, permutations=permutations)
|
||||
|
||||
return zip(getis.z_sim, getis.p_sim, getis.p_z_sim, weight.id_order)
|
||||
@@ -0,0 +1,32 @@
|
||||
from sklearn.cluster import KMeans
|
||||
import numpy as np
|
||||
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
|
||||
class Kmeans:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
def spatial(self, query, no_clusters, no_init=20):
|
||||
"""
|
||||
find centers based on clusters of latitude/longitude pairs
|
||||
query: SQL query that has a WGS84 geometry (the_geom)
|
||||
"""
|
||||
params = {"subquery": query,
|
||||
"geom_col": "the_geom",
|
||||
"id_col": "cartodb_id"}
|
||||
|
||||
data = self.data_provider.get_spatial_kmeans(params)
|
||||
|
||||
# Unpack query response
|
||||
xs = data[0]['xs']
|
||||
ys = data[0]['ys']
|
||||
ids = data[0]['ids']
|
||||
|
||||
km = KMeans(n_clusters=no_clusters, n_init=no_init)
|
||||
labels = km.fit_predict(zip(xs, ys))
|
||||
return zip(ids, labels)
|
||||
208
release/python/0.5.1/crankshaft/crankshaft/clustering/moran.py
Normal file
208
release/python/0.5.1/crankshaft/crankshaft/clustering/moran.py
Normal file
@@ -0,0 +1,208 @@
|
||||
"""
|
||||
Moran's I geostatistics (global clustering & outliers presence)
|
||||
"""
|
||||
|
||||
# TODO: Fill in local neighbors which have null/NoneType values with the
|
||||
# average of the their neighborhood
|
||||
|
||||
import pysal as ps
|
||||
from collections import OrderedDict
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
# crankshaft module
|
||||
import crankshaft.pysal_utils as pu
|
||||
|
||||
# High level interface ---------------------------------------
|
||||
|
||||
|
||||
class Moran:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
def global_stat(self, subquery, attr_name,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I (global)
|
||||
Implementation building neighbors with a PostGIS database and Moran's I
|
||||
core clusters with PySAL.
|
||||
Andy Eschbacher
|
||||
"""
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr_name),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# collect attributes
|
||||
attr_vals = pu.get_attributes(result)
|
||||
|
||||
# calculate weights
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate moran global
|
||||
moran_global = ps.esda.moran.Moran(attr_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
return zip([moran_global.I], [moran_global.EI])
|
||||
|
||||
def local_stat(self, subquery, attr,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I implementation for PL/Python
|
||||
Andy Eschbacher
|
||||
"""
|
||||
|
||||
# geometries with attributes that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
attr_vals = pu.get_attributes(result)
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find quadrants for each geometry
|
||||
quads = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||
|
||||
def global_rate_stat(self, subquery, numerator, denominator,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I Rate (global)
|
||||
Andy Eschbacher
|
||||
"""
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", numerator),
|
||||
("attr2", denominator)
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# collect attributes
|
||||
numer = pu.get_attributes(result, 1)
|
||||
denom = pu.get_attributes(result, 2)
|
||||
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate moran global rate
|
||||
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
|
||||
permutations=permutations)
|
||||
|
||||
return zip([lisa_rate.I], [lisa_rate.EI])
|
||||
|
||||
def local_rate_stat(self, subquery, numerator, denominator,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I Local Rate
|
||||
Andy Eschbacher
|
||||
"""
|
||||
# geometries with values that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("numerator", numerator),
|
||||
("denominator", denominator),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# collect attributes
|
||||
numer = pu.get_attributes(result, 1)
|
||||
denom = pu.get_attributes(result, 2)
|
||||
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find quadrants for each geometry
|
||||
quads = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||
|
||||
def local_bivariate_stat(self, subquery, attr1, attr2,
|
||||
permutations, geom_col, id_col,
|
||||
w_type, num_ngbrs):
|
||||
"""
|
||||
Moran's I (local) Bivariate (untested)
|
||||
"""
|
||||
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr1),
|
||||
("attr2", attr2),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# collect attributes
|
||||
attr1_vals = pu.get_attributes(result, 1)
|
||||
attr2_vals = pu.get_attributes(result, 2)
|
||||
|
||||
# create weights
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find clustering of significance
|
||||
lisa_sig = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
|
||||
|
||||
# Low level functions ----------------------------------------
|
||||
|
||||
|
||||
def map_quads(coord):
|
||||
"""
|
||||
Map a quadrant number to Moran's I designation
|
||||
HH=1, LH=2, LL=3, HL=4
|
||||
Input:
|
||||
@param coord (int): quadrant of a specific measurement
|
||||
Output:
|
||||
classification (one of 'HH', 'LH', 'LL', or 'HL')
|
||||
"""
|
||||
if coord == 1:
|
||||
return 'HH'
|
||||
elif coord == 2:
|
||||
return 'LH'
|
||||
elif coord == 3:
|
||||
return 'LL'
|
||||
elif coord == 4:
|
||||
return 'HL'
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def quad_position(quads):
|
||||
"""
|
||||
Produce Moran's I classification based of n
|
||||
Input:
|
||||
@param quads ndarray: an array of quads classified by
|
||||
1-4 (PySAL default)
|
||||
Output:
|
||||
@param list: an array of quads classied by 'HH', 'LL', etc.
|
||||
"""
|
||||
return [map_quads(q) for q in quads]
|
||||
@@ -0,0 +1,2 @@
|
||||
"""Import all functions for pysal_utils"""
|
||||
from crankshaft.pysal_utils.pysal_utils import *
|
||||
@@ -0,0 +1,211 @@
|
||||
"""
|
||||
Utilities module for generic PySAL functionality, mainly centered on
|
||||
translating queries into numpy arrays or PySAL weights objects
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import pysal as ps
|
||||
|
||||
|
||||
def construct_neighbor_query(w_type, query_vals):
|
||||
"""Return query (a string) used for finding neighbors
|
||||
@param w_type text: type of neighbors to calculate ('knn' or 'queen')
|
||||
@param query_vals dict: values used to construct the query
|
||||
"""
|
||||
|
||||
if w_type.lower() == 'knn':
|
||||
return knn(query_vals)
|
||||
else:
|
||||
return queen(query_vals)
|
||||
|
||||
|
||||
# Build weight object
|
||||
def get_weight(query_res, w_type='knn', num_ngbrs=5):
|
||||
"""
|
||||
Construct PySAL weight from return value of query
|
||||
@param query_res dict-like: query results with attributes and neighbors
|
||||
"""
|
||||
# if w_type.lower() == 'knn':
|
||||
# row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
|
||||
# weights = {x['id']: row_normed_weights for x in query_res}
|
||||
# else:
|
||||
# weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
|
||||
# if len(x['neighbors']) > 0
|
||||
# else [] for x in query_res}
|
||||
|
||||
neighbors = {x['id']: x['neighbors'] for x in query_res}
|
||||
print 'len of neighbors: %d' % len(neighbors)
|
||||
|
||||
built_weight = ps.W(neighbors)
|
||||
built_weight.transform = 'r'
|
||||
|
||||
return built_weight
|
||||
|
||||
|
||||
def query_attr_select(params):
|
||||
"""
|
||||
Create portion of SELECT statement for attributes inolved in query.
|
||||
Defaults to order in the params
|
||||
@param params: dict of information used in query (column names,
|
||||
table name, etc.)
|
||||
Example:
|
||||
OrderedDict([('numerator', 'price'),
|
||||
('denominator', 'sq_meters'),
|
||||
('subquery', 'SELECT * FROM interesting_data')])
|
||||
Output:
|
||||
"i.\"price\"::numeric As attr1, " \
|
||||
"i.\"sq_meters\"::numeric As attr2, "
|
||||
"""
|
||||
|
||||
attr_string = ""
|
||||
template = "i.\"%(col)s\"::numeric As attr%(alias_num)s, "
|
||||
|
||||
if 'time_cols' in params:
|
||||
# if markov analysis
|
||||
attrs = params['time_cols']
|
||||
|
||||
for idx, val in enumerate(attrs):
|
||||
attr_string += template % {"col": val, "alias_num": idx + 1}
|
||||
else:
|
||||
# if moran's analysis
|
||||
attrs = [k for k in params
|
||||
if k not in ('id_col', 'geom_col', 'subquery',
|
||||
'num_ngbrs', 'subquery')]
|
||||
|
||||
for idx, val in enumerate(attrs):
|
||||
attr_string += template % {"col": params[val],
|
||||
"alias_num": idx + 1}
|
||||
|
||||
return attr_string
|
||||
|
||||
|
||||
def query_attr_where(params):
|
||||
"""
|
||||
Construct where conditions when building neighbors query
|
||||
Create portion of WHERE clauses for weeding out NULL-valued geometries
|
||||
Input: dict of params:
|
||||
{'subquery': ...,
|
||||
'numerator': 'data1',
|
||||
'denominator': 'data2',
|
||||
'': ...}
|
||||
Output:
|
||||
'idx_replace."data1" IS NOT NULL AND idx_replace."data2" IS NOT NULL'
|
||||
Input:
|
||||
{'subquery': ...,
|
||||
'time_cols': ['time1', 'time2', 'time3'],
|
||||
'etc': ...}
|
||||
Output: 'idx_replace."time1" IS NOT NULL AND idx_replace."time2" IS NOT
|
||||
NULL AND idx_replace."time3" IS NOT NULL'
|
||||
"""
|
||||
attr_string = []
|
||||
template = "idx_replace.\"%s\" IS NOT NULL"
|
||||
|
||||
if 'time_cols' in params:
|
||||
# markov where clauses
|
||||
attrs = params['time_cols']
|
||||
# add values to template
|
||||
for attr in attrs:
|
||||
attr_string.append(template % attr)
|
||||
else:
|
||||
# moran where clauses
|
||||
|
||||
# get keys
|
||||
attrs = [k for k in params
|
||||
if k not in ('id_col', 'geom_col', 'subquery',
|
||||
'num_ngbrs', 'subquery')]
|
||||
|
||||
# add values to template
|
||||
for attr in attrs:
|
||||
attr_string.append(template % params[attr])
|
||||
|
||||
if 'denominator' in attrs:
|
||||
attr_string.append(
|
||||
"idx_replace.\"%s\" <> 0" % params['denominator'])
|
||||
|
||||
out = " AND ".join(attr_string)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def knn(params):
|
||||
"""SQL query for k-nearest neighbors.
|
||||
@param vars: dict of values to fill template
|
||||
"""
|
||||
|
||||
attr_select = query_attr_select(params)
|
||||
attr_where = query_attr_where(params)
|
||||
|
||||
replacements = {"attr_select": attr_select,
|
||||
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
||||
"attr_where_j": attr_where.replace("idx_replace", "j")}
|
||||
|
||||
query = "SELECT " \
|
||||
"i.\"{id_col}\" As id, " \
|
||||
"%(attr_select)s" \
|
||||
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
|
||||
"FROM ({subquery}) As j " \
|
||||
"WHERE " \
|
||||
"i.\"{id_col}\" <> j.\"{id_col}\" AND " \
|
||||
"%(attr_where_j)s " \
|
||||
"ORDER BY " \
|
||||
"j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
|
||||
"LIMIT {num_ngbrs})" \
|
||||
") As neighbors " \
|
||||
"FROM ({subquery}) As i " \
|
||||
"WHERE " \
|
||||
"%(attr_where_i)s " \
|
||||
"ORDER BY i.\"{id_col}\" ASC;" % replacements
|
||||
|
||||
return query.format(**params)
|
||||
|
||||
|
||||
# SQL query for finding queens neighbors (all contiguous polygons)
|
||||
def queen(params):
|
||||
"""SQL query for queen neighbors.
|
||||
@param params dict: information to fill query
|
||||
"""
|
||||
attr_select = query_attr_select(params)
|
||||
attr_where = query_attr_where(params)
|
||||
|
||||
replacements = {"attr_select": attr_select,
|
||||
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
||||
"attr_where_j": attr_where.replace("idx_replace", "j")}
|
||||
|
||||
query = "SELECT " \
|
||||
"i.\"{id_col}\" As id, " \
|
||||
"%(attr_select)s" \
|
||||
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
|
||||
"FROM ({subquery}) As j " \
|
||||
"WHERE i.\"{id_col}\" <> j.\"{id_col}\" AND " \
|
||||
"ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
|
||||
"%(attr_where_j)s)" \
|
||||
") As neighbors " \
|
||||
"FROM ({subquery}) As i " \
|
||||
"WHERE " \
|
||||
"%(attr_where_i)s " \
|
||||
"ORDER BY i.\"{id_col}\" ASC;" % replacements
|
||||
|
||||
return query.format(**params)
|
||||
|
||||
# to add more weight methods open a ticket or pull request
|
||||
|
||||
|
||||
def get_attributes(query_res, attr_num=1):
|
||||
"""
|
||||
@param query_res: query results with attributes and neighbors
|
||||
@param attr_num: attribute number (1, 2, ...)
|
||||
"""
|
||||
return np.array([x['attr' + str(attr_num)] for x in query_res],
|
||||
dtype=np.float)
|
||||
|
||||
|
||||
def empty_zipped_array(num_nones):
|
||||
"""
|
||||
prepare return values for cases of empty weights objects (no neighbors)
|
||||
Input:
|
||||
@param num_nones int: number of columns (e.g., 4)
|
||||
Output:
|
||||
[(None, None, None, None)]
|
||||
"""
|
||||
|
||||
return [tuple([None] * num_nones)]
|
||||
11
release/python/0.5.1/crankshaft/crankshaft/random_seeds.py
Normal file
11
release/python/0.5.1/crankshaft/crankshaft/random_seeds.py
Normal file
@@ -0,0 +1,11 @@
|
||||
"""Random seed generator used for non-deterministic functions in crankshaft"""
|
||||
import random
|
||||
import numpy
|
||||
|
||||
def set_random_seeds(value):
|
||||
"""
|
||||
Set the seeds of the RNGs (Random Number Generators)
|
||||
used internally.
|
||||
"""
|
||||
random.seed(value)
|
||||
numpy.random.seed(value)
|
||||
@@ -0,0 +1 @@
|
||||
from segmentation import *
|
||||
@@ -0,0 +1,176 @@
|
||||
"""
|
||||
Segmentation creation and prediction
|
||||
"""
|
||||
|
||||
import sklearn
|
||||
import numpy as np
|
||||
import plpy
|
||||
from sklearn.ensemble import GradientBoostingRegressor
|
||||
from sklearn import metrics
|
||||
from sklearn.cross_validation import train_test_split
|
||||
|
||||
# Lower level functions
|
||||
#----------------------
|
||||
|
||||
def replace_nan_with_mean(array):
|
||||
"""
|
||||
Input:
|
||||
@param array: an array of floats which may have null-valued entries
|
||||
Output:
|
||||
array with nans filled in with the mean of the dataset
|
||||
"""
|
||||
# returns an array of rows and column indices
|
||||
indices = np.where(np.isnan(array))
|
||||
|
||||
# iterate through entries which have nan values
|
||||
for row, col in zip(*indices):
|
||||
array[row, col] = np.mean(array[~np.isnan(array[:, col]), col])
|
||||
|
||||
return array
|
||||
|
||||
def get_data(variable, feature_columns, query):
|
||||
"""
|
||||
Fetch data from the database, clean, and package into
|
||||
numpy arrays
|
||||
Input:
|
||||
@param variable: name of the target variable
|
||||
@param feature_columns: list of column names
|
||||
@param query: subquery that data is pulled from for the packaging
|
||||
Output:
|
||||
prepared data, packaged into NumPy arrays
|
||||
"""
|
||||
|
||||
columns = ','.join(['array_agg("{col}") As "{col}"'.format(col=col) for col in feature_columns])
|
||||
|
||||
try:
|
||||
data = plpy.execute('''SELECT array_agg("{variable}") As target, {columns} FROM ({query}) As a'''.format(
|
||||
variable=variable,
|
||||
columns=columns,
|
||||
query=query))
|
||||
except Exception, e:
|
||||
plpy.error('Failed to access data to build segmentation model: %s' % e)
|
||||
|
||||
# extract target data from plpy object
|
||||
target = np.array(data[0]['target'])
|
||||
|
||||
# put n feature data arrays into an n x m array of arrays
|
||||
features = np.column_stack([np.array(data[0][col], dtype=float) for col in feature_columns])
|
||||
|
||||
return replace_nan_with_mean(target), replace_nan_with_mean(features)
|
||||
|
||||
# High level interface
|
||||
# --------------------
|
||||
|
||||
def create_and_predict_segment_agg(target, features, target_features, target_ids, model_parameters):
|
||||
"""
|
||||
Version of create_and_predict_segment that works on arrays that come stright form the SQL calling
|
||||
the function.
|
||||
|
||||
Input:
|
||||
@param target: The 1D array of lenth NSamples containing the target variable we want the model to predict
|
||||
@param features: Thw 2D array of size NSamples * NFeatures that form the imput to the model
|
||||
@param target_ids: A 1D array of target_ids that will be used to associate the results of the prediction with the rows which they come from
|
||||
@param model_parameters: A dictionary containing parameters for the model.
|
||||
"""
|
||||
|
||||
clean_target = replace_nan_with_mean(target)
|
||||
clean_features = replace_nan_with_mean(features)
|
||||
target_features = replace_nan_with_mean(target_features)
|
||||
|
||||
model, accuracy = train_model(clean_target, clean_features, model_parameters, 0.2)
|
||||
prediction = model.predict(target_features)
|
||||
accuracy_array = [accuracy]*prediction.shape[0]
|
||||
return zip(target_ids, prediction, np.full(prediction.shape, accuracy_array))
|
||||
|
||||
|
||||
|
||||
def create_and_predict_segment(query, variable, target_query, model_params):
|
||||
"""
|
||||
generate a segment with machine learning
|
||||
Stuart Lynn
|
||||
"""
|
||||
|
||||
## fetch column names
|
||||
try:
|
||||
columns = plpy.execute('SELECT * FROM ({query}) As a LIMIT 1 '.format(query=query))[0].keys()
|
||||
except Exception, e:
|
||||
plpy.error('Failed to build segmentation model: %s' % e)
|
||||
|
||||
## extract column names to be used in building the segmentation model
|
||||
feature_columns = set(columns) - set([variable, 'cartodb_id', 'the_geom', 'the_geom_webmercator'])
|
||||
## get data from database
|
||||
target, features = get_data(variable, feature_columns, query)
|
||||
|
||||
model, accuracy = train_model(target, features, model_params, 0.2)
|
||||
cartodb_ids, result = predict_segment(model, feature_columns, target_query)
|
||||
accuracy_array = [accuracy]*result.shape[0]
|
||||
return zip(cartodb_ids, result, accuracy_array)
|
||||
|
||||
|
||||
def train_model(target, features, model_params, test_split):
|
||||
"""
|
||||
Train the Gradient Boosting model on the provided data and calculate the accuracy of the model
|
||||
Input:
|
||||
@param target: 1D Array of the variable that the model is to be trianed to predict
|
||||
@param features: 2D Array NSamples * NFeatures to use in trining the model
|
||||
@param model_params: A dictionary of model parameters, the full specification can be found on the
|
||||
scikit learn page for [GradientBoostingRegressor](http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html)
|
||||
@parma test_split: The fraction of the data to be withheld for testing the model / calculating the accuray
|
||||
"""
|
||||
features_train, features_test, target_train, target_test = train_test_split(features, target, test_size=test_split)
|
||||
model = GradientBoostingRegressor(**model_params)
|
||||
model.fit(features_train, target_train)
|
||||
accuracy = calculate_model_accuracy(model, features, target)
|
||||
return model, accuracy
|
||||
|
||||
def calculate_model_accuracy(model, features, target):
|
||||
"""
|
||||
Calculate the mean squared error of the model prediction
|
||||
Input:
|
||||
@param model: model trained from input features
|
||||
@param features: features to make a prediction from
|
||||
@param target: target to compare prediction to
|
||||
Output:
|
||||
mean squared error of the model prection compared to the target
|
||||
"""
|
||||
prediction = model.predict(features)
|
||||
return metrics.mean_squared_error(prediction, target)
|
||||
|
||||
def predict_segment(model, features, target_query):
|
||||
"""
|
||||
Use the provided model to predict the values for the new feature set
|
||||
Input:
|
||||
@param model: The pretrained model
|
||||
@features: A list of features to use in the model prediction (list of column names)
|
||||
@target_query: The query to run to obtain the data to predict on and the cartdb_ids associated with it.
|
||||
"""
|
||||
|
||||
batch_size = 1000
|
||||
joined_features = ','.join(['"{0}"::numeric'.format(a) for a in features])
|
||||
|
||||
try:
|
||||
cursor = plpy.cursor('SELECT Array[{joined_features}] As features FROM ({target_query}) As a'.format(
|
||||
joined_features=joined_features,
|
||||
target_query=target_query))
|
||||
except Exception, e:
|
||||
plpy.error('Failed to build segmentation model: %s' % e)
|
||||
|
||||
results = []
|
||||
|
||||
while True:
|
||||
rows = cursor.fetch(batch_size)
|
||||
if not rows:
|
||||
break
|
||||
batch = np.row_stack([np.array(row['features'], dtype=float) for row in rows])
|
||||
|
||||
#Need to fix this. Should be global mean. This will cause weird effects
|
||||
batch = replace_nan_with_mean(batch)
|
||||
prediction = model.predict(batch)
|
||||
results.append(prediction)
|
||||
|
||||
try:
|
||||
cartodb_ids = plpy.execute('''SELECT array_agg(cartodb_id ORDER BY cartodb_id) As cartodb_ids FROM ({0}) As a'''.format(target_query))[0]['cartodb_ids']
|
||||
except Exception, e:
|
||||
plpy.error('Failed to build segmentation model: %s' % e)
|
||||
|
||||
return cartodb_ids, np.concatenate(results)
|
||||
@@ -0,0 +1,2 @@
|
||||
"""Import all functions from clustering libraries."""
|
||||
from markov import *
|
||||
@@ -0,0 +1,194 @@
|
||||
"""
|
||||
Spatial dynamics measurements using Spatial Markov
|
||||
"""
|
||||
|
||||
# TODO: remove all plpy dependencies
|
||||
|
||||
import numpy as np
|
||||
import pysal as ps
|
||||
import plpy
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
|
||||
class Markov:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
def spatial_trend(self, subquery, time_cols, num_classes=7,
|
||||
w_type='knn', num_ngbrs=5, permutations=0,
|
||||
geom_col='the_geom', id_col='cartodb_id'):
|
||||
"""
|
||||
Predict the trends of a unit based on:
|
||||
1. history of its transitions to different classes (e.g., 1st
|
||||
quantile -> 2nd quantile)
|
||||
2. average class of its neighbors
|
||||
|
||||
Inputs:
|
||||
@param subquery string: e.g., SELECT the_geom, cartodb_id,
|
||||
interesting_time_column FROM table_name
|
||||
@param time_cols list of strings: list of strings of column names
|
||||
@param num_classes (optional): number of classes to break
|
||||
distribution of values into. Currently uses quantile bins.
|
||||
@param w_type string (optional): weight type ('knn' or 'queen')
|
||||
@param num_ngbrs int (optional): number of neighbors (if knn type)
|
||||
@param permutations int (optional): number of permutations for test
|
||||
stats
|
||||
@param geom_col string (optional): name of column which contains
|
||||
the geometries
|
||||
@param id_col string (optional): name of column which has the ids
|
||||
of the table
|
||||
|
||||
Outputs:
|
||||
@param trend_up float: probablity that a geom will move to a higher
|
||||
class
|
||||
@param trend_down float: probablity that a geom will move to a
|
||||
lower class
|
||||
@param trend float: (trend_up - trend_down) / trend_static
|
||||
@param volatility float: a measure of the volatility based on
|
||||
probability stddev(prob array)
|
||||
"""
|
||||
|
||||
if len(time_cols) < 2:
|
||||
plpy.error('More than one time column needs to be passed')
|
||||
|
||||
params = {"id_col": id_col,
|
||||
"time_cols": time_cols,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs}
|
||||
|
||||
query_result = self.data_provider.get_markov(w_type, params)
|
||||
|
||||
# build weight
|
||||
weights = pu.get_weight(query_result, w_type)
|
||||
weights.transform = 'r'
|
||||
|
||||
# prep time data
|
||||
t_data = get_time_data(query_result, time_cols)
|
||||
|
||||
sp_markov_result = ps.Spatial_Markov(t_data,
|
||||
weights,
|
||||
k=num_classes,
|
||||
fixed=False,
|
||||
permutations=permutations)
|
||||
|
||||
# get lag classes
|
||||
lag_classes = ps.Quantiles(
|
||||
ps.lag_spatial(weights, t_data[:, -1]),
|
||||
k=num_classes).yb
|
||||
|
||||
# look up probablity distribution for each unit according to class and
|
||||
# lag class
|
||||
prob_dist = get_prob_dist(sp_markov_result.P,
|
||||
lag_classes,
|
||||
sp_markov_result.classes[:, -1])
|
||||
|
||||
# find the ups and down and overall distribution of each cell
|
||||
trend_up, trend_down, trend, volatility = get_prob_stats(prob_dist, sp_markov_result.classes[:, -1])
|
||||
|
||||
# output the results
|
||||
return zip(trend, trend_up, trend_down, volatility, weights.id_order)
|
||||
|
||||
|
||||
|
||||
def get_time_data(markov_data, time_cols):
|
||||
"""
|
||||
Extract the time columns and bin appropriately
|
||||
"""
|
||||
num_attrs = len(time_cols)
|
||||
return np.array([[x['attr' + str(i)] for x in markov_data]
|
||||
for i in range(1, num_attrs+1)], dtype=float).transpose()
|
||||
|
||||
|
||||
# not currently used
|
||||
def rebin_data(time_data, num_time_per_bin):
|
||||
"""
|
||||
Convert an n x l matrix into an (n/m) x l matrix where the values are
|
||||
reduced (averaged) for the intervening states:
|
||||
1 2 3 4 1.5 3.5
|
||||
5 6 7 8 -> 5.5 7.5
|
||||
9 8 7 6 8.5 6.5
|
||||
5 4 3 2 4.5 2.5
|
||||
|
||||
if m = 2, the 4 x 4 matrix is transformed to a 2 x 4 matrix.
|
||||
|
||||
This process effectively resamples the data at a longer time span n
|
||||
units longer than the input data.
|
||||
For cases when there is a remainder (remainder(5/3) = 2), the remaining
|
||||
two columns are binned together as the last time period, while the
|
||||
first three are binned together for the first period.
|
||||
|
||||
Input:
|
||||
@param time_data n x l ndarray: measurements of an attribute at
|
||||
different time intervals
|
||||
@param num_time_per_bin int: number of columns to average into a new
|
||||
column
|
||||
Output:
|
||||
ceil(n / m) x l ndarray of resampled time series
|
||||
"""
|
||||
|
||||
if time_data.shape[1] % num_time_per_bin == 0:
|
||||
# if fit is perfect, then use it
|
||||
n_max = time_data.shape[1] / num_time_per_bin
|
||||
else:
|
||||
# fit remainders into an additional column
|
||||
n_max = time_data.shape[1] / num_time_per_bin + 1
|
||||
|
||||
return np.array(
|
||||
[time_data[:, num_time_per_bin * i:num_time_per_bin * (i+1)].mean(axis=1)
|
||||
for i in range(n_max)]).T
|
||||
|
||||
|
||||
def get_prob_dist(transition_matrix, lag_indices, unit_indices):
|
||||
"""
|
||||
Given an array of transition matrices, look up the probability
|
||||
associated with the arrangements passed
|
||||
|
||||
Input:
|
||||
@param transition_matrix ndarray[k,k,k]:
|
||||
@param lag_indices ndarray:
|
||||
@param unit_indices ndarray:
|
||||
|
||||
Output:
|
||||
Array of probability distributions
|
||||
"""
|
||||
|
||||
return np.array([transition_matrix[(lag_indices[i], unit_indices[i])]
|
||||
for i in range(len(lag_indices))])
|
||||
|
||||
|
||||
def get_prob_stats(prob_dist, unit_indices):
|
||||
"""
|
||||
get the statistics of the probability distributions
|
||||
|
||||
Outputs:
|
||||
@param trend_up ndarray(float): sum of probabilities for upward
|
||||
movement (relative to the unit index of that prob)
|
||||
@param trend_down ndarray(float): sum of probabilities for downward
|
||||
movement (relative to the unit index of that prob)
|
||||
@param trend ndarray(float): difference of upward and downward
|
||||
movements
|
||||
"""
|
||||
|
||||
num_elements = len(unit_indices)
|
||||
trend_up = np.empty(num_elements, dtype=float)
|
||||
trend_down = np.empty(num_elements, dtype=float)
|
||||
trend = np.empty(num_elements, dtype=float)
|
||||
|
||||
for i in range(num_elements):
|
||||
trend_up[i] = prob_dist[i, (unit_indices[i]+1):].sum()
|
||||
trend_down[i] = prob_dist[i, :unit_indices[i]].sum()
|
||||
if prob_dist[i, unit_indices[i]] > 0.0:
|
||||
trend[i] = (trend_up[i] - trend_down[i]) / (
|
||||
prob_dist[i, unit_indices[i]])
|
||||
else:
|
||||
trend[i] = None
|
||||
|
||||
# calculate volatility of distribution
|
||||
volatility = prob_dist.std(axis=1)
|
||||
|
||||
return trend_up, trend_down, trend, volatility
|
||||
5
release/python/0.5.1/crankshaft/requirements.txt
Normal file
5
release/python/0.5.1/crankshaft/requirements.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
joblib==0.8.3
|
||||
numpy==1.6.1
|
||||
scipy==0.14.0
|
||||
pysal==1.11.2
|
||||
scikit-learn==0.14.1
|
||||
49
release/python/0.5.1/crankshaft/setup.py
Normal file
49
release/python/0.5.1/crankshaft/setup.py
Normal file
@@ -0,0 +1,49 @@
|
||||
|
||||
"""
|
||||
CartoDB Spatial Analysis Python Library
|
||||
See:
|
||||
https://github.com/CartoDB/crankshaft
|
||||
"""
|
||||
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
setup(
|
||||
name='crankshaft',
|
||||
|
||||
version='0.5.1',
|
||||
|
||||
description='CartoDB Spatial Analysis Python Library',
|
||||
|
||||
url='https://github.com/CartoDB/crankshaft',
|
||||
|
||||
author='Data Services Team - CartoDB',
|
||||
author_email='dataservices@cartodb.com',
|
||||
|
||||
license='MIT',
|
||||
|
||||
classifiers=[
|
||||
'Development Status :: 3 - Alpha',
|
||||
'Intended Audience :: Mapping comunity',
|
||||
'Topic :: Maps :: Mapping Tools',
|
||||
'License :: OSI Approved :: MIT License',
|
||||
'Programming Language :: Python :: 2.7',
|
||||
],
|
||||
|
||||
keywords='maps mapping tools spatial analysis geostatistics',
|
||||
|
||||
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
|
||||
|
||||
extras_require={
|
||||
'dev': ['unittest'],
|
||||
'test': ['unittest', 'nose', 'mock'],
|
||||
},
|
||||
|
||||
# The choice of component versions is dictated by what's
|
||||
# provisioned in the production servers.
|
||||
# IMPORTANT NOTE: please don't change this line. Instead issue a ticket to systems for evaluation.
|
||||
install_requires=['joblib==0.8.3', 'numpy==1.6.1', 'scipy==0.14.0', 'pysal==1.11.2', 'scikit-learn==0.14.1'],
|
||||
|
||||
requires=['pysal', 'numpy', 'sklearn'],
|
||||
|
||||
test_suite='test'
|
||||
)
|
||||
1
release/python/0.5.1/crankshaft/test/fixtures/getis.json
vendored
Normal file
1
release/python/0.5.1/crankshaft/test/fixtures/getis.json
vendored
Normal file
@@ -0,0 +1 @@
|
||||
[[0.004793783909323601, 0.17999999999999999, 0.49808756424021061], [-1.0701189472090842, 0.079000000000000001, 0.14228288580832316], [-0.67867750971877305, 0.42099999999999999, 0.24867110969448558], [-0.67407386707620487, 0.246, 0.25013217644612995], [-0.79495689068870035, 0.33200000000000002, 0.21331928959090596], [-0.49279481022182703, 0.058999999999999997, 0.31107878905057329], [-0.38075627530057132, 0.28399999999999997, 0.35169205342069643], [-0.86710921611314895, 0.23699999999999999, 0.19294108571294855], [-0.78618647240956485, 0.050000000000000003, 0.2158791250244505], [-0.76108527223116984, 0.064000000000000001, 0.22330306830813684], [-0.13340753531942209, 0.247, 0.44693554317763651], [-0.57584545722033043, 0.48999999999999999, 0.28235982246156488], [-0.78882694661192831, 0.433, 0.2151065788731219], [-0.38769767950046219, 0.375, 0.34911988661484239], [-0.56057819488052207, 0.41399999999999998, 0.28754255985169652], [-0.41354017495644935, 0.45500000000000002, 0.339605447117173], [-0.23993577722243081, 0.49099999999999999, 0.40519002230969337], [-0.1389080156677496, 0.40400000000000003, 0.44476141839645233], [-0.25485737510500855, 0.376, 0.39941662953554224], [-0.71218610582902353, 0.17399999999999999, 0.23817476979886087], [-0.54533105995872144, 0.13700000000000001, 0.2927629228714812], [-0.39547917847510977, 0.033000000000000002, 0.34624464252424236], [-0.43052658996257548, 0.35399999999999998, 0.33340631435564982], [-0.37296719193774736, 0.40300000000000002, 0.35458643102865428], [-0.66482612169465694, 0.31900000000000001, 0.25308085650392698], [-0.13772133540823422, 0.34699999999999998, 0.44523032843016275], [-0.6765304487868502, 0.20999999999999999, 0.24935196033890672], [-0.64518763494323472, 0.32200000000000001, 0.25940279912025543], [-0.5078622084312413, 0.41099999999999998, 0.30577498972600159], [-0.12652006733772059, 0.42899999999999999, 0.44966013262301163], [-0.32691133022814595, 0.498, 0.37186747562269029], [0.25533848511500978, 0.42399999999999999, 0.39923083899077472], [2.7045138116476508, 0.0050000000000000001, 0.0034202212972238577], [-0.1551614486076057, 0.44400000000000001, 0.43834701985429037], [1.9524487722567723, 0.012999999999999999, 0.025442473674991528], [-1.2055816465306763, 0.017000000000000001, 0.11398941970467646], [3.478472976017831, 0.002, 0.00025213964072468009], [-1.4621715757903719, 0.002, 0.071847099325659136], [-0.84010307600180256, 0.085000000000000006, 0.20042529779230778], [5.7097646237318243, 0.0030000000000000001, 5.6566262784940591e-09], [1.5082367956567375, 0.065000000000000002, 0.065746966514827365], [-0.58337270103430816, 0.44, 0.27982121546450034], [-0.083271860457022437, 0.45100000000000001, 0.46681768733385554], [-0.46872337815000953, 0.34599999999999997, 0.31963368715684204], [0.18490279849545319, 0.23799999999999999, 0.42665263797981101], [3.470424529947997, 0.012, 0.00025981817437825683], [-0.99942612137154796, 0.032000000000000001, 0.15879415560388499], [-1.3650387953594485, 0.034000000000000002, 0.08612042845912049], [1.8617160516432014, 0.081000000000000003, 0.03132156240215267], [1.1321188945775384, 0.11600000000000001, 0.12879222611766061], [0.064116686050580601, 0.27300000000000002, 0.4744386578180424], [-0.42032194540259099, 0.29999999999999999, 0.33712514016213468], [-0.79581215423980922, 0.123, 0.21307061309098785], [-0.42792753720906046, 0.45600000000000002, 0.33435193892883741], [-1.0629378527428395, 0.051999999999999998, 0.14390506780140866], [-0.54164761752225477, 0.33700000000000002, 0.29403064095211839], [1.0934778886820793, 0.13700000000000001, 0.13709201601893539], [-0.094068785378413719, 0.38200000000000001, 0.46252725802998929], [0.13482026574801856, 0.36799999999999999, 0.44637699118865737], [-0.13976995315653129, 0.34699999999999998, 0.44442087706276601], [-0.051047663924746682, 0.32000000000000001, 0.47964376985626245], [-0.21468297736730158, 0.41699999999999998, 0.41500724761906527], [-0.20873154637330626, 0.38800000000000001, 0.41732890604390893], [-0.32427876152583485, 0.49199999999999999, 0.37286349875557478], [-0.65254842943280977, 0.374, 0.25702372075306734], [-0.48611858196118796, 0.23300000000000001, 0.31344154643990074], [-0.14482354344529477, 0.32600000000000001, 0.44242509660469886], [-0.51052030974200002, 0.439, 0.30484349480873729], [0.56814382285283538, 0.14999999999999999, 0.28496865660103166], [0.58680919931668207, 0.161, 0.27866592887231878], [0.013390357044409013, 0.25800000000000001, 0.49465818005865647], [-0.19050728887961568, 0.41399999999999998, 0.4244558160399462], [-0.60531777422216049, 0.35199999999999998, 0.2724839368239631], [1.0899331115425805, 0.127, 0.13787130480311838], [0.17015055382651084, 0.36899999999999999, 0.43244586845546418], [-0.21738337124409801, 0.40600000000000003, 0.41395479459421991], [1.0329303331079593, 0.079000000000000001, 0.15081825117169467], [1.0218317101096221, 0.104, 0.15343027913308094]]
|
||||
1
release/python/0.5.1/crankshaft/test/fixtures/kmeans.json
vendored
Normal file
1
release/python/0.5.1/crankshaft/test/fixtures/kmeans.json
vendored
Normal file
@@ -0,0 +1 @@
|
||||
[{"xs": [9.917239463463458, 9.042767302696836, 10.798929825304187, 8.763751051762995, 11.383882954810852, 11.018206993460897, 8.939526075734316, 9.636159342565252, 10.136336896960058, 11.480610059427342, 12.115011910725082, 9.173267848893428, 10.239300931201738, 8.00012512174072, 8.979962292282131, 9.318376124429575, 10.82259513754284, 10.391747171927115, 10.04904588886165, 9.96007160443463, -0.78825626804569, -0.3511819898577426, -1.2796410003764271, -0.3977049391203402, 2.4792311265774667, 1.3670311632092624, 1.2963504112955613, 2.0404844103073025, -1.6439708506073223, 0.39122885445645805, 1.026031821452462, -0.04044477160482201, -0.7442346929085072, -0.34687120826243034, -0.23420359971379054, -0.5919629143336708, -0.202903054395391, -0.1893399644841902, 1.9331834251176807, -0.12321054392851609], "ys": [8.735627063679981, 9.857615954045011, 10.81439096759407, 10.586727233537191, 9.232919976568622, 11.54281262696508, 8.392787912674466, 9.355119689665944, 9.22380703532752, 10.542142541823122, 10.111980619367035, 10.760836265570738, 8.819773453269804, 10.25325722424816, 9.802077905695608, 8.955420161552611, 9.833801181904477, 10.491684241001613, 12.076108669877556, 11.74289693140474, -0.5685725015474191, -0.5715728344759778, -0.20180907868635137, 0.38431336480089595, -0.3402202083684184, -2.4652736827783586, 0.08295159401756182, 0.8503818775816505, 0.6488691600321166, 0.5794762568230527, -0.6770063922144103, -0.6557616416449478, -1.2834289177624947, 0.1096318195532717, -0.38986922166834853, -1.6224497706950238, 0.09429787743230483, 0.4005097316394031, -0.508002811195673, -1.2473463371366507], "ids": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]}]
|
||||
1
release/python/0.5.1/crankshaft/test/fixtures/markov.json
vendored
Normal file
1
release/python/0.5.1/crankshaft/test/fixtures/markov.json
vendored
Normal file
@@ -0,0 +1 @@
|
||||
[[0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 0], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 1], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 2], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 3], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 4], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 5], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 6], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 7], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 8], [0.19047619047619049, 0.16, 0.0, 0.32594478059941379, 9], [-0.23529411764705882, 0.0, 0.19047619047619047, 0.31356338348865387, 10], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 11], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 12], [0.027777777777777783, 0.11111111111111112, 0.088888888888888892, 0.30339641183779581, 13], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 14], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 15], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 16], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 17], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 18], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 19], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 20], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 21], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 22], [-0.16666666666666663, 0.18181818181818182, 0.27272727272727271, 0.20246415864836445, 23], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 24], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 25], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 26], [-0.043478260869565216, 0.0, 0.041666666666666664, 0.37950991789118999, 27], [0.22222222222222221, 0.18181818181818182, 0.0, 0.31701083225750354, 28], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 29], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 30], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 31], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 32], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 33], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 34], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 35], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 36], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 37], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 38], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 39], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 40], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 41], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 42], [0.0, 0.0, 0.0, 0.40000000000000002, 43], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 44], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 45], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 46], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 47]]
|
||||
52
release/python/0.5.1/crankshaft/test/fixtures/moran.json
vendored
Normal file
52
release/python/0.5.1/crankshaft/test/fixtures/moran.json
vendored
Normal file
@@ -0,0 +1,52 @@
|
||||
[[0.9319096128346788, "HH"],
|
||||
[-1.135787401862846, "HL"],
|
||||
[0.11732030672508517, "LL"],
|
||||
[0.6152779669180425, "LL"],
|
||||
[-0.14657336660125297, "LH"],
|
||||
[0.6967858120189607, "LL"],
|
||||
[0.07949310115714454, "HH"],
|
||||
[0.4703198759258987, "HH"],
|
||||
[0.4421125200498064, "HH"],
|
||||
[0.5724288737143592, "LL"],
|
||||
[0.8970743435692062, "LL"],
|
||||
[0.18327334401918674, "LL"],
|
||||
[-0.01466729201304962, "HL"],
|
||||
[0.3481559372544409, "LL"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.15482141569329988, "HH"],
|
||||
[0.4373841193538136, "HH"],
|
||||
[0.15971286468915544, "LL"],
|
||||
[1.0543588860308968, "HH"],
|
||||
[1.7372866900020818, "HH"],
|
||||
[1.091998586053999, "LL"],
|
||||
[0.1171572584252222, "HH"],
|
||||
[0.08438455015300014, "LL"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.15482141569329985, "HH"],
|
||||
[1.1627044812890683, "HH"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.795275137550483, "HH"],
|
||||
[0.18562939195219, "LL"],
|
||||
[0.3010757406693439, "LL"],
|
||||
[2.8205795942839376, "HH"],
|
||||
[0.11259190602909264, "LL"],
|
||||
[-0.07116352791516614, "HL"],
|
||||
[-0.09945240794119009, "LH"],
|
||||
[0.18562939195219, "LL"],
|
||||
[0.1832733440191868, "LL"],
|
||||
[-0.39054253768447705, "HL"],
|
||||
[-0.1672071289487642, "HL"],
|
||||
[0.3337669247916343, "HH"],
|
||||
[0.2584386102554792, "HH"],
|
||||
[-0.19733845476322634, "HL"],
|
||||
[-0.9379282899805409, "LH"],
|
||||
[-0.028770969951095866, "LH"],
|
||||
[0.051367269430983485, "LL"],
|
||||
[-0.2172548045913472, "LH"],
|
||||
[0.05136726943098351, "LL"],
|
||||
[0.04191046803899837, "LL"],
|
||||
[0.7482357030403517, "HH"],
|
||||
[-0.014585767863118111, "LH"],
|
||||
[0.5410013139159929, "HH"],
|
||||
[1.0223932668429925, "LL"],
|
||||
[1.4179402898927476, "LL"]]
|
||||
54
release/python/0.5.1/crankshaft/test/fixtures/neighbors.json
vendored
Normal file
54
release/python/0.5.1/crankshaft/test/fixtures/neighbors.json
vendored
Normal file
@@ -0,0 +1,54 @@
|
||||
[
|
||||
{"neighbors": [48, 26, 20, 9, 31], "id": 1, "value": 0.5},
|
||||
{"neighbors": [30, 16, 46, 3, 4], "id": 2, "value": 0.7},
|
||||
{"neighbors": [46, 30, 2, 12, 16], "id": 3, "value": 0.2},
|
||||
{"neighbors": [18, 30, 23, 2, 52], "id": 4, "value": 0.1},
|
||||
{"neighbors": [47, 40, 45, 37, 28], "id": 5, "value": 0.3},
|
||||
{"neighbors": [10, 21, 41, 14, 37], "id": 6, "value": 0.05},
|
||||
{"neighbors": [8, 17, 43, 25, 12], "id": 7, "value": 0.4},
|
||||
{"neighbors": [17, 25, 43, 22, 7], "id": 8, "value": 0.7},
|
||||
{"neighbors": [39, 34, 1, 26, 48], "id": 9, "value": 0.5},
|
||||
{"neighbors": [6, 37, 5, 45, 49], "id": 10, "value": 0.04},
|
||||
{"neighbors": [51, 41, 29, 21, 14], "id": 11, "value": 0.08},
|
||||
{"neighbors": [44, 46, 43, 50, 3], "id": 12, "value": 0.2},
|
||||
{"neighbors": [45, 23, 14, 28, 18], "id": 13, "value": 0.4},
|
||||
{"neighbors": [41, 29, 13, 23, 6], "id": 14, "value": 0.2},
|
||||
{"neighbors": [36, 27, 32, 33, 24], "id": 15, "value": 0.3},
|
||||
{"neighbors": [19, 2, 46, 44, 28], "id": 16, "value": 0.4},
|
||||
{"neighbors": [8, 25, 43, 7, 22], "id": 17, "value": 0.6},
|
||||
{"neighbors": [23, 4, 29, 14, 13], "id": 18, "value": 0.3},
|
||||
{"neighbors": [42, 16, 28, 26, 40], "id": 19, "value": 0.7},
|
||||
{"neighbors": [1, 48, 31, 26, 42], "id": 20, "value": 0.8},
|
||||
{"neighbors": [41, 6, 11, 14, 10], "id": 21, "value": 0.1},
|
||||
{"neighbors": [25, 50, 43, 31, 44], "id": 22, "value": 0.4},
|
||||
{"neighbors": [18, 13, 14, 4, 2], "id": 23, "value": 0.1},
|
||||
{"neighbors": [33, 49, 34, 47, 27], "id": 24, "value": 0.3},
|
||||
{"neighbors": [43, 8, 22, 17, 50], "id": 25, "value": 0.4},
|
||||
{"neighbors": [1, 42, 20, 31, 48], "id": 26, "value": 0.6},
|
||||
{"neighbors": [32, 15, 36, 33, 24], "id": 27, "value": 0.3},
|
||||
{"neighbors": [40, 45, 19, 5, 13], "id": 28, "value": 0.8},
|
||||
{"neighbors": [11, 51, 41, 14, 18], "id": 29, "value": 0.3},
|
||||
{"neighbors": [2, 3, 4, 46, 18], "id": 30, "value": 0.1},
|
||||
{"neighbors": [20, 26, 1, 50, 48], "id": 31, "value": 0.9},
|
||||
{"neighbors": [27, 36, 15, 49, 24], "id": 32, "value": 0.3},
|
||||
{"neighbors": [24, 27, 49, 34, 32], "id": 33, "value": 0.4},
|
||||
{"neighbors": [47, 9, 39, 40, 24], "id": 34, "value": 0.3},
|
||||
{"neighbors": [38, 51, 11, 21, 41], "id": 35, "value": 0.3},
|
||||
{"neighbors": [15, 32, 27, 49, 33], "id": 36, "value": 0.2},
|
||||
{"neighbors": [49, 10, 5, 47, 24], "id": 37, "value": 0.5},
|
||||
{"neighbors": [35, 21, 51, 11, 41], "id": 38, "value": 0.4},
|
||||
{"neighbors": [9, 34, 48, 1, 47], "id": 39, "value": 0.6},
|
||||
{"neighbors": [28, 47, 5, 9, 34], "id": 40, "value": 0.5},
|
||||
{"neighbors": [11, 14, 29, 21, 6], "id": 41, "value": 0.4},
|
||||
{"neighbors": [26, 19, 1, 9, 31], "id": 42, "value": 0.2},
|
||||
{"neighbors": [25, 12, 8, 22, 44], "id": 43, "value": 0.3},
|
||||
{"neighbors": [12, 50, 46, 16, 43], "id": 44, "value": 0.2},
|
||||
{"neighbors": [28, 13, 5, 40, 19], "id": 45, "value": 0.3},
|
||||
{"neighbors": [3, 12, 44, 2, 16], "id": 46, "value": 0.2},
|
||||
{"neighbors": [34, 40, 5, 49, 24], "id": 47, "value": 0.3},
|
||||
{"neighbors": [1, 20, 26, 9, 39], "id": 48, "value": 0.5},
|
||||
{"neighbors": [24, 37, 47, 5, 33], "id": 49, "value": 0.2},
|
||||
{"neighbors": [44, 22, 31, 42, 26], "id": 50, "value": 0.6},
|
||||
{"neighbors": [11, 29, 41, 14, 21], "id": 51, "value": 0.01},
|
||||
{"neighbors": [4, 18, 29, 51, 23], "id": 52, "value": 0.01}
|
||||
]
|
||||
1
release/python/0.5.1/crankshaft/test/fixtures/neighbors_getis.json
vendored
Normal file
1
release/python/0.5.1/crankshaft/test/fixtures/neighbors_getis.json
vendored
Normal file
File diff suppressed because one or more lines are too long
1
release/python/0.5.1/crankshaft/test/fixtures/neighbors_markov.json
vendored
Normal file
1
release/python/0.5.1/crankshaft/test/fixtures/neighbors_markov.json
vendored
Normal file
File diff suppressed because one or more lines are too long
13
release/python/0.5.1/crankshaft/test/helper.py
Normal file
13
release/python/0.5.1/crankshaft/test/helper.py
Normal file
@@ -0,0 +1,13 @@
|
||||
import unittest
|
||||
|
||||
from mock_plpy import MockPlPy
|
||||
plpy = MockPlPy()
|
||||
|
||||
import sys
|
||||
sys.modules['plpy'] = plpy
|
||||
|
||||
import os
|
||||
|
||||
def fixture_file(name):
|
||||
dir = os.path.dirname(os.path.realpath(__file__))
|
||||
return os.path.join(dir, 'fixtures', name)
|
||||
54
release/python/0.5.1/crankshaft/test/mock_plpy.py
Normal file
54
release/python/0.5.1/crankshaft/test/mock_plpy.py
Normal file
@@ -0,0 +1,54 @@
|
||||
import re
|
||||
|
||||
|
||||
class MockCursor:
|
||||
def __init__(self, data):
|
||||
self.cursor_pos = 0
|
||||
self.data = data
|
||||
|
||||
def fetch(self, batch_size):
|
||||
batch = self.data[self.cursor_pos:self.cursor_pos + batch_size]
|
||||
self.cursor_pos += batch_size
|
||||
return batch
|
||||
|
||||
|
||||
class MockPlPy:
|
||||
def __init__(self):
|
||||
self._reset()
|
||||
|
||||
def _reset(self):
|
||||
self.infos = []
|
||||
self.notices = []
|
||||
self.debugs = []
|
||||
self.logs = []
|
||||
self.warnings = []
|
||||
self.errors = []
|
||||
self.fatals = []
|
||||
self.executes = []
|
||||
self.results = []
|
||||
self.prepares = []
|
||||
self.results = []
|
||||
|
||||
def _define_result(self, query, result):
|
||||
pattern = re.compile(query, re.IGNORECASE | re.MULTILINE)
|
||||
self.results.append([pattern, result])
|
||||
|
||||
def notice(self, msg):
|
||||
self.notices.append(msg)
|
||||
|
||||
def debug(self, msg):
|
||||
self.notices.append(msg)
|
||||
|
||||
def info(self, msg):
|
||||
self.infos.append(msg)
|
||||
|
||||
def cursor(self, query):
|
||||
data = self.execute(query)
|
||||
return MockCursor(data)
|
||||
|
||||
# TODO: additional arguments
|
||||
def execute(self, query):
|
||||
for result in self.results:
|
||||
if result[0].match(query):
|
||||
return result[1]
|
||||
return []
|
||||
@@ -0,0 +1,78 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
from helper import fixture_file
|
||||
|
||||
from crankshaft.clustering import Getis
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
# Fixture files produced as follows
|
||||
#
|
||||
# import pysal as ps
|
||||
# import numpy as np
|
||||
# import random
|
||||
#
|
||||
# # setup variables
|
||||
# f = ps.open(ps.examples.get_path("stl_hom.dbf"))
|
||||
# y = np.array(f.by_col['HR8893'])
|
||||
# w_queen = ps.queen_from_shapefile(ps.examples.get_path("stl_hom.shp"))
|
||||
#
|
||||
# out_queen = [{"id": index + 1,
|
||||
# "neighbors": [x+1 for x in w_queen.neighbors[index]],
|
||||
# "value": val} for index, val in enumerate(y)]
|
||||
#
|
||||
# with open('neighbors_queen_getis.json', 'w') as f:
|
||||
# f.write(str(out_queen))
|
||||
#
|
||||
# random.seed(1234)
|
||||
# np.random.seed(1234)
|
||||
# lgstar_queen = ps.esda.getisord.G_Local(y, w_queen, star=True,
|
||||
# permutations=999)
|
||||
#
|
||||
# with open('getis_queen.json', 'w') as f:
|
||||
# f.write(str(zip(lgstar_queen.z_sim,
|
||||
# lgstar_queen.p_sim, lgstar_queen.p_z_sim)))
|
||||
|
||||
|
||||
class FakeDataProvider(AnalysisDataProvider):
|
||||
def __init__(self, mock_data):
|
||||
self.mock_result = mock_data
|
||||
|
||||
def get_getis(self, w_type, param):
|
||||
return self.mock_result
|
||||
|
||||
|
||||
class GetisTest(unittest.TestCase):
|
||||
"""Testing class for Getis-Ord's G* funtion
|
||||
This test replicates the work done in PySAL documentation:
|
||||
https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/autocorrelation.html#local-g-and-g
|
||||
"""
|
||||
|
||||
def setUp(self):
|
||||
# load raw data for analysis
|
||||
self.neighbors_data = json.loads(
|
||||
open(fixture_file('neighbors_getis.json')).read())
|
||||
|
||||
# load pre-computed/known values
|
||||
self.getis_data = json.loads(
|
||||
open(fixture_file('getis.json')).read())
|
||||
|
||||
def test_getis_ord(self):
|
||||
"""Test Getis-Ord's G*"""
|
||||
data = [{'id': d['id'],
|
||||
'attr1': d['value'],
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
|
||||
random_seeds.set_random_seeds(1234)
|
||||
getis = Getis(FakeDataProvider(data))
|
||||
|
||||
result = getis.getis_ord('subquery', 'value',
|
||||
'queen', None, 999, 'the_geom',
|
||||
'cartodb_id')
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
expected = np.array(self.getis_data)[:, 0:2]
|
||||
for ([res_z, res_p], [exp_z, exp_p]) in zip(result, expected):
|
||||
self.assertAlmostEqual(res_z, exp_z, delta=1e-2)
|
||||
@@ -0,0 +1,56 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
|
||||
# from mock_plpy import MockPlPy
|
||||
# plpy = MockPlPy()
|
||||
#
|
||||
# import sys
|
||||
# sys.modules['plpy'] = plpy
|
||||
from helper import fixture_file
|
||||
from crankshaft.clustering import Kmeans
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
import crankshaft.clustering as cc
|
||||
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class FakeDataProvider(AnalysisDataProvider):
|
||||
def __init__(self, mocked_result):
|
||||
self.mocked_result = mocked_result
|
||||
|
||||
def get_spatial_kmeans(self, query):
|
||||
return self.mocked_result
|
||||
|
||||
def get_nonspatial_kmeans(self, query, standarize):
|
||||
return self.mocked_result
|
||||
|
||||
|
||||
class KMeansTest(unittest.TestCase):
|
||||
"""Testing class for k-means spatial"""
|
||||
|
||||
def setUp(self):
|
||||
self.cluster_data = json.loads(
|
||||
open(fixture_file('kmeans.json')).read())
|
||||
self.params = {"subquery": "select * from table",
|
||||
"no_clusters": "10"}
|
||||
|
||||
def test_kmeans(self):
|
||||
"""
|
||||
"""
|
||||
data = [{'xs': d['xs'],
|
||||
'ys': d['ys'],
|
||||
'ids': d['ids']} for d in self.cluster_data]
|
||||
|
||||
random_seeds.set_random_seeds(1234)
|
||||
kmeans = Kmeans(FakeDataProvider(data))
|
||||
clusters = kmeans.spatial('subquery', 2)
|
||||
labels = [a[1] for a in clusters]
|
||||
c1 = [a for a in clusters if a[1] == 0]
|
||||
c2 = [a for a in clusters if a[1] == 1]
|
||||
|
||||
self.assertEqual(len(np.unique(labels)), 2)
|
||||
self.assertEqual(len(c1), 20)
|
||||
self.assertEqual(len(c2), 20)
|
||||
112
release/python/0.5.1/crankshaft/test/test_clustering_moran.py
Normal file
112
release/python/0.5.1/crankshaft/test/test_clustering_moran.py
Normal file
@@ -0,0 +1,112 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
from helper import fixture_file
|
||||
from crankshaft.clustering import Moran
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class FakeDataProvider(AnalysisDataProvider):
|
||||
def __init__(self, mock_data):
|
||||
self.mock_result = mock_data
|
||||
|
||||
def get_moran(self, w_type, params):
|
||||
return self.mock_result
|
||||
|
||||
|
||||
class MoranTest(unittest.TestCase):
|
||||
"""Testing class for Moran's I functions"""
|
||||
|
||||
def setUp(self):
|
||||
self.params = {"id_col": "cartodb_id",
|
||||
"attr1": "andy",
|
||||
"attr2": "jay_z",
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
self.params_markov = {"id_col": "cartodb_id",
|
||||
"time_cols": ["_2013_dec", "_2014_jan",
|
||||
"_2014_feb"],
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
self.neighbors_data = json.loads(
|
||||
open(fixture_file('neighbors.json')).read())
|
||||
self.moran_data = json.loads(
|
||||
open(fixture_file('moran.json')).read())
|
||||
|
||||
def test_map_quads(self):
|
||||
"""Test map_quads"""
|
||||
from crankshaft.clustering import map_quads
|
||||
self.assertEqual(map_quads(1), 'HH')
|
||||
self.assertEqual(map_quads(2), 'LH')
|
||||
self.assertEqual(map_quads(3), 'LL')
|
||||
self.assertEqual(map_quads(4), 'HL')
|
||||
self.assertEqual(map_quads(33), None)
|
||||
self.assertEqual(map_quads('andy'), None)
|
||||
|
||||
def test_quad_position(self):
|
||||
"""Test lisa_sig_vals"""
|
||||
from crankshaft.clustering import quad_position
|
||||
|
||||
quads = np.array([1, 2, 3, 4], np.int)
|
||||
|
||||
ans = np.array(['HH', 'LH', 'LL', 'HL'])
|
||||
test_ans = quad_position(quads)
|
||||
|
||||
self.assertTrue((test_ans == ans).all())
|
||||
|
||||
def test_local_stat(self):
|
||||
"""Test Moran's I local"""
|
||||
data = [OrderedDict([('id', d['id']),
|
||||
('attr1', d['value']),
|
||||
('neighbors', d['neighbors'])])
|
||||
for d in self.neighbors_data]
|
||||
|
||||
moran = Moran(FakeDataProvider(data))
|
||||
random_seeds.set_random_seeds(1234)
|
||||
result = moran.local_stat('subquery', 'value',
|
||||
'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
zipped_values = zip(result, self.moran_data)
|
||||
|
||||
for ([res_val, res_quad], [exp_val, exp_quad]) in zipped_values:
|
||||
self.assertAlmostEqual(res_val, exp_val)
|
||||
self.assertEqual(res_quad, exp_quad)
|
||||
|
||||
def test_moran_local_rate(self):
|
||||
"""Test Moran's I rate"""
|
||||
data = [{'id': d['id'],
|
||||
'attr1': d['value'],
|
||||
'attr2': 1,
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
|
||||
random_seeds.set_random_seeds(1234)
|
||||
moran = Moran(FakeDataProvider(data))
|
||||
result = moran.local_rate_stat('subquery', 'numerator', 'denominator',
|
||||
'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
|
||||
zipped_values = zip(result, self.moran_data)
|
||||
|
||||
for ([res_val, res_quad], [exp_val, exp_quad]) in zipped_values:
|
||||
self.assertAlmostEqual(res_val, exp_val)
|
||||
|
||||
def test_moran(self):
|
||||
"""Test Moran's I global"""
|
||||
data = [{'id': d['id'],
|
||||
'attr1': d['value'],
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
random_seeds.set_random_seeds(1235)
|
||||
moran = Moran(FakeDataProvider(data))
|
||||
result = moran.global_stat('table', 'value',
|
||||
'knn', 5, 99, 'the_geom',
|
||||
'cartodb_id')
|
||||
|
||||
result_moran = result[0][0]
|
||||
expected_moran = np.array([row[0] for row in self.moran_data]).mean()
|
||||
self.assertAlmostEqual(expected_moran, result_moran, delta=10e-2)
|
||||
160
release/python/0.5.1/crankshaft/test/test_pysal_utils.py
Normal file
160
release/python/0.5.1/crankshaft/test/test_pysal_utils.py
Normal file
@@ -0,0 +1,160 @@
|
||||
import unittest
|
||||
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class PysalUtilsTest(unittest.TestCase):
|
||||
"""Testing class for utility functions related to PySAL integrations"""
|
||||
|
||||
def setUp(self):
|
||||
self.params1 = OrderedDict([("id_col", "cartodb_id"),
|
||||
("attr1", "andy"),
|
||||
("attr2", "jay_z"),
|
||||
("subquery", "SELECT * FROM a_list"),
|
||||
("geom_col", "the_geom"),
|
||||
("num_ngbrs", 321)])
|
||||
|
||||
self.params2 = OrderedDict([("id_col", "cartodb_id"),
|
||||
("numerator", "price"),
|
||||
("denominator", "sq_meters"),
|
||||
("subquery", "SELECT * FROM pecan"),
|
||||
("geom_col", "the_geom"),
|
||||
("num_ngbrs", 321)])
|
||||
|
||||
self.params3 = OrderedDict([("id_col", "cartodb_id"),
|
||||
("numerator", "sq_meters"),
|
||||
("denominator", "price"),
|
||||
("subquery", "SELECT * FROM pecan"),
|
||||
("geom_col", "the_geom"),
|
||||
("num_ngbrs", 321)])
|
||||
|
||||
self.params_array = {"id_col": "cartodb_id",
|
||||
"time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"],
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
|
||||
def test_query_attr_select(self):
|
||||
"""Test query_attr_select"""
|
||||
|
||||
ans1 = ("i.\"andy\"::numeric As attr1, "
|
||||
"i.\"jay_z\"::numeric As attr2, ")
|
||||
|
||||
ans2 = ("i.\"price\"::numeric As attr1, "
|
||||
"i.\"sq_meters\"::numeric As attr2, ")
|
||||
|
||||
ans3 = ("i.\"sq_meters\"::numeric As attr1, "
|
||||
"i.\"price\"::numeric As attr2, ")
|
||||
|
||||
ans_array = ("i.\"_2013_dec\"::numeric As attr1, "
|
||||
"i.\"_2014_jan\"::numeric As attr2, "
|
||||
"i.\"_2014_feb\"::numeric As attr3, ")
|
||||
|
||||
self.assertEqual(pu.query_attr_select(self.params1), ans1)
|
||||
self.assertEqual(pu.query_attr_select(self.params2), ans2)
|
||||
self.assertEqual(pu.query_attr_select(self.params3), ans3)
|
||||
self.assertEqual(pu.query_attr_select(self.params_array), ans_array)
|
||||
|
||||
def test_query_attr_where(self):
|
||||
"""Test pu.query_attr_where"""
|
||||
|
||||
ans1 = ("idx_replace.\"andy\" IS NOT NULL AND "
|
||||
"idx_replace.\"jay_z\" IS NOT NULL")
|
||||
|
||||
ans_array = ("idx_replace.\"_2013_dec\" IS NOT NULL AND "
|
||||
"idx_replace.\"_2014_jan\" IS NOT NULL AND "
|
||||
"idx_replace.\"_2014_feb\" IS NOT NULL")
|
||||
|
||||
self.assertEqual(pu.query_attr_where(self.params1), ans1)
|
||||
self.assertEqual(pu.query_attr_where(self.params_array), ans_array)
|
||||
|
||||
def test_knn(self):
|
||||
"""Test knn neighbors constructor"""
|
||||
|
||||
ans1 = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"andy\"::numeric As attr1, " \
|
||||
"i.\"jay_z\"::numeric As attr2, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
"FROM (SELECT * FROM a_list) As j " \
|
||||
"WHERE " \
|
||||
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
|
||||
"j.\"andy\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" IS NOT NULL " \
|
||||
"ORDER BY " \
|
||||
"j.\"the_geom\" <-> i.\"the_geom\" ASC " \
|
||||
"LIMIT 321)) As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"andy\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" IS NOT NULL " \
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
ans_array = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"_2013_dec\"::numeric As attr1, " \
|
||||
"i.\"_2014_jan\"::numeric As attr2, " \
|
||||
"i.\"_2014_feb\"::numeric As attr3, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
"FROM (SELECT * FROM a_list) As j " \
|
||||
"WHERE i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
|
||||
"j.\"_2013_dec\" IS NOT NULL AND " \
|
||||
"j.\"_2014_jan\" IS NOT NULL AND " \
|
||||
"j.\"_2014_feb\" IS NOT NULL " \
|
||||
"ORDER BY j.\"the_geom\" <-> i.\"the_geom\" ASC " \
|
||||
"LIMIT 321)) As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"_2013_dec\" IS NOT NULL AND " \
|
||||
"i.\"_2014_jan\" IS NOT NULL AND " \
|
||||
"i.\"_2014_feb\" IS NOT NULL "\
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
self.assertEqual(pu.knn(self.params1), ans1)
|
||||
self.assertEqual(pu.knn(self.params_array), ans_array)
|
||||
|
||||
def test_queen(self):
|
||||
"""Test queen neighbors constructor"""
|
||||
|
||||
ans1 = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"andy\"::numeric As attr1, " \
|
||||
"i.\"jay_z\"::numeric As attr2, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
"FROM (SELECT * FROM a_list) As j " \
|
||||
"WHERE " \
|
||||
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
|
||||
"ST_Touches(i.\"the_geom\", " \
|
||||
"j.\"the_geom\") AND " \
|
||||
"j.\"andy\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" IS NOT NULL)" \
|
||||
") As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"andy\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" IS NOT NULL " \
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
self.assertEqual(pu.queen(self.params1), ans1)
|
||||
|
||||
def test_construct_neighbor_query(self):
|
||||
"""Test construct_neighbor_query"""
|
||||
|
||||
# Compare to raw knn query
|
||||
self.assertEqual(pu.construct_neighbor_query('knn', self.params1),
|
||||
pu.knn(self.params1))
|
||||
|
||||
def test_get_attributes(self):
|
||||
"""Test get_attributes"""
|
||||
|
||||
## need to add tests
|
||||
|
||||
self.assertEqual(True, True)
|
||||
|
||||
def test_get_weight(self):
|
||||
"""Test get_weight"""
|
||||
|
||||
self.assertEqual(True, True)
|
||||
|
||||
def test_empty_zipped_array(self):
|
||||
"""Test empty_zipped_array"""
|
||||
ans2 = [(None, None)]
|
||||
ans4 = [(None, None, None, None)]
|
||||
self.assertEqual(pu.empty_zipped_array(2), ans2)
|
||||
self.assertEqual(pu.empty_zipped_array(4), ans4)
|
||||
64
release/python/0.5.1/crankshaft/test/test_segmentation.py
Normal file
64
release/python/0.5.1/crankshaft/test/test_segmentation.py
Normal file
@@ -0,0 +1,64 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from helper import plpy, fixture_file
|
||||
import crankshaft.segmentation as segmentation
|
||||
import json
|
||||
|
||||
class SegmentationTest(unittest.TestCase):
|
||||
"""Testing class for Moran's I functions"""
|
||||
|
||||
def setUp(self):
|
||||
plpy._reset()
|
||||
|
||||
def generate_random_data(self,n_samples,random_state, row_type=False):
|
||||
x1 = random_state.uniform(size=n_samples)
|
||||
x2 = random_state.uniform(size=n_samples)
|
||||
x3 = random_state.randint(0, 4, size=n_samples)
|
||||
|
||||
y = x1+x2*x2+x3
|
||||
cartodb_id = range(len(x1))
|
||||
|
||||
if row_type:
|
||||
return [ {'features': vals} for vals in zip(x1,x2,x3)], y
|
||||
else:
|
||||
return [dict( zip(['x1','x2','x3','target', 'cartodb_id'],[x1,x2,x3,y,cartodb_id]))]
|
||||
|
||||
def test_replace_nan_with_mean(self):
|
||||
test_array = np.array([1.2, np.nan, 3.2, np.nan, np.nan])
|
||||
|
||||
def test_create_and_predict_segment(self):
|
||||
n_samples = 1000
|
||||
|
||||
random_state_train = np.random.RandomState(13)
|
||||
random_state_test = np.random.RandomState(134)
|
||||
training_data = self.generate_random_data(n_samples, random_state_train)
|
||||
test_data, test_y = self.generate_random_data(n_samples, random_state_test, row_type=True)
|
||||
|
||||
|
||||
ids = [{'cartodb_ids': range(len(test_data))}]
|
||||
rows = [{'x1': 0,'x2':0,'x3':0,'y':0,'cartodb_id':0}]
|
||||
|
||||
plpy._define_result('select \* from \(select \* from training\) a limit 1',rows)
|
||||
plpy._define_result('.*from \(select \* from training\) as a' ,training_data)
|
||||
plpy._define_result('select array_agg\(cartodb\_id order by cartodb\_id\) as cartodb_ids from \(.*\) a',ids)
|
||||
plpy._define_result('.*select \* from test.*' ,test_data)
|
||||
|
||||
model_parameters = {'n_estimators': 1200,
|
||||
'max_depth': 3,
|
||||
'subsample' : 0.5,
|
||||
'learning_rate': 0.01,
|
||||
'min_samples_leaf': 1}
|
||||
|
||||
result = segmentation.create_and_predict_segment(
|
||||
'select * from training',
|
||||
'target',
|
||||
'select * from test',
|
||||
model_parameters)
|
||||
|
||||
prediction = [r[1] for r in result]
|
||||
|
||||
accuracy =np.sqrt(np.mean( np.square( np.array(prediction) - np.array(test_y))))
|
||||
|
||||
self.assertEqual(len(result),len(test_data))
|
||||
self.assertTrue( result[0][2] < 0.01)
|
||||
self.assertTrue( accuracy < 0.5*np.mean(test_y) )
|
||||
349
release/python/0.5.1/crankshaft/test/test_space_time_dynamics.py
Normal file
349
release/python/0.5.1/crankshaft/test/test_space_time_dynamics.py
Normal file
@@ -0,0 +1,349 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import unittest
|
||||
|
||||
|
||||
from helper import fixture_file
|
||||
|
||||
from crankshaft.space_time_dynamics import Markov
|
||||
import crankshaft.space_time_dynamics as std
|
||||
from crankshaft import random_seeds
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
import json
|
||||
|
||||
|
||||
class FakeDataProvider(AnalysisDataProvider):
|
||||
def __init__(self, data):
|
||||
self.mock_result = data
|
||||
|
||||
def get_markov(self, w_type, params):
|
||||
return self.mock_result
|
||||
|
||||
|
||||
class SpaceTimeTests(unittest.TestCase):
|
||||
"""Testing class for Markov Functions."""
|
||||
|
||||
def setUp(self):
|
||||
self.params = {"id_col": "cartodb_id",
|
||||
"time_cols": ['dec_2013', 'jan_2014', 'feb_2014'],
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
self.neighbors_data = json.loads(
|
||||
open(fixture_file('neighbors_markov.json')).read())
|
||||
self.markov_data = json.loads(open(fixture_file('markov.json')).read())
|
||||
|
||||
self.time_data = np.array([i * np.ones(10, dtype=float)
|
||||
for i in range(10)]).T
|
||||
|
||||
self.transition_matrix = np.array([
|
||||
[[0.96341463, 0.0304878, 0.00609756, 0., 0.],
|
||||
[0.06040268, 0.83221477, 0.10738255, 0., 0.],
|
||||
[0., 0.14, 0.74, 0.12, 0.],
|
||||
[0., 0.03571429, 0.32142857, 0.57142857, 0.07142857],
|
||||
[0., 0., 0., 0.16666667, 0.83333333]],
|
||||
[[0.79831933, 0.16806723, 0.03361345, 0., 0.],
|
||||
[0.0754717, 0.88207547, 0.04245283, 0., 0.],
|
||||
[0.00537634, 0.06989247, 0.8655914, 0.05913978, 0.],
|
||||
[0., 0., 0.06372549, 0.90196078, 0.03431373],
|
||||
[0., 0., 0., 0.19444444, 0.80555556]],
|
||||
[[0.84693878, 0.15306122, 0., 0., 0.],
|
||||
[0.08133971, 0.78947368, 0.1291866, 0., 0.],
|
||||
[0.00518135, 0.0984456, 0.79274611, 0.0984456, 0.00518135],
|
||||
[0., 0., 0.09411765, 0.87058824, 0.03529412],
|
||||
[0., 0., 0., 0.10204082, 0.89795918]],
|
||||
[[0.8852459, 0.09836066, 0., 0.01639344, 0.],
|
||||
[0.03875969, 0.81395349, 0.13953488, 0., 0.00775194],
|
||||
[0.0049505, 0.09405941, 0.77722772, 0.11881188, 0.0049505],
|
||||
[0., 0.02339181, 0.12865497, 0.75438596, 0.09356725],
|
||||
[0., 0., 0., 0.09661836, 0.90338164]],
|
||||
[[0.33333333, 0.66666667, 0., 0., 0.],
|
||||
[0.0483871, 0.77419355, 0.16129032, 0.01612903, 0.],
|
||||
[0.01149425, 0.16091954, 0.74712644, 0.08045977, 0.],
|
||||
[0., 0.01036269, 0.06217617, 0.89637306, 0.03108808],
|
||||
[0., 0., 0., 0.02352941, 0.97647059]]]
|
||||
)
|
||||
|
||||
def test_spatial_markov(self):
|
||||
"""Test Spatial Markov."""
|
||||
data = [{'id': d['id'],
|
||||
'attr1': d['y1995'],
|
||||
'attr2': d['y1996'],
|
||||
'attr3': d['y1997'],
|
||||
'attr4': d['y1998'],
|
||||
'attr5': d['y1999'],
|
||||
'attr6': d['y2000'],
|
||||
'attr7': d['y2001'],
|
||||
'attr8': d['y2002'],
|
||||
'attr9': d['y2003'],
|
||||
'attr10': d['y2004'],
|
||||
'attr11': d['y2005'],
|
||||
'attr12': d['y2006'],
|
||||
'attr13': d['y2007'],
|
||||
'attr14': d['y2008'],
|
||||
'attr15': d['y2009'],
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
# print(str(data[0]))
|
||||
markov = Markov(FakeDataProvider(data))
|
||||
random_seeds.set_random_seeds(1234)
|
||||
|
||||
result = markov.spatial_trend('subquery',
|
||||
['y1995', 'y1996', 'y1997', 'y1998',
|
||||
'y1999', 'y2000', 'y2001', 'y2002',
|
||||
'y2003', 'y2004', 'y2005', 'y2006',
|
||||
'y2007', 'y2008', 'y2009'],
|
||||
5, 'knn', 5, 0, 'the_geom',
|
||||
'cartodb_id')
|
||||
|
||||
self.assertTrue(result is not None)
|
||||
result = [(row[0], row[1], row[2], row[3], row[4]) for row in result]
|
||||
print result[0]
|
||||
expected = self.markov_data
|
||||
for ([res_trend, res_up, res_down, res_vol, res_id],
|
||||
[exp_trend, exp_up, exp_down, exp_vol, exp_id]
|
||||
) in zip(result, expected):
|
||||
self.assertAlmostEqual(res_trend, exp_trend)
|
||||
|
||||
def test_get_time_data(self):
|
||||
"""Test get_time_data"""
|
||||
data = [{'attr1': d['y1995'],
|
||||
'attr2': d['y1996'],
|
||||
'attr3': d['y1997'],
|
||||
'attr4': d['y1998'],
|
||||
'attr5': d['y1999'],
|
||||
'attr6': d['y2000'],
|
||||
'attr7': d['y2001'],
|
||||
'attr8': d['y2002'],
|
||||
'attr9': d['y2003'],
|
||||
'attr10': d['y2004'],
|
||||
'attr11': d['y2005'],
|
||||
'attr12': d['y2006'],
|
||||
'attr13': d['y2007'],
|
||||
'attr14': d['y2008'],
|
||||
'attr15': d['y2009']} for d in self.neighbors_data]
|
||||
|
||||
result = std.get_time_data(data, ['y1995', 'y1996', 'y1997', 'y1998',
|
||||
'y1999', 'y2000', 'y2001', 'y2002',
|
||||
'y2003', 'y2004', 'y2005', 'y2006',
|
||||
'y2007', 'y2008', 'y2009'])
|
||||
|
||||
# expected was prepared from PySAL example:
|
||||
# f = ps.open(ps.examples.get_path("usjoin.csv"))
|
||||
# pci = np.array([f.by_col[str(y)]
|
||||
# for y in range(1995, 2010)]).transpose()
|
||||
# rpci = pci / (pci.mean(axis = 0))
|
||||
|
||||
expected = np.array(
|
||||
[[0.87654416, 0.863147, 0.85637567, 0.84811668, 0.8446154,
|
||||
0.83271652, 0.83786314, 0.85012593, 0.85509656, 0.86416612,
|
||||
0.87119375, 0.86302631, 0.86148267, 0.86252252, 0.86746356],
|
||||
[0.9188951, 0.91757931, 0.92333258, 0.92517289, 0.92552388,
|
||||
0.90746978, 0.89830489, 0.89431991, 0.88924794, 0.89815176,
|
||||
0.91832091, 0.91706054, 0.90139505, 0.87897455, 0.86216858],
|
||||
[0.82591007, 0.82548596, 0.81989793, 0.81503235, 0.81731522,
|
||||
0.78964559, 0.80584442, 0.8084998, 0.82258551, 0.82668196,
|
||||
0.82373724, 0.81814804, 0.83675961, 0.83574199, 0.84647177],
|
||||
[1.09088176, 1.08537689, 1.08456418, 1.08415404, 1.09898841,
|
||||
1.14506948, 1.12151133, 1.11160697, 1.10888621, 1.11399806,
|
||||
1.12168029, 1.13164797, 1.12958508, 1.11371818, 1.09936775],
|
||||
[1.10731446, 1.11373944, 1.13283638, 1.14472559, 1.15910025,
|
||||
1.16898201, 1.17212488, 1.14752303, 1.11843284, 1.11024964,
|
||||
1.11943471, 1.11736468, 1.10863242, 1.09642516, 1.07762337],
|
||||
[1.42269757, 1.42118434, 1.44273502, 1.43577571, 1.44400684,
|
||||
1.44184737, 1.44782832, 1.41978227, 1.39092208, 1.4059372,
|
||||
1.40788646, 1.44052766, 1.45241216, 1.43306098, 1.4174431],
|
||||
[1.13073885, 1.13110513, 1.11074708, 1.13364636, 1.13088149,
|
||||
1.10888138, 1.11856629, 1.13062931, 1.11944984, 1.12446239,
|
||||
1.11671008, 1.10880034, 1.08401709, 1.06959206, 1.07875225],
|
||||
[1.04706124, 1.04516831, 1.04253372, 1.03239987, 1.02072545,
|
||||
0.99854316, 0.9880258, 0.99669587, 0.99327676, 1.01400905,
|
||||
1.03176742, 1.040511, 1.01749645, 0.9936394, 0.98279746],
|
||||
[0.98996986, 1.00143564, 0.99491, 1.00188408, 1.00455845,
|
||||
0.99127006, 0.97925917, 0.9683482, 0.95335147, 0.93694787,
|
||||
0.94308213, 0.92232874, 0.91284091, 0.89689833, 0.88928858],
|
||||
[0.87418391, 0.86416601, 0.84425695, 0.8404494, 0.83903044,
|
||||
0.8578708, 0.86036185, 0.86107306, 0.8500772, 0.86981998,
|
||||
0.86837929, 0.87204141, 0.86633032, 0.84946077, 0.83287146],
|
||||
[1.14196118, 1.14660262, 1.14892712, 1.14909594, 1.14436624,
|
||||
1.14450183, 1.12349752, 1.12596664, 1.12213996, 1.1119989,
|
||||
1.10257792, 1.10491258, 1.11059842, 1.10509795, 1.10020097],
|
||||
[0.97282463, 0.96700147, 0.96252588, 0.9653878, 0.96057687,
|
||||
0.95831051, 0.94480909, 0.94804195, 0.95430286, 0.94103989,
|
||||
0.92122519, 0.91010201, 0.89280392, 0.89298243, 0.89165385],
|
||||
[0.94325468, 0.96436902, 0.96455242, 0.95243009, 0.94117647,
|
||||
0.9480927, 0.93539182, 0.95388718, 0.94597005, 0.96918424,
|
||||
0.94781281, 0.93466815, 0.94281559, 0.96520315, 0.96715441],
|
||||
[0.97478408, 0.98169225, 0.98712809, 0.98474769, 0.98559897,
|
||||
0.98687073, 0.99237486, 0.98209969, 0.9877653, 0.97399471,
|
||||
0.96910087, 0.98416665, 0.98423613, 0.99823861, 0.99545704],
|
||||
[0.85570269, 0.85575915, 0.85986132, 0.85693406, 0.8538012,
|
||||
0.86191535, 0.84981451, 0.85472102, 0.84564835, 0.83998883,
|
||||
0.83478547, 0.82803648, 0.8198736, 0.82265395, 0.8399404],
|
||||
[0.87022047, 0.85996258, 0.85961813, 0.85689572, 0.83947136,
|
||||
0.82785597, 0.86008789, 0.86776298, 0.86720209, 0.8676334,
|
||||
0.89179317, 0.94202108, 0.9422231, 0.93902708, 0.94479184],
|
||||
[0.90134907, 0.90407738, 0.90403991, 0.90201769, 0.90399238,
|
||||
0.90906632, 0.92693339, 0.93695966, 0.94242697, 0.94338265,
|
||||
0.91981796, 0.91108804, 0.90543476, 0.91737138, 0.94793657],
|
||||
[1.1977611, 1.18222564, 1.18439158, 1.18267865, 1.19286723,
|
||||
1.20172869, 1.21328691, 1.22624778, 1.22397075, 1.23857042,
|
||||
1.24419893, 1.23929384, 1.23418676, 1.23626739, 1.26754398],
|
||||
[1.24919678, 1.25754773, 1.26991161, 1.28020651, 1.30625667,
|
||||
1.34790023, 1.34399863, 1.32575181, 1.30795492, 1.30544841,
|
||||
1.30303302, 1.32107766, 1.32936244, 1.33001241, 1.33288462],
|
||||
[1.06768004, 1.03799276, 1.03637303, 1.02768449, 1.03296093,
|
||||
1.05059016, 1.03405057, 1.02747623, 1.03162734, 0.9961416,
|
||||
0.97356208, 0.94241549, 0.92754547, 0.92549227, 0.92138102],
|
||||
[1.09475614, 1.11526796, 1.11654299, 1.13103948, 1.13143264,
|
||||
1.13889622, 1.12442212, 1.13367018, 1.13982256, 1.14029944,
|
||||
1.11979401, 1.10905389, 1.10577769, 1.11166825, 1.09985155],
|
||||
[0.76530058, 0.76612841, 0.76542451, 0.76722683, 0.76014284,
|
||||
0.74480073, 0.76098396, 0.76156903, 0.76651952, 0.76533288,
|
||||
0.78205934, 0.76842416, 0.77487118, 0.77768683, 0.78801192],
|
||||
[0.98391336, 0.98075816, 0.98295341, 0.97386015, 0.96913803,
|
||||
0.97370819, 0.96419154, 0.97209861, 0.97441313, 0.96356162,
|
||||
0.94745352, 0.93965462, 0.93069645, 0.94020973, 0.94358232],
|
||||
[0.83561828, 0.82298088, 0.81738502, 0.81748588, 0.80904801,
|
||||
0.80071489, 0.83358256, 0.83451613, 0.85175032, 0.85954307,
|
||||
0.86790024, 0.87170334, 0.87863799, 0.87497981, 0.87888675],
|
||||
[0.98845573, 1.02092428, 0.99665283, 0.99141823, 0.99386619,
|
||||
0.98733195, 0.99644997, 0.99669587, 1.02559097, 1.01116651,
|
||||
0.99988024, 0.97906749, 0.99323123, 1.00204939, 0.99602148],
|
||||
[1.14930913, 1.15241949, 1.14300962, 1.14265542, 1.13984683,
|
||||
1.08312397, 1.05192626, 1.04230892, 1.05577278, 1.08569751,
|
||||
1.12443486, 1.08891079, 1.08603695, 1.05997314, 1.02160943],
|
||||
[1.11368269, 1.1057147, 1.11893431, 1.13778669, 1.1432272,
|
||||
1.18257029, 1.16226243, 1.16009196, 1.14467789, 1.14820235,
|
||||
1.12386598, 1.12680236, 1.12357937, 1.1159258, 1.12570828],
|
||||
[1.30379431, 1.30752186, 1.31206366, 1.31532267, 1.30625667,
|
||||
1.31210239, 1.29989156, 1.29203193, 1.27183516, 1.26830786,
|
||||
1.2617743, 1.28656675, 1.29734097, 1.29390205, 1.29345446],
|
||||
[0.83953719, 0.82701448, 0.82006005, 0.81188876, 0.80294864,
|
||||
0.78772975, 0.82848011, 0.8259679, 0.82435705, 0.83108634,
|
||||
0.84373784, 0.83891093, 0.84349247, 0.85637272, 0.86539395],
|
||||
[1.23450087, 1.2426022, 1.23537935, 1.23581293, 1.24522626,
|
||||
1.2256767, 1.21126648, 1.19377804, 1.18355337, 1.19674434,
|
||||
1.21536573, 1.23653297, 1.27962009, 1.27968392, 1.25907738],
|
||||
[0.9769662, 0.97400719, 0.98035944, 0.97581531, 0.95543282,
|
||||
0.96480308, 0.94686376, 0.93679073, 0.92540049, 0.92988835,
|
||||
0.93442917, 0.92100464, 0.91475304, 0.90249622, 0.9021363],
|
||||
[0.84986886, 0.8986851, 0.84295997, 0.87280534, 0.85659368,
|
||||
0.88937573, 0.894401, 0.90448993, 0.95495898, 0.92698333,
|
||||
0.94745352, 0.92562488, 0.96635366, 1.02520312, 1.0394296],
|
||||
[1.01922808, 1.00258203, 1.00974428, 1.00303417, 0.99765073,
|
||||
1.00759019, 0.99192968, 0.99747298, 0.99550759, 0.97583768,
|
||||
0.9610168, 0.94779638, 0.93759089, 0.93353431, 0.94121705],
|
||||
[0.86367411, 0.85558932, 0.85544346, 0.85103025, 0.84336613,
|
||||
0.83434854, 0.85813595, 0.84667961, 0.84374558, 0.85951183,
|
||||
0.87194227, 0.89455097, 0.88283929, 0.90349491, 0.90600675],
|
||||
[1.00947534, 1.00411055, 1.00698819, 0.99513687, 0.99291086,
|
||||
1.00581626, 0.98850522, 0.99291168, 0.98983209, 0.97511924,
|
||||
0.96134615, 0.96382634, 0.95011401, 0.9434686, 0.94637765],
|
||||
[1.05712571, 1.05459419, 1.05753012, 1.04880786, 1.05103857,
|
||||
1.04800023, 1.03024941, 1.04200483, 1.0402554, 1.03296979,
|
||||
1.02191682, 1.02476275, 1.02347523, 1.02517684, 1.04359571],
|
||||
[1.07084189, 1.06669497, 1.07937623, 1.07387988, 1.0794043,
|
||||
1.0531801, 1.07452771, 1.09383478, 1.1052447, 1.10322136,
|
||||
1.09167939, 1.08772756, 1.08859544, 1.09177338, 1.1096083],
|
||||
[0.86719222, 0.86628896, 0.86675156, 0.86425632, 0.86511809,
|
||||
0.86287327, 0.85169796, 0.85411285, 0.84886336, 0.84517414,
|
||||
0.84843858, 0.84488343, 0.83374329, 0.82812044, 0.82878599],
|
||||
[0.88389211, 0.92288667, 0.90282398, 0.91229186, 0.92023286,
|
||||
0.92652175, 0.94278865, 0.93682452, 0.98655146, 0.992237,
|
||||
0.9798497, 0.93869677, 0.96947771, 1.00362626, 0.98102351],
|
||||
[0.97082064, 0.95320233, 0.94534081, 0.94215593, 0.93967,
|
||||
0.93092109, 0.92662519, 0.93412152, 0.93501274, 0.92879506,
|
||||
0.92110542, 0.91035556, 0.90430364, 0.89994694, 0.90073864],
|
||||
[0.95861858, 0.95774543, 0.98254811, 0.98919472, 0.98684824,
|
||||
0.98882205, 0.97662234, 0.95601578, 0.94905385, 0.94934888,
|
||||
0.97152609, 0.97163004, 0.9700702, 0.97158948, 0.95884908],
|
||||
[0.83980439, 0.84726737, 0.85747, 0.85467221, 0.8556751,
|
||||
0.84818516, 0.85265681, 0.84502402, 0.82645665, 0.81743586,
|
||||
0.83550406, 0.83338919, 0.83511679, 0.82136617, 0.80921874],
|
||||
[0.95118156, 0.9466212, 0.94688098, 0.9508583, 0.9512441,
|
||||
0.95440787, 0.96364363, 0.96804412, 0.97136214, 0.97583768,
|
||||
0.95571724, 0.96895368, 0.97001634, 0.97082733, 0.98782366],
|
||||
[1.08910044, 1.08248968, 1.08492895, 1.08656923, 1.09454249,
|
||||
1.10558188, 1.1214086, 1.12292577, 1.13021031, 1.13342735,
|
||||
1.14686068, 1.14502975, 1.14474747, 1.14084037, 1.16142926],
|
||||
[1.06336033, 1.07365823, 1.08691496, 1.09764846, 1.11669863,
|
||||
1.11856702, 1.09764283, 1.08815849, 1.08044313, 1.09278827,
|
||||
1.07003204, 1.08398066, 1.09831768, 1.09298232, 1.09176125],
|
||||
[0.79772065, 0.78829196, 0.78581151, 0.77615922, 0.77035744,
|
||||
0.77751194, 0.79902974, 0.81437881, 0.80788828, 0.79603865,
|
||||
0.78966436, 0.79949807, 0.80172182, 0.82168155, 0.85587911],
|
||||
[1.0052447, 1.00007696, 1.00475899, 1.00613942, 1.00639561,
|
||||
1.00162979, 0.99860739, 1.00814981, 1.00574316, 0.99030032,
|
||||
0.97682565, 0.97292596, 0.96519561, 0.96173403, 0.95890284],
|
||||
[0.95808419, 0.9382568, 0.9654441, 0.95561201, 0.96987289,
|
||||
0.96608031, 0.99727185, 1.00781194, 1.03484236, 1.05333619,
|
||||
1.0983263, 1.1704974, 1.17025154, 1.18730553, 1.14242645]])
|
||||
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
self.assertTrue(type(result) == type(expected))
|
||||
self.assertTrue(result.shape == expected.shape)
|
||||
|
||||
def test_rebin_data(self):
|
||||
"""Test rebin_data"""
|
||||
# sample in double the time (even case since 10 % 2 = 0):
|
||||
# (0+1)/2, (2+3)/2, (4+5)/2, (6+7)/2, (8+9)/2
|
||||
# = 0.5, 2.5, 4.5, 6.5, 8.5
|
||||
ans_even = np.array([(i + 0.5) * np.ones(10, dtype=float)
|
||||
for i in range(0, 10, 2)]).T
|
||||
|
||||
self.assertTrue(
|
||||
np.array_equal(std.rebin_data(self.time_data, 2), ans_even))
|
||||
|
||||
# sample in triple the time (uneven since 10 % 3 = 1):
|
||||
# (0+1+2)/3, (3+4+5)/3, (6+7+8)/3, (9)/1
|
||||
# = 1, 4, 7, 9
|
||||
ans_odd = np.array([i * np.ones(10, dtype=float)
|
||||
for i in (1, 4, 7, 9)]).T
|
||||
self.assertTrue(
|
||||
np.array_equal(std.rebin_data(self.time_data, 3), ans_odd))
|
||||
|
||||
def test_get_prob_dist(self):
|
||||
"""Test get_prob_dist"""
|
||||
lag_indices = np.array([1, 2, 3, 4])
|
||||
unit_indices = np.array([1, 3, 2, 4])
|
||||
answer = np.array([
|
||||
[0.0754717, 0.88207547, 0.04245283, 0., 0.],
|
||||
[0., 0., 0.09411765, 0.87058824, 0.03529412],
|
||||
[0.0049505, 0.09405941, 0.77722772, 0.11881188, 0.0049505],
|
||||
[0., 0., 0., 0.02352941, 0.97647059]
|
||||
])
|
||||
result = std.get_prob_dist(self.transition_matrix,
|
||||
lag_indices, unit_indices)
|
||||
|
||||
self.assertTrue(np.array_equal(result, answer))
|
||||
|
||||
def test_get_prob_stats(self):
|
||||
"""Test get_prob_stats"""
|
||||
|
||||
probs = np.array([
|
||||
[0.0754717, 0.88207547, 0.04245283, 0., 0.],
|
||||
[0., 0., 0.09411765, 0.87058824, 0.03529412],
|
||||
[0.0049505, 0.09405941, 0.77722772, 0.11881188, 0.0049505],
|
||||
[0., 0., 0., 0.02352941, 0.97647059]
|
||||
])
|
||||
unit_indices = np.array([1, 3, 2, 4])
|
||||
answer_up = np.array([0.04245283, 0.03529412, 0.12376238, 0.])
|
||||
answer_down = np.array([0.0754717, 0.09411765, 0.0990099, 0.02352941])
|
||||
answer_trend = np.array([-0.03301887 / 0.88207547,
|
||||
-0.05882353 / 0.87058824,
|
||||
0.02475248 / 0.77722772,
|
||||
-0.02352941 / 0.97647059])
|
||||
answer_volatility = np.array([0.34221495, 0.33705421,
|
||||
0.29226542, 0.38834223])
|
||||
|
||||
result = std.get_prob_stats(probs, unit_indices)
|
||||
result_up = result[0]
|
||||
result_down = result[1]
|
||||
result_trend = result[2]
|
||||
result_volatility = result[3]
|
||||
|
||||
self.assertTrue(np.allclose(result_up, answer_up))
|
||||
self.assertTrue(np.allclose(result_down, answer_down))
|
||||
self.assertTrue(np.allclose(result_trend, answer_trend))
|
||||
self.assertTrue(np.allclose(result_volatility, answer_volatility))
|
||||
@@ -1,5 +1,5 @@
|
||||
comment = 'CartoDB Spatial Analysis extension'
|
||||
default_version = '0.4.2'
|
||||
default_version = '0.5.1'
|
||||
requires = 'plpythonu, postgis'
|
||||
superuser = true
|
||||
schema = cdb_crankshaft
|
||||
|
||||
@@ -10,9 +10,11 @@ CREATE OR REPLACE FUNCTION
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, significance NUMERIC)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran
|
||||
from crankshaft.clustering import Moran
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
moran = Moran()
|
||||
return moran.global_stat(subquery, column_name, w_type,
|
||||
num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- Moran's I Local (internal function)
|
||||
@@ -27,9 +29,11 @@ CREATE OR REPLACE FUNCTION
|
||||
id_col TEXT)
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local
|
||||
from crankshaft.clustering import Moran
|
||||
moran = Moran()
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_local(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
return moran.local_stat(subquery, column_name, w_type,
|
||||
num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- Moran's I Local (public-facing function)
|
||||
@@ -120,9 +124,11 @@ CREATE OR REPLACE FUNCTION
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran FLOAT, significance FLOAT)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local
|
||||
from crankshaft.clustering import Moran
|
||||
moran = Moran()
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
return moran.global_rate_stat(subquery, numerator, denominator, w_type,
|
||||
num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
|
||||
@@ -140,9 +146,10 @@ CREATE OR REPLACE FUNCTION
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local_rate
|
||||
from crankshaft.clustering import Moran
|
||||
moran = Moran()
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_local_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
return moran.local_rate_stat(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- Moran's I Local Rate (public-facing function)
|
||||
|
||||
@@ -1,21 +1,24 @@
|
||||
CREATE OR REPLACE FUNCTION CDB_KMeans(query text, no_clusters integer,no_init integer default 20)
|
||||
RETURNS table (cartodb_id integer, cluster_no integer) as $$
|
||||
|
||||
from crankshaft.clustering import kmeans
|
||||
return kmeans(query,no_clusters,no_init)
|
||||
-- Spatial k-means clustering
|
||||
|
||||
$$ language plpythonu;
|
||||
CREATE OR REPLACE FUNCTION CDB_KMeans(query text, no_clusters integer, no_init integer default 20)
|
||||
RETURNS table (cartodb_id integer, cluster_no integer) as $$
|
||||
|
||||
from crankshaft.clustering import Kmeans
|
||||
kmeans = Kmeans()
|
||||
return kmeans.spatial(query, no_clusters, no_init)
|
||||
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_WeightedMeanS(state Numeric[],the_geom GEOMETRY(Point, 4326), weight NUMERIC)
|
||||
RETURNS Numeric[] AS
|
||||
RETURNS Numeric[] AS
|
||||
$$
|
||||
DECLARE
|
||||
DECLARE
|
||||
newX NUMERIC;
|
||||
newY NUMERIC;
|
||||
newW NUMERIC;
|
||||
BEGIN
|
||||
IF weight IS NULL OR the_geom IS NULL THEN
|
||||
IF weight IS NULL OR the_geom IS NULL THEN
|
||||
newX = state[1];
|
||||
newY = state[2];
|
||||
newW = state[3];
|
||||
@@ -30,12 +33,12 @@ END
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_WeightedMeanF(state Numeric[])
|
||||
RETURNS GEOMETRY AS
|
||||
RETURNS GEOMETRY AS
|
||||
$$
|
||||
BEGIN
|
||||
IF state[3] = 0 THEN
|
||||
IF state[3] = 0 THEN
|
||||
RETURN ST_SetSRID(ST_MakePoint(state[1],state[2]), 4326);
|
||||
ELSE
|
||||
ELSE
|
||||
RETURN ST_SETSRID(ST_MakePoint(state[1]/state[3], state[2]/state[3]),4326);
|
||||
END IF;
|
||||
END
|
||||
@@ -56,7 +59,7 @@ BEGIN
|
||||
SFUNC = CDB_WeightedMeanS,
|
||||
FINALFUNC = CDB_WeightedMeanF,
|
||||
STYPE = Numeric[],
|
||||
INITCOND = "{0.0,0.0,0.0}"
|
||||
INITCOND = "{0.0,0.0,0.0}"
|
||||
);
|
||||
END IF;
|
||||
END
|
||||
|
||||
@@ -22,10 +22,11 @@ CREATE OR REPLACE FUNCTION
|
||||
RETURNS TABLE (trend NUMERIC, trend_up NUMERIC, trend_down NUMERIC, volatility NUMERIC, rowid INT)
|
||||
AS $$
|
||||
|
||||
from crankshaft.space_time_dynamics import spatial_markov_trend
|
||||
from crankshaft.space_time_dynamics import Markov
|
||||
markov = Markov()
|
||||
|
||||
## TODO: use named parameters or a dictionary
|
||||
return spatial_markov_trend(subquery, time_cols, num_classes, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
return markov.spatial_trend(subquery, time_cols, num_classes, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- input table format: identical to above but in a predictable format
|
||||
|
||||
19
src/pg/sql/16_getis.sql
Normal file
19
src/pg/sql/16_getis.sql
Normal file
@@ -0,0 +1,19 @@
|
||||
-- Getis-Ord's G
|
||||
-- Hotspot/Coldspot Analysis tool
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetisOrdsG(
|
||||
subquery TEXT,
|
||||
column_name TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 999,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (z_score NUMERIC, p_value NUMERIC, p_z_sim NUMERIC, rowid BIGINT)
|
||||
AS $$
|
||||
from crankshaft.clustering import Getis
|
||||
getis = Getis()
|
||||
return getis.getis_ord(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- TODO: make a version that accepts the values as arrays
|
||||
75
src/pg/sql/18_outliers.sql
Normal file
75
src/pg/sql/18_outliers.sql
Normal file
@@ -0,0 +1,75 @@
|
||||
|
||||
-- Find outliers using a static threshold
|
||||
--
|
||||
CREATE OR REPLACE FUNCTION CDB_StaticOutlier(column_value numeric, threshold numeric)
|
||||
RETURNS boolean
|
||||
AS $$
|
||||
BEGIN
|
||||
|
||||
RETURN column_value > threshold;
|
||||
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
-- Find outliers by a percentage above the threshold
|
||||
-- TODO: add symmetric option? `is_symmetric boolean DEFAULT false`
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_PercentOutlier(column_values numeric[], outlier_fraction numeric, ids int[])
|
||||
RETURNS TABLE(is_outlier boolean, rowid int)
|
||||
AS $$
|
||||
DECLARE
|
||||
avg_val numeric;
|
||||
out_vals boolean[];
|
||||
BEGIN
|
||||
|
||||
SELECT avg(i) INTO avg_val
|
||||
FROM unnest(column_values) As x(i);
|
||||
|
||||
IF avg_val = 0 THEN
|
||||
RAISE EXCEPTION 'Mean value is zero. Try another outlier method.';
|
||||
END IF;
|
||||
|
||||
SELECT array_agg(
|
||||
outlier_fraction < i / avg_val) INTO out_vals
|
||||
FROM unnest(column_values) As x(i);
|
||||
|
||||
RETURN QUERY
|
||||
SELECT unnest(out_vals) As is_outlier,
|
||||
unnest(ids) As rowid;
|
||||
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
-- Find outliers above a given number of standard deviations from the mean
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_StdDevOutlier(column_values numeric[], num_deviations numeric, ids int[], is_symmetric boolean DEFAULT true)
|
||||
RETURNS TABLE(is_outlier boolean, rowid int)
|
||||
AS $$
|
||||
DECLARE
|
||||
stddev_val numeric;
|
||||
avg_val numeric;
|
||||
out_vals boolean[];
|
||||
BEGIN
|
||||
|
||||
SELECT stddev(i), avg(i) INTO stddev_val, avg_val
|
||||
FROM unnest(column_values) As x(i);
|
||||
|
||||
IF stddev_val = 0 THEN
|
||||
RAISE EXCEPTION 'Standard deviation of input data is zero';
|
||||
END IF;
|
||||
|
||||
IF is_symmetric THEN
|
||||
SELECT array_agg(
|
||||
abs(i - avg_val) / stddev_val > num_deviations) INTO out_vals
|
||||
FROM unnest(column_values) As x(i);
|
||||
ELSE
|
||||
SELECT array_agg(
|
||||
(i - avg_val) / stddev_val > num_deviations) INTO out_vals
|
||||
FROM unnest(column_values) As x(i);
|
||||
END IF;
|
||||
|
||||
RETURN QUERY
|
||||
SELECT unnest(out_vals) As is_outlier,
|
||||
unnest(ids) As rowid;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
11
src/pg/sql/21_gwr.sql
Normal file
11
src/pg/sql/21_gwr.sql
Normal file
@@ -0,0 +1,11 @@
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GWR(subquery text, dep_var text, ind_vars text[],
|
||||
bw numeric default null, fixed boolean default False, kernel text default 'bisquare')
|
||||
RETURNS table(coeffs JSON, stand_errs JSON, t_vals JSON, predicted numeric, residuals numeric, r_squared numeric, rowid bigint, bandwidth numeric)
|
||||
AS $$
|
||||
|
||||
from crankshaft.regression import gwr_cs
|
||||
|
||||
return gwr_cs.gwr(subquery, dep_var, ind_vars, bw, fixed, kernel)
|
||||
|
||||
$$ LANGUAGE plpythonu;
|
||||
@@ -149,135 +149,135 @@ _cdb_random_seeds
|
||||
|
||||
(1 row)
|
||||
code|quads
|
||||
01|LL
|
||||
02|LH
|
||||
03|HH
|
||||
04|HH
|
||||
05|LL
|
||||
06|HH
|
||||
07|LL
|
||||
08|LL
|
||||
09|LL
|
||||
10|HH
|
||||
11|HH
|
||||
12|HL
|
||||
13|LL
|
||||
14|HH
|
||||
01|HH
|
||||
02|HL
|
||||
03|LL
|
||||
04|LL
|
||||
05|LH
|
||||
06|LL
|
||||
07|HH
|
||||
08|HH
|
||||
09|HH
|
||||
10|LL
|
||||
11|LL
|
||||
12|LL
|
||||
13|HL
|
||||
14|LL
|
||||
15|LL
|
||||
16|LL
|
||||
17|LL
|
||||
18|LH
|
||||
19|LL
|
||||
20|LL
|
||||
21|HH
|
||||
22|LL
|
||||
23|HL
|
||||
16|HH
|
||||
17|HH
|
||||
18|LL
|
||||
19|HH
|
||||
20|HH
|
||||
21|LL
|
||||
22|HH
|
||||
23|LL
|
||||
24|LL
|
||||
25|LL
|
||||
26|LL
|
||||
25|HH
|
||||
26|HH
|
||||
27|LL
|
||||
28|LL
|
||||
29|LH
|
||||
30|HH
|
||||
31|LL
|
||||
28|HH
|
||||
29|LL
|
||||
30|LL
|
||||
31|HH
|
||||
32|LL
|
||||
33|LL
|
||||
34|LL
|
||||
35|LH
|
||||
36|HL
|
||||
37|LH
|
||||
38|LH
|
||||
39|LL
|
||||
40|LL
|
||||
41|LH
|
||||
42|HL
|
||||
43|LL
|
||||
44|HL
|
||||
45|LL
|
||||
46|HL
|
||||
33|HL
|
||||
34|LH
|
||||
35|LL
|
||||
36|LL
|
||||
37|HL
|
||||
38|HL
|
||||
39|HH
|
||||
40|HH
|
||||
41|HL
|
||||
42|LH
|
||||
43|LH
|
||||
44|LL
|
||||
45|LH
|
||||
46|LL
|
||||
47|LL
|
||||
48|LL
|
||||
49|HL
|
||||
50|LL
|
||||
51|HH
|
||||
(51 rows)
|
||||
48|HH
|
||||
49|LH
|
||||
50|HH
|
||||
51|LL
|
||||
52|LL
|
||||
(52 rows)
|
||||
_cdb_random_seeds
|
||||
|
||||
(1 row)
|
||||
code|quads
|
||||
03|HH
|
||||
04|HH
|
||||
06|HH
|
||||
10|HH
|
||||
11|HH
|
||||
12|HL
|
||||
14|HH
|
||||
21|HH
|
||||
23|HL
|
||||
30|HH
|
||||
36|HL
|
||||
42|HL
|
||||
44|HL
|
||||
46|HL
|
||||
49|HL
|
||||
51|HH
|
||||
(16 rows)
|
||||
01|HH
|
||||
02|HL
|
||||
07|HH
|
||||
08|HH
|
||||
09|HH
|
||||
13|HL
|
||||
16|HH
|
||||
17|HH
|
||||
19|HH
|
||||
20|HH
|
||||
22|HH
|
||||
25|HH
|
||||
26|HH
|
||||
28|HH
|
||||
31|HH
|
||||
33|HL
|
||||
37|HL
|
||||
38|HL
|
||||
39|HH
|
||||
40|HH
|
||||
41|HL
|
||||
48|HH
|
||||
50|HH
|
||||
(23 rows)
|
||||
_cdb_random_seeds
|
||||
|
||||
(1 row)
|
||||
code|quads
|
||||
01|LL
|
||||
02|LH
|
||||
05|LL
|
||||
07|LL
|
||||
08|LL
|
||||
09|LL
|
||||
13|LL
|
||||
03|LL
|
||||
04|LL
|
||||
05|LH
|
||||
06|LL
|
||||
10|LL
|
||||
11|LL
|
||||
12|LL
|
||||
14|LL
|
||||
15|LL
|
||||
16|LL
|
||||
17|LL
|
||||
18|LH
|
||||
19|LL
|
||||
20|LL
|
||||
22|LL
|
||||
18|LL
|
||||
21|LL
|
||||
23|LL
|
||||
24|LL
|
||||
25|LL
|
||||
26|LL
|
||||
27|LL
|
||||
28|LL
|
||||
29|LH
|
||||
31|LL
|
||||
29|LL
|
||||
30|LL
|
||||
32|LL
|
||||
33|LL
|
||||
34|LL
|
||||
35|LH
|
||||
37|LH
|
||||
38|LH
|
||||
39|LL
|
||||
40|LL
|
||||
41|LH
|
||||
43|LL
|
||||
45|LL
|
||||
34|LH
|
||||
35|LL
|
||||
36|LL
|
||||
42|LH
|
||||
43|LH
|
||||
44|LL
|
||||
45|LH
|
||||
46|LL
|
||||
47|LL
|
||||
48|LL
|
||||
50|LL
|
||||
(35 rows)
|
||||
49|LH
|
||||
51|LL
|
||||
52|LL
|
||||
(29 rows)
|
||||
_cdb_random_seeds
|
||||
|
||||
(1 row)
|
||||
code|quads
|
||||
02|LH
|
||||
12|HL
|
||||
18|LH
|
||||
23|HL
|
||||
29|LH
|
||||
35|LH
|
||||
36|HL
|
||||
37|LH
|
||||
38|LH
|
||||
41|LH
|
||||
42|HL
|
||||
44|HL
|
||||
46|HL
|
||||
49|HL
|
||||
(14 rows)
|
||||
02|HL
|
||||
05|LH
|
||||
13|HL
|
||||
33|HL
|
||||
34|LH
|
||||
37|HL
|
||||
38|HL
|
||||
41|HL
|
||||
42|LH
|
||||
43|LH
|
||||
45|LH
|
||||
49|LH
|
||||
(12 rows)
|
||||
|
||||
21
src/pg/test/expected/16_getis_test.out
Normal file
21
src/pg/test/expected/16_getis_test.out
Normal file
@@ -0,0 +1,21 @@
|
||||
\pset format unaligned
|
||||
\set ECHO all
|
||||
\i test/fixtures/getis_data.sql
|
||||
SET client_min_messages TO WARNING;
|
||||
\set ECHO none
|
||||
_cdb_random_seeds
|
||||
|
||||
(1 row)
|
||||
rowid|z_score|p_value
|
||||
9|-0.7862|0.0500
|
||||
22|-0.3955|0.0330
|
||||
33|2.7045|0.0050
|
||||
35|1.9524|0.0130
|
||||
36|-1.2056|0.0170
|
||||
37|3.4785|0.0020
|
||||
38|-1.4622|0.0020
|
||||
40|5.7098|0.0030
|
||||
46|3.4704|0.0120
|
||||
47|-0.9994|0.0320
|
||||
48|-1.3650|0.0340
|
||||
(11 rows)
|
||||
23
src/pg/test/expected/18_outliers_test.out
Normal file
23
src/pg/test/expected/18_outliers_test.out
Normal file
@@ -0,0 +1,23 @@
|
||||
SET client_min_messages TO WARNING;
|
||||
\set ECHO none
|
||||
is_outlier|rowid
|
||||
t|11
|
||||
t|16
|
||||
t|17
|
||||
(3 rows)
|
||||
is_outlier|rowid
|
||||
t|16
|
||||
t|17
|
||||
(2 rows)
|
||||
ERROR: Standard deviation of input data is zero
|
||||
is_outlier|rowid
|
||||
t|8
|
||||
t|11
|
||||
t|16
|
||||
(3 rows)
|
||||
is_outlier|rowid
|
||||
t|8
|
||||
t|9
|
||||
t|11
|
||||
t|16
|
||||
(4 rows)
|
||||
98
src/pg/test/fixtures/getis_data.sql
vendored
Normal file
98
src/pg/test/fixtures/getis_data.sql
vendored
Normal file
@@ -0,0 +1,98 @@
|
||||
SET client_min_messages TO WARNING;
|
||||
\set ECHO none
|
||||
|
||||
--
|
||||
-- Getis-Ord's G* test dataset, subsetted from PySAL examples:
|
||||
-- https://github.com/pysal/pysal/tree/952ea04029165048a774d9a1846cf86ad000c096/pysal/examples/stl
|
||||
--
|
||||
|
||||
|
||||
CREATE TABLE getis_data (
|
||||
cartodb_id integer,
|
||||
the_geom geometry(Geometry,4326),
|
||||
hr8893 numeric
|
||||
);
|
||||
|
||||
COPY getis_data (cartodb_id, the_geom, hr8893) FROM stdin;
|
||||
22 0106000020E61000000100000001030000000100000007000000000000E0B10056C0000000C0B8964340FFFFFFFF4C1756C00000002054964340000000A00F1E56C00000004072964340000000C02D1E56C0000000A0439B434000000060381E56C00000000036B04340000000E0E20056C0000000608CB04340000000E0B10056C0000000C0B8964340 10.8557430000000004
|
||||
32 0106000020E6100000010000000103000000010000000B000000FFFFFF1FC26656C0FFFFFFBFE25E4340000000A0D86656C0000000E0976F4340000000A03A6956C0000000C0966F434000000020526956C0000000E08A7F4340000000E0F26556C000000000C87F4340000000E0066656C0000000209C834340000000407F5056C0000000803C83434000000020635056C0000000E016814340000000A0F45056C0000000A0F980434000000060D25056C000000060FA5E4340FFFFFF1FC26656C0FFFFFFBFE25E4340 9.92424500000000087
|
||||
10 0106000020E610000001000000010300000001000000170000000000000002CD56C000000080CDCC4340000000A054D456C000000020CCD74340000000607ED756C000000000C1DC434000000020E6D756C00000006071E143400000004007BB56C00000000007E2434000000080FABA56C0000000A079EC43400000000040B856C0000000E0D6EB4340FFFFFF3FEEA456C0000000A037EC4340000000C0A9A556C0000000A0ADE7434000000040F3A656C0000000E09FE543400000004063A956C0000000E034DA4340FFFFFF9F04A956C00000008005D74340000000402FA756C00000008069D243400000004046A556C00000002068C84340000000009EA556C0FFFFFF7F3CC34340000000C0C3A756C000000080BCB543400000006082A756C00000004051B2434000000040AABC56C00000006046B343400000006053C256C0FFFFFF7FE2B84340000000E01EC456C000000080ABBC4340000000C0FDC556C0000000E0B3C3434000000000FFC956C000000060BBC643400000000002CD56C000000080CDCC4340 3.79060700000000006
|
||||
43 0106000020E6100000010000000103000000010000000F0000000000004025D856C000000020FA1A43400000008092E256C000000060481B434000000060BCE256C0000000C023144340000000A0D7E856C0FFFFFF1F1B14434000000020BEE956C0000000C030144340FFFFFF9FB0E956C0FFFFFF1F1425434000000000D4E956C0000000C00D5A4340000000A0D3E956C0000000202C5A43400000000004E656C00000004066574340000000E0EEE356C0000000A0E35643400000008099DF56C0000000601B5A43400000000033DB56C0000000804A5B43400000004001D856C00000006079594340000000E0A7D756C0000000E0553543400000004025D856C000000020FA1A4340 5.93309800000000021
|
||||
6 0106000020E6100000010000000103000000010000000F000000000000A00F4256C0000000E008D4434000000000674956C00000004015D44340000000608C4956C00000004098E64340FFFFFFBF434C56C0FFFFFF3F77E84340000000004C4E56C000000020E5E74340000000C0624E56C0FFFFFF3F97F5434000000020B44956C000000000AFF54340000000E0C64956C00000004009074440FFFFFF1F523056C0FFFFFFDF91074440000000C0EB2F56C000000040BBE54340000000E0B93056C0000000E09FE54340000000E0D63056C0000000007DDE4340000000E0213456C0000000005ADE4340000000802E3456C000000020F7D34340000000A00F4256C0000000E008D44340 9.04867300000000085
|
||||
16 0106000020E6100000010000000103000000010000001500000000000020D73356C000000060729B4340000000201F4956C000000000BE9B4340000000A0E34856C000000060CCAC434000000040094256C0FFFFFFDFB1AC4340000000A00F4256C0000000E008D44340000000802E3456C000000020F7D34340000000E0083456C0000000E0ADCA4340000000801D2E56C0000000A06FCA4340FFFFFF7F132E56C00000000079C34340000000607F2956C0000000402EC3434000000080652956C0000000A0EAC04340FFFFFF5FF22756C000000060E5C0434000000080F52756C000000080DDBE434000000020B32656C0000000E0E7BE434000000000AC2656C0FFFFFFFF38BD4340FFFFFFDFC12556C0000000C026BD434000000060C72556C000000060BAB9434000000040441E56C000000020C9B9434000000060381E56C00000000036B04340000000C02D1E56C0000000A0439B434000000020D73356C000000060729B4340 0.74509000000000003
|
||||
29 0106000020E610000001000000010300000001000000080000000000002025FD55C0FFFFFF1F7F6D434000000080C61056C0000000A04C6D4340000000A0631756C000000000D56D4340000000C05E1756C0FFFFFF5F24754340FFFFFFFF4C1756C00000002054964340000000E0B10056C0000000C0B89643400000006029FD55C000000080C09643400000002025FD55C0FFFFFF1F7F6D4340 3.12759000000000009
|
||||
54 0106000020E6100000010000000103000000010000000F000000FFFFFF1F090C57C0000000202E024340000000E0AA0B57C00000004000154340000000A0C10C57C0000000802015434000000060850C57C000000080EC244340FFFFFF9FB0E956C0FFFFFF1F1425434000000020BEE956C0000000C030144340000000A0D7E856C0FFFFFF1F1B144340FFFFFF3FF2E856C0000000A0A3064340FFFFFFDFD2F956C000000040E2064340000000C01EFB56C0000000201406434000000060BBFB56C0000000809A044340000000605AFD56C0000000E059054340000000405FFE56C0000000E06B014340000000A0F60157C0000000C081014340FFFFFF1F090C57C0000000202E024340 2.06432400000000005
|
||||
13 0106000020E6100000010000000103000000010000000F000000000000009EA556C0FFFFFF7F3CC343400000004046A556C00000002068C84340000000402FA756C00000008069D24340FFFFFF9F04A956C00000008005D743400000004063A956C0000000E034DA434000000040F3A656C0000000E09FE54340000000E0F09E56C0000000005AE54340FFFFFF3F069F56C000000040B5E04340FFFFFF1F0E9856C000000020A3E0434000000060109856C0000000E07ED5434000000040E29556C0000000A077D54340FFFFFFDFDC9556C0000000A0EDD1434000000080399356C0000000A0D8D1434000000020699356C0000000E029C34340000000009EA556C0FFFFFF7F3CC34340 0
|
||||
28 0106000020E61000000100000001030000000100000008000000000000C05E1756C0FFFFFF5F24754340000000C0DD2C56C0000000407A75434000000080DE3356C0000000406375434000000020D73356C000000060729B4340000000C02D1E56C0000000A0439B4340000000A00F1E56C00000004072964340FFFFFFFF4C1756C00000002054964340000000C05E1756C0FFFFFF5F24754340 1.57115800000000005
|
||||
36 0106000020E6100000010000000103000000010000000D00000000000000EE2C56C000000060424E434000000040F72C56C000000000486A4340000000C0DD2C56C0000000407A754340000000C05E1756C0FFFFFF5F24754340000000A0631756C000000000D56D434000000080C61056C0000000A04C6D4340000000C0BE1056C0000000A0065F4340000000407C1256C0FFFFFF7FA75E434000000000BD1156C000000020A954434000000040D01256C0000000605C524340000000404F1256C000000040734F434000000040011156C000000000AF4D434000000000EE2C56C000000060424E4340 0
|
||||
68 0106000020E61000000100000001030000000100000006000000000000809F2D56C00000002078CD4240000000E0F64256C0FFFFFFDF38CD424000000000CE4956C00000004053CD4240000000C0E94956C000000080CDEE424000000020682D56C0FFFFFF7F00EF4240000000809F2D56C00000002078CD4240 3.1461920000000001
|
||||
27 0106000020E6100000010000000103000000010000000D000000000000407F5056C0000000803C83434000000060615056C000000040A99B4340000000201F4956C000000000BE9B434000000020D73356C000000060729B434000000080DE3356C00000004063754340000000C0DD2C56C0000000407A75434000000040F72C56C000000000486A4340000000202B4956C000000080AC69434000000040454956C000000040E25E434000000060D25056C000000060FA5E4340000000A0F45056C0000000A0F980434000000020635056C0000000E016814340000000407F5056C0000000803C834340 1.5920399999999999
|
||||
40 0106000020E6100000010000000103000000010000000F00000000000000B89056C0000000C03144434000000000419456C0000000A03D4A434000000020609356C000000020CC55434000000020578F56C0000000A0725D4340000000004D8C56C0000000C05E614340000000E0F48A56C000000020B164434000000060CA8756C00000002077664340000000C0A68856C0000000C08A64434000000020758A56C0000000E0F4624340000000A0948C56C0000000E0AA5C4340FFFFFF7FF18C56C000000080A5594340000000C0BF8B56C0000000A052544340000000E0C18B56C0000000601D4E4340000000A06B8F56C0000000000A48434000000000B89056C0000000C031444340 45.9054059999999993
|
||||
52 0106000020E61000000100000001030000000100000008000000000000E0562D56C0000000208910434000000020864856C00000000054104340FFFFFF9FB84956C0000000409110434000000080A84956C0000000A05B1B4340000000803D4956C0FFFFFF9FB63C434000000080062D56C0FFFFFF7FAE3C434000000060492D56C0000000603E214340000000E0562D56C00000002089104340 4.94153299999999973
|
||||
59 0106000020E6100000010000000103000000010000000F0000000000006010C756C000000020A7DE4240FFFFFF9FF7C956C0FFFFFF7F75DE424000000060FBC956C0000000A01ED94240000000C080CA56C0000000001BD94240000000C086D456C000000040CED942400000000065D456C00000004041E442400000008044E256C0000000E0BEE44240FFFFFFFF04E256C0FFFFFFBFD013434000000060BCE256C0000000C0231443400000008092E256C000000060481B43400000004025D856C000000020FA1A4340FFFFFF5F2CD856C0000000E0381A43400000000009D656C0FFFFFFDF1C1A4340000000A08DC656C000000000241A43400000006010C756C000000020A7DE4240 6.82879400000000025
|
||||
1 0106000020E61000000100000001030000000100000010000000FFFFFF3F746556C00000002049FD434000000080316556C0000000A0240C4440000000C0A76656C000000000330C444000000000C76656C0000000606C11444000000000106756C000000000A0294440000000C0375156C0000000402F2A444000000020305156C0000000E08D244440000000E0E54956C00000004094244440000000E0C64956C0000000400907444000000020B44956C000000000AFF54340000000C0624E56C0FFFFFF3F97F54340000000E05B5A56C00000006082F5434000000060655A56C00000002040F7434000000060B15F56C0000000807CF74340000000008A5F56C0000000C076FD4340FFFFFF3F746556C00000002049FD4340 1.62445799999999996
|
||||
2 0106000020E6100000010000000103000000010000001000000000000080FABA56C0000000A079EC43400000004007BB56C00000000007E2434000000020E6D756C00000006071E14340000000006ED856C000000000E2E64340FFFFFF7FBFDC56C00000006078EE434000000000DDDC56C0000000A04FF1434000000080C7DB56C0000000206FF34340000000808BDB56C0000000C0FEF54340000000A09FDC56C0000000A018F94340000000C02FDF56C000000080BC004440000000A041E056C0000000008A084440FFFFFF3F08E156C0000000C038114440000000406BE056C0000000A0A8194440FFFFFFBFF5BA56C0000000E02A1944400000004014BB56C000000060E70D444000000080FABA56C0000000A079EC4340 2.25549199999999983
|
||||
3 0106000020E61000000100000001030000000100000018000000000000A0D87F56C000000080FEF3434000000020048056C0FFFFFF7FB00E444000000080CB7D56C0000000E0F411444000000080237B56C0000000800812444000000060227956C0000000400F114440000000A04A7856C00000002084124440000000C0667756C0000000E0B810444000000080187656C0000000A001124440000000A0037556C0FFFFFF5F36104440000000005C7356C0000000206510444000000080D27156C00000004081114440000000A0657056C000000040EE104440000000A0EF6D56C000000060AE12444000000000BE6C56C0000000E073124440000000802A6A56C0000000402115444000000000C76656C0000000606C114440000000C0A76656C000000000330C444000000080316556C0000000A0240C4440FFFFFF3F746556C00000002049FD4340000000602C6D56C00000004009FD4340FFFFFF5F786D56C0FFFFFFDFC7F54340000000E0447156C000000080A6F54340000000A09C7156C0FFFFFF9F41F44340000000A0D87F56C000000080FEF34340 1.46788999999999992
|
||||
4 0106000020E610000001000000010300000001000000160000000000008076A556C000000020BCF0434000000060BCA256C0FFFFFF5F7BF5434000000060F5A056C000000040AEFE4340000000204C9C56C00000008095024440000000A0609B56C000000060EC084440FFFFFFFFC49956C0000000C00C0A444000000000E19856C000000040490F444000000040A79656C0000000805C10444000000080199456C0000000E0120E4440FFFFFFBF879256C00000006094084440000000A0699156C00000006012084440000000807E9056C000000000F408444000000060378F56C00000000049074440000000A0E98C56C0FFFFFF5FE4074440000000E0F48B56C0000000201009444000000020618856C000000040ED08444000000020A88556C000000060CF0A4440FFFFFFDF0C8456C000000080250D444000000020048056C0FFFFFF7FB00E4440000000A0D87F56C000000080FEF34340FFFFFF3FDF7F56C0000000C047F043400000008076A556C000000020BCF04340 2.4842559999999998
|
||||
5 0106000020E61000000100000001030000000100000012000000FFFFFF3FEEA456C0000000A037EC43400000000040B856C0000000E0D6EB434000000080FABA56C0000000A079EC43400000004014BB56C000000060E70D444000000020B9AC56C0000000409F0D4440000000A094AD56C0000000005B0A4440000000A07FAB56C0000000A0C1094440FFFFFFBFA8AB56C000000060DD054440000000E04BA956C0FFFFFFFFB30344400000002042A756C0FFFFFFBF900344400000002005A756C0000000409502444000000060D2A756C000000040EE014440000000C0D9A656C0000000008E004440000000E0C0A656C0000000E0F1FD434000000060F5A056C000000040AEFE434000000060BCA256C0FFFFFF5F7BF543400000008076A556C000000020BCF04340FFFFFF3FEEA456C0000000A037EC4340 0
|
||||
15 0106000020E6100000010000000103000000010000000B000000000000806CDC56C00000006020A9434000000080A4ED56C000000020E3A94340000000A050EE56C0FFFFFFDF8BAB434000000000C4ED56C00000000058CD4340000000A039EE56C0000000C062CD4340000000C041EE56C00000006068D44340000000E031EE56C000000080D5D74340000000A054D456C000000020CCD743400000000002CD56C000000080CDCC434000000040CDDD56C0000000407EBA4340000000806CDC56C00000006020A94340 1.9498120000000001
|
||||
7 0106000020E6100000010000000103000000010000001C000000000000C00D6D56C0000000A096C34340000000E0847B56C00000000075C3434000000060747B56C00000002076C74340000000601B7F56C0000000203CDA4340FFFFFF3FDF7F56C0000000C047F04340000000A0D87F56C000000080FEF34340000000A09C7156C0FFFFFF9F41F44340000000E0447156C000000080A6F54340FFFFFF5F786D56C0FFFFFFDFC7F54340000000602C6D56C00000004009FD4340FFFFFF3F746556C00000002049FD4340000000008A5F56C0000000C076FD434000000060B15F56C0000000807CF7434000000060655A56C00000002040F74340000000E05B5A56C00000006082F54340000000C0624E56C0FFFFFF3F97F54340000000004C4E56C000000020E5E7434000000080B55056C0000000C010E94340FFFFFFDF215256C0000000C096E5434000000020475556C0000000A0D3E14340000000A0245A56C0000000200DDF434000000060E75B56C000000000C0DF434000000000F25B56C0000000C0DBD74340FFFFFF5F635F56C0FFFFFFFF91D74340000000E04F5F56C000000020C1D24340FFFFFF7F996256C00000004094D24340000000A08E6256C0000000C0AAC34340000000C00D6D56C0000000A096C34340 6.02948899999999988
|
||||
8 0106000020E6100000010000000103000000010000000E000000FFFFFF1F72F656C000000080A1D443400000004048F656C0000000008EF94340000000A09FDC56C0000000A018F94340000000808BDB56C0000000C0FEF5434000000080C7DB56C0000000206FF3434000000000DDDC56C0000000A04FF14340FFFFFF7FBFDC56C00000006078EE4340000000006ED856C000000000E2E6434000000020E6D756C00000006071E14340000000607ED756C000000000C1DC4340000000A054D456C000000020CCD74340000000E031EE56C000000080D5D74340000000C041EE56C00000006068D44340FFFFFF1F72F656C000000080A1D44340 1.8003849999999999
|
||||
9 0106000020E6100000010000000103000000010000001200000000000040E88956C00000004046C3434000000020699356C0000000E029C3434000000080399356C0000000A0D8D14340FFFFFFDFDC9556C0000000A0EDD1434000000040E29556C0000000A077D5434000000060109856C0000000E07ED54340FFFFFF1F0E9856C000000020A3E04340FFFFFF3F069F56C000000040B5E04340000000E0F09E56C0000000005AE5434000000040F3A656C0000000E09FE54340000000C0A9A556C0000000A0ADE74340FFFFFF3FEEA456C0000000A037EC43400000008076A556C000000020BCF04340FFFFFF3FDF7F56C0000000C047F04340000000601B7F56C0000000203CDA434000000060747B56C00000002076C74340000000E0847B56C00000000075C3434000000040E88956C00000004046C34340 4.58125099999999996
|
||||
30 0106000020E6100000010000000103000000010000000D0000000000000033DB56C0000000804A5B43400000008099DF56C0000000601B5A4340000000E0EEE356C0000000A0E35643400000000004E656C00000004066574340000000A0D3E956C0000000202C5A4340000000A02EE956C0FFFFFF1F09884340000000A0D9E856C0FFFFFFDF03934340000000A0B8DA56C000000060E592434000000080F4D056C0000000605F9243400000000038D156C0000000A0817F434000000000A0D156C0000000A0FF6B4340000000E0C8DA56C000000080986C43400000000033DB56C0000000804A5B4340 4.41689600000000038
|
||||
11 0106000020E61000000100000001030000000100000013000000000000A08E6256C0000000C0AAC34340FFFFFF7F996256C00000004094D24340000000E04F5F56C000000020C1D24340FFFFFF5F635F56C0FFFFFFFF91D7434000000000F25B56C0000000C0DBD7434000000060E75B56C000000000C0DF4340000000A0245A56C0000000200DDF434000000020475556C0000000A0D3E14340FFFFFFDF215256C0000000C096E5434000000080B55056C0000000C010E94340000000004C4E56C000000020E5E74340FFFFFFBF434C56C0FFFFFF3F77E84340000000608C4956C00000004098E6434000000000674956C00000004015D44340000000A00F4256C0000000E008D4434000000040094256C0FFFFFFDFB1AC4340000000A0E34856C000000060CCAC434000000020666256C0FFFFFF9FBFAC4340000000A08E6256C0000000C0AAC34340 1.44743599999999994
|
||||
12 0106000020E6100000010000000103000000010000001400000000000040441E56C000000020C9B9434000000060C72556C000000060BAB94340FFFFFFDFC12556C0000000C026BD434000000000AC2656C0FFFFFFFF38BD434000000020B32656C0000000E0E7BE434000000080F52756C000000080DDBE4340FFFFFF5FF22756C000000060E5C0434000000080652956C0000000A0EAC04340000000607F2956C0000000402EC34340FFFFFF7F132E56C00000000079C34340000000801D2E56C0000000A06FCA4340000000E0083456C0000000E0ADCA4340000000802E3456C000000020F7D34340000000E0213456C0000000005ADE4340000000E0D63056C0000000007DDE4340000000E0B93056C0000000E09FE54340000000C0EB2F56C000000040BBE54340FFFFFF5F741E56C00000008040E54340000000605A1E56C0000000E042D3434000000040441E56C000000020C9B94340 1.19196600000000008
|
||||
14 0106000020E6100000010000000103000000010000000A000000000000E0E20056C0000000608CB0434000000060381E56C00000000036B0434000000040441E56C000000020C9B94340000000605A1E56C0000000E042D3434000000040BB0356C00000000030D4434000000060CF0356C000000080C9D74340FFFFFFBFFDFD55C0000000E02BD84340000000A0C5FD55C0000000400DBE434000000040E60056C0FFFFFF9F20BE4340000000E0E20056C0000000608CB04340 1.60801700000000003
|
||||
17 0106000020E61000000100000001030000000100000011000000000000A0B8DA56C000000060E5924340000000806CDC56C00000006020A9434000000040CDDD56C0000000407EBA43400000000002CD56C000000080CDCC434000000000FFC956C000000060BBC64340000000C0FDC556C0000000E0B3C34340000000E01EC456C000000080ABBC43400000006053C256C0FFFFFF7FE2B8434000000040AABC56C00000006046B34340000000806EB656C0000000A0DBAC4340000000C0E0B156C0000000A0FDA54340000000C03CAF56C000000040B89F4340000000A0DEAE56C0FFFFFF7FC49C4340000000E0F3CB56C0FFFFFF9F039D4340000000205CCC56C0000000805392434000000080F4D056C0000000605F924340000000A0B8DA56C000000060E5924340 4.17331800000000008
|
||||
18 0106000020E6100000010000000103000000010000000E000000FFFFFF3FF56C56C000000020977F4340000000A07A6D56C0000000605DAD4340000000800F6D56C0000000A06CAD4340000000C00D6D56C0000000A096C34340000000A08E6256C0000000C0AAC3434000000020666256C0FFFFFF9FBFAC4340000000A0E34856C000000060CCAC4340000000201F4956C000000000BE9B434000000060615056C000000040A99B4340000000407F5056C0000000803C834340000000E0066656C0000000209C834340000000E0F26556C000000000C87F434000000020526956C0000000E08A7F4340FFFFFF3FF56C56C000000020977F4340 3.78325200000000006
|
||||
19 0106000020E61000000100000001030000000100000009000000000000A0B78956C0000000A0BD7F4340000000C0C08956C0000000000BA1434000000040E88956C00000004046C34340000000E0847B56C00000000075C34340000000C00D6D56C0000000A096C34340000000800F6D56C0000000A06CAD4340000000A07A6D56C0000000605DAD4340FFFFFF3FF56C56C000000020977F4340000000A0B78956C0000000A0BD7F4340 2.08513599999999988
|
||||
20 0106000020E61000000100000001030000000100000015000000000000C0C08956C0000000000BA1434000000060188D56C00000008040A04340000000C0278D56C0000000E0E29C4340000000E04C9456C000000080CC9C4340000000A0579456C0000000E0B4964340FFFFFFFF819F56C0000000806D9643400000006068A056C0FFFFFF1FBB944340000000203AA156C0000000E0CA9743400000002061A456C000000080AE974340000000C08CA556C0000000A0BB964340FFFFFF9F44A556C0000000609794434000000040EFA656C0000000C00C8F43400000004050A756C0FFFFFFBFEA9343400000000062A656C0FFFFFFFF6A9B434000000080DCA756C0000000208AAE43400000006082A756C00000004051B24340000000C0C3A756C000000080BCB54340000000009EA556C0FFFFFF7F3CC3434000000020699356C0000000E029C3434000000040E88956C00000004046C34340000000C0C08956C0000000000BA14340 2.17630200000000018
|
||||
21 0106000020E6100000010000000103000000010000001B00000000000040EFA656C0000000C00C8F4340FFFFFF5F1DA756C000000020C58D434000000020E1A456C0000000E00F84434000000020D1A456C0000000A0B2804340FFFFFFDF3AA356C000000040247C4340000000800BA256C0FFFFFF5F987A434000000020409F56C000000000CD7B4340000000E0119E56C000000060C67A434000000080F2A156C000000040207243400000004080A456C0000000A0876F43400000004024A856C0000000E0BD704340FFFFFFDFCEAA56C000000060B67743400000004030AD56C000000060D6844340FFFFFF1F49AD56C00000006072874340000000802FAC56C000000060FE8B434000000000DFAD56C00000008075924340FFFFFFDFF6AD56C00000006012994340000000A0DEAE56C0FFFFFF7FC49C4340000000C03CAF56C000000040B89F4340000000C0E0B156C0000000A0FDA54340000000806EB656C0000000A0DBAC434000000040AABC56C00000006046B343400000006082A756C00000004051B2434000000080DCA756C0000000208AAE43400000000062A656C0FFFFFFFF6A9B43400000004050A756C0FFFFFFBFEA93434000000040EFA656C0000000C00C8F4340 6.30934699999999982
|
||||
23 0106000020E6100000010000000103000000010000000B000000FFFFFF1F491457C000000060E99F4340FFFFFF5F1C1457C00000000075AC4340000000A050EE56C0FFFFFFDF8BAB434000000080A4ED56C000000020E3A94340000000806CDC56C00000006020A94340000000A0B8DA56C000000060E5924340000000A0D9E856C0FFFFFFDF03934340000000A02EE956C0FFFFFF1F0988434000000020290757C0FFFFFF3F92884340000000A0B00657C000000080FE9E4340FFFFFF1F491457C000000060E99F4340 4.21135400000000004
|
||||
24 0106000020E61000000100000001030000000100000019000000000000A0B78956C0000000A0BD7F4340FFFFFF1FDD9156C000000060B47F434000000000DA9156C0000000205D764340000000A0769456C00000006063764340000000C06F9A56C0000000A02D7B4340000000E0119E56C000000060C67A434000000020409F56C000000000CD7B4340000000800BA256C0FFFFFF5F987A4340FFFFFFDF3AA356C000000040247C434000000020D1A456C0000000A0B280434000000020E1A456C0000000E00F844340FFFFFF5F1DA756C000000020C58D434000000040EFA656C0000000C00C8F4340FFFFFF9F44A556C00000006097944340000000C08CA556C0000000A0BB9643400000002061A456C000000080AE974340000000203AA156C0000000E0CA9743400000006068A056C0FFFFFF1FBB944340FFFFFFFF819F56C0000000806D964340000000A0579456C0000000E0B4964340000000E04C9456C000000080CC9C4340000000C0278D56C0000000E0E29C434000000060188D56C00000008040A04340000000C0C08956C0000000000BA14340000000A0B78956C0000000A0BD7F4340 0.804810000000000025
|
||||
47 0106000020E61000000100000001030000000100000009000000FFFFFF9FD60956C0000000003521434000000020F21756C000000040DA20434000000060492D56C0000000603E21434000000080062D56C0FFFFFF7FAE3C434000000000EE2C56C000000060424E434000000040011156C000000000AF4D434000000040780956C0000000005A4D4340000000808A0956C000000080C1494340FFFFFF9FD60956C00000000035214340 0.969790999999999959
|
||||
25 0106000020E6100000010000000103000000010000001E000000000000A0491957C0FFFFFF9F355E434000000020381A57C0000000A05B61434000000000201957C0000000803D654340000000802D1957C000000040E867434000000060B41B57C0000000C078694340000000A0611E57C000000040A06E4340000000C0FF1F57C00000006083754340000000803C2457C0000000E0ED7B4340000000A0332457C00000004047804340FFFFFF9FB41B57C0FFFFFF5F08A04340FFFFFF1F491457C000000060E99F4340000000A0B00657C000000080FE9E434000000020290757C0FFFFFF3F92884340FFFFFFBFC70857C000000020EC874340000000C0F20957C000000020DE764340000000C0E50A57C000000040E172434000000000260A57C0000000A03A71434000000000750A57C000000080796F4340FFFFFF7F310957C00000000064684340FFFFFF3FFF0B57C000000020765E434000000000060E57C000000000B45B434000000000640E57C00000000022594340000000A0C40C57C0000000801D57434000000040600C57C0000000C049544340FFFFFF5F100E57C000000000B851434000000060091157C0000000E05353434000000020B21257C0FFFFFFDF48554340FFFFFF3FC11657C00000004060564340000000005F1657C0FFFFFF5FD95B4340000000A0491957C0FFFFFF9F355E4340 3.21533099999999994
|
||||
26 0106000020E6100000010000000103000000010000001D000000000000008BBD56C0000000608A6F43400000006075C756C0000000A0EE6F43400000000093C756C0FFFFFF3FF3764340FFFFFFBFD7CC56C0FFFFFF7F7277434000000020BECC56C0FFFFFFFF1B7F43400000000038D156C0000000A0817F434000000080F4D056C0000000605F924340000000205CCC56C00000008053924340000000E0F3CB56C0FFFFFF9F039D4340000000A0DEAE56C0FFFFFF7FC49C4340FFFFFFDFF6AD56C0000000601299434000000000DFAD56C00000008075924340000000802FAC56C000000060FE8B4340FFFFFF1F49AD56C000000060728743400000004030AD56C000000060D6844340FFFFFFDFCEAA56C000000060B6774340FFFFFFDF6EAC56C000000060557743400000002088AC56C000000060887543400000000071AD56C000000080B07543400000004047AD56C0000000C04C744340000000C0FDAE56C0000000406D754340000000C0DAAE56C0000000802B774340000000C070B256C0000000A0FE754340FFFFFFBF86B356C000000040A3744340000000A00EB456C0000000A0907043400000008058B856C000000000FB7143400000004020BC56C0000000C09A714340000000C058BD56C0000000C09E724340000000008BBD56C0000000608A6F4340 2.83366400000000018
|
||||
38 0106000020E6100000010000000103000000010000000E000000000000605FFD55C000000020A5494340000000808A0956C000000080C149434000000040780956C0000000005A4D434000000040011156C000000000AF4D4340000000404F1256C000000040734F434000000040D01256C0000000605C52434000000000BD1156C000000020A9544340000000407C1256C0FFFFFF7FA75E4340000000C0BE1056C0000000A0065F434000000080C61056C0000000A04C6D43400000002025FD55C0FFFFFF1F7F6D434000000080B9FA55C0000000607E6D434000000020A9FA55C00000008093494340000000605FFD55C000000020A5494340 1.00387500000000007
|
||||
31 0106000020E6100000010000000103000000010000001B000000FFFFFF5F100E57C000000000B851434000000040600C57C0000000C049544340000000A0C40C57C0000000801D57434000000000640E57C0000000002259434000000000060E57C000000000B45B4340FFFFFF3FFF0B57C000000020765E4340FFFFFF7F310957C0000000006468434000000000750A57C000000080796F434000000000260A57C0000000A03A714340000000C0E50A57C000000040E1724340000000C0F20957C000000020DE764340FFFFFFBFC70857C000000020EC87434000000020290757C0FFFFFF3F92884340000000A02EE956C0FFFFFF1F09884340000000A0D3E956C0000000202C5A434000000000D4E956C0000000C00D5A4340FFFFFF7F6BEF56C0000000A0605A4340FFFFFFFFACF056C000000040975843400000008054F356C0FFFFFFDFFB56434000000060C1F656C0000000E0725643400000000014FD56C000000000744C4340000000E005FF56C000000020904B434000000040220257C0000000405C484340000000E0880657C0FFFFFFDFF147434000000000EA0A57C0000000407C4A4340000000E0B10C57C000000020054D4340FFFFFF5F100E57C000000000B8514340 3.01748599999999989
|
||||
33 0106000020E6100000010000000103000000010000001400000000000060CA8756C00000002077664340000000603D8756C0000000C04C6A434000000000808856C0FFFFFF1F306D4340000000809C8F56C0000000A00E75434000000000DA9156C0000000205D764340FFFFFF1FDD9156C000000060B47F4340000000A0B78956C0000000A0BD7F4340FFFFFF3FF56C56C000000020977F434000000020526956C0000000E08A7F4340000000A03A6956C0000000C0966F4340000000A0D86656C0000000E0976F4340FFFFFF1FC26656C0FFFFFFBFE25E434000000000AD6656C0000000408054434000000060BA6D56C00000006031544340000000C0BF8B56C0000000A052544340FFFFFF7FF18C56C000000080A5594340000000A0948C56C0000000E0AA5C434000000020758A56C0000000E0F4624340000000C0A68856C0000000C08A64434000000060CA8756C00000002077664340 7.97395700000000041
|
||||
34 0106000020E61000000100000001030000000100000015000000FFFFFF5FFEBD56C0000000C0ED454340000000C0E0C056C0000000401048434000000040E0C356C0000000C0AC4D434000000060B0C556C000000000094E4340000000201BC956C0000000E0D74C4340FFFFFF3F1ECD56C0000000204D4E4340000000806BCE56C0000000600150434000000020DDCF56C0000000A015544340000000E0F7D256C0000000801D584340000000E067D556C000000080E65943400000004001D856C000000060795943400000000033DB56C0000000804A5B4340000000E0C8DA56C000000080986C434000000000A0D156C0000000A0FF6B43400000000038D156C0000000A0817F434000000020BECC56C0FFFFFFFF1B7F4340FFFFFFBFD7CC56C0FFFFFF7F727743400000000093C756C0FFFFFF3FF37643400000006075C756C0000000A0EE6F4340000000008BBD56C0000000608A6F4340FFFFFF5FFEBD56C0000000C0ED454340 5.00546399999999991
|
||||
35 0106000020E61000000100000001030000000100000031000000FFFFFF9F36AF56C0000000E037514340000000602AB256C0FFFFFFDFE74943400000008057B356C000000020CF4A434000000060A8B456C0000000C07D4A4340000000005FBA56C00000006033454340FFFFFF5FFEBD56C0000000C0ED454340000000008BBD56C0000000608A6F4340000000C058BD56C0000000C09E7243400000004020BC56C0000000C09A7143400000008058B856C000000000FB714340000000A00EB456C0000000A090704340FFFFFFBF86B356C000000040A3744340000000C070B256C0000000A0FE754340000000C0DAAE56C0000000802B774340000000C0FDAE56C0000000406D7543400000004047AD56C0000000C04C7443400000000071AD56C000000080B07543400000002088AC56C00000006088754340FFFFFFDF6EAC56C00000006055774340FFFFFFDFCEAA56C000000060B67743400000004024A856C0000000E0BD7043400000004080A456C0000000A0876F434000000080F2A156C00000004020724340000000E0119E56C000000060C67A4340000000C06F9A56C0000000A02D7B4340000000A0769456C0000000606376434000000000DA9156C0000000205D764340000000809C8F56C0000000A00E75434000000000808856C0FFFFFF1F306D4340000000603D8756C0000000C04C6A434000000060CA8756C0000000207766434000000060A28856C0000000A04C69434000000020CB8C56C0000000409A69434000000080AB9056C0000000608F6D4340FFFFFFFF6D9256C0000000204F714340000000C05C9456C000000040DD714340000000E0A39556C0000000A065704340000000400B9756C000000040A26A434000000040CC9956C0000000A0AA694340FFFFFFFFBA9B56C000000060646A4340000000A0EF9C56C0FFFFFF1FCB694340000000605F9F56C0000000202B614340000000402CA256C000000000995C4340000000C00CA356C00000006094584340000000A08CA656C0000000E04C57434000000000F0A856C000000020B5584340000000A086AB56C0FFFFFF5FCD5643400000004012AC56C0000000004C544340FFFFFF9F36AF56C0000000E037514340 2.46389099999999983
|
||||
37 0106000020E6100000010000000103000000010000002A0000000000006054AF56C0000000C0573B4340FFFFFF9F36AF56C0000000E0375143400000004012AC56C0000000004C544340000000A086AB56C0FFFFFF5FCD56434000000000F0A856C000000020B5584340000000A08CA656C0000000E04C574340000000C00CA356C00000006094584340000000402CA256C000000000995C4340000000605F9F56C0000000202B614340000000A0EF9C56C0FFFFFF1FCB694340FFFFFFFFBA9B56C000000060646A434000000040CC9956C0000000A0AA694340000000400B9756C000000040A26A4340000000E0A39556C0000000A065704340000000C05C9456C000000040DD714340FFFFFFFF6D9256C0000000204F71434000000080AB9056C0000000608F6D434000000020CB8C56C0000000409A69434000000060A28856C0000000A04C69434000000060CA8756C00000002077664340000000E0F48A56C000000020B1644340000000004D8C56C0000000C05E61434000000020578F56C0000000A0725D434000000020609356C000000020CC55434000000000419456C0000000A03D4A434000000000B89056C0000000C031444340000000A0029156C00000006064424340FFFFFF5F519356C0000000A0B336434000000020BC9556C00000004007324340000000406F9656C00000008005364340FFFFFF1FAA9556C0000000A07439434000000040129A56C0000000C07E3A4340FFFFFF1FE19A56C000000040623D4340FFFFFF3F2B9A56C000000000263E4340000000E0379A56C00000002001404340FFFFFFFFF5A556C0000000801A404340000000C049A756C0000000A07B3C4340000000801EAA56C000000020A63D4340FFFFFFDFD4AA56C000000060A538434000000060CFAB56C000000040BE384340000000202CAC56C000000040A33B43400000006054AF56C0000000C0573B4340 7.37797400000000003
|
||||
39 0106000020E61000000100000001030000000100000008000000000000A04E4956C0000000E03140434000000040454956C000000040E25E4340000000202B4956C000000080AC69434000000040F72C56C000000000486A434000000000EE2C56C000000060424E434000000080062D56C0FFFFFF7FAE3C4340000000803D4956C0FFFFFF9FB63C4340000000A04E4956C0000000E031404340 3.19004699999999985
|
||||
60 0106000020E6100000010000000103000000010000000A0000000000006098A956C0000000C019DE42400000006010C756C000000020A7DE4240000000A08DC656C000000000241A43400000002017B256C0000000209F1A434000000080FEAB56C0000000C0710E434000000080D3AB56C0FFFFFF5F2F0C434000000080FFA956C000000080EA0C43400000006018AA56C0000000E0FF0A434000000060E4A856C000000080440A43400000006098A956C0000000C019DE4240 3.26394699999999993
|
||||
41 0106000020E6100000010000000103000000010000001700000000000040454956C000000040E25E4340000000A04E4956C0000000E031404340000000A0FB5056C0000000001A414340000000E00D5356C0000000004C404340000000A0DA5656C000000040A4414340000000A07D5956C0000000A0833E4340000000608F5B56C0000000C0273F4340000000E0405D56C0000000803A3E4340000000E0CB5E56C000000040AD3B4340000000E08A6156C0000000A0793D434000000060B56256C0000000A09A3C4340000000A0A06456C0000000A0963D434000000020996756C000000060AB3B4340000000E0156856C0000000A085394340FFFFFF3F536956C0000000C06A384340FFFFFF5F876A56C0000000809638434000000080DD6A56C000000020BB364340000000806B6D56C0000000E09E35434000000060BA6D56C0000000603154434000000000AD6656C00000004080544340FFFFFF1FC26656C0FFFFFFBFE25E434000000060D25056C000000060FA5E434000000040454956C000000040E25E4340 2.44759700000000002
|
||||
42 0106000020E610000001000000010300000001000000210000000000000014FD56C000000000744C4340000000C0D70157C000000020CE464340000000E0CC0057C0000000A0ED404340FFFFFF1F3C0257C0000000A0CE3C434000000060C80457C0000000E02D3C4340000000A0020757C000000000763A4340000000602E0957C000000060EF3B434000000020B90A57C000000060DE3B434000000060340A57C0000000402D38434000000060310857C00000004012354340000000E0F50757C0000000E095324340000000E0D40857C000000080DD304340000000E0690B57C0FFFFFF3F3B30434000000000520C57C000000060732E4340000000208D0C57C000000000AB2A434000000060D80E57C000000080CC2A4340000000C05C1057C0000000209229434000000040131257C000000040C52A4340000000C0281A57C000000080262B4340000000E0D81957C000000000F6354340FFFFFF9FB91F57C0FFFFFFDF7D364340000000A0491957C0FFFFFF9F355E4340000000005F1657C0FFFFFF5FD95B4340FFFFFF3FC11657C0000000406056434000000020B21257C0FFFFFFDF4855434000000060091157C0000000E053534340FFFFFF5F100E57C000000000B8514340000000E0B10C57C000000020054D434000000000EA0A57C0000000407C4A4340000000E0880657C0FFFFFFDFF147434000000040220257C0000000405C484340000000E005FF56C000000020904B43400000000014FD56C000000000744C4340 1.29495800000000005
|
||||
44 0106000020E6100000010000000103000000010000001700000000000060850C57C000000080EC244340000000208D0C57C000000000AB2A434000000000520C57C000000060732E4340000000E0690B57C0FFFFFF3F3B304340000000E0D40857C000000080DD304340000000E0F50757C0000000E09532434000000060310857C0000000401235434000000060340A57C0000000402D38434000000020B90A57C000000060DE3B4340000000602E0957C000000060EF3B4340000000A0020757C000000000763A434000000060C80457C0000000E02D3C4340FFFFFF1F3C0257C0000000A0CE3C4340000000E0CC0057C0000000A0ED404340000000C0D70157C000000020CE4643400000000014FD56C000000000744C434000000060C1F656C0000000E0725643400000008054F356C0FFFFFFDFFB564340FFFFFFFFACF056C00000004097584340FFFFFF7F6BEF56C0000000A0605A434000000000D4E956C0000000C00D5A4340FFFFFF9FB0E956C0FFFFFF1F1425434000000060850C57C000000080EC244340 4.13399699999999992
|
||||
45 0106000020E610000001000000010300000001000000190000000000002017B256C0000000209F1A4340000000A08DC656C000000000241A43400000000009D656C0FFFFFFDF1C1A4340FFFFFF5F2CD856C0000000E0381A43400000004025D856C000000020FA1A4340000000E0A7D756C0000000E0553543400000004001D856C00000006079594340000000E067D556C000000080E6594340000000E0F7D256C0000000801D58434000000020DDCF56C0000000A015544340000000806BCE56C00000006001504340FFFFFF3F1ECD56C0000000204D4E4340000000201BC956C0000000E0D74C434000000060B0C556C000000000094E434000000040E0C356C0000000C0AC4D4340000000C0E0C056C00000004010484340FFFFFF5FFEBD56C0000000C0ED454340000000005FBA56C0000000603345434000000060A8B456C0000000C07D4A43400000008057B356C000000020CF4A4340000000602AB256C0FFFFFFDFE7494340FFFFFF9F36AF56C0000000E0375143400000006054AF56C0000000C0573B43400000006067AF56C000000040593243400000002017B256C0000000209F1A4340 4.29831099999999999
|
||||
46 0106000020E6100000010000000103000000010000001200000000000060DE7956C0000000E08D1C4340000000C0897B56C0000000806323434000000060177B56C0000000807E244340000000204D7A56C0000000A0CD234340FFFFFF7FB97A56C0000000409227434000000000028256C0000000E0EB27434000000020048256C0000000002F2A4340000000A04E8956C00000002053344340000000C05A8956C000000020A5364340000000A0029156C0000000606442434000000000B89056C0000000C031444340000000A06B8F56C0000000000A484340000000E0C18B56C0000000601D4E4340000000C0BF8B56C0000000A05254434000000060BA6D56C00000006031544340000000806B6D56C0000000E09E35434000000080B86D56C0FFFFFFFF081C434000000060DE7956C0000000E08D1C4340 27.4838270000000016
|
||||
48 0106000020E6100000010000000103000000010000000E000000FFFFFF9FD60956C00000000035214340000000808A0956C000000080C1494340000000605FFD55C000000020A549434000000060C8FC55C0FFFFFF5FDF444340000000C0AAFD55C0000000808E3F434000000080F9FC55C000000060DA394340000000E068FD55C000000060D537434000000000E6FC55C0000000C05E364340000000E0A8FE55C0000000C056334340FFFFFFFFA6FE55C00000004061304340000000E0ACFD55C0000000E0D02C4340000000407CFD55C000000040D92543400000006042FF55C00000004040214340FFFFFF9FD60956C00000000035214340 0
|
||||
49 0106000020E6100000010000000103000000010000001600000000000060DE7956C0000000E08D1C434000000020918256C0000000809A1C4340000000207D8256C0000000008611434000000020488D56C000000040610B434000000080429056C000000040A30F434000000060899256C0000000405A154340000000C08C9556C0000000C02718434000000060589756C000000080FD1D434000000060A39756C0000000606A294340FFFFFFBFF49656C0FFFFFF1FC32E434000000020BC9556C00000004007324340FFFFFF5F519356C0000000A0B3364340000000A0029156C00000006064424340000000C05A8956C000000020A5364340000000A04E8956C0000000205334434000000020048256C0000000002F2A434000000000028256C0000000E0EB274340FFFFFF7FB97A56C00000004092274340000000204D7A56C0000000A0CD23434000000060177B56C0000000807E244340000000C0897B56C0000000806323434000000060DE7956C0000000E08D1C4340 2.93446600000000002
|
||||
50 0106000020E6100000010000000103000000010000001600000000000020396656C0000000A0C31B434000000080B86D56C0FFFFFFFF081C4340000000806B6D56C0000000E09E35434000000080DD6A56C000000020BB364340FFFFFF5F876A56C00000008096384340FFFFFF3F536956C0000000C06A384340000000E0156856C0000000A08539434000000020996756C000000060AB3B4340000000A0A06456C0000000A0963D434000000060B56256C0000000A09A3C4340000000E08A6156C0000000A0793D4340000000E0CB5E56C000000040AD3B4340000000E0405D56C0000000803A3E4340000000608F5B56C0000000C0273F4340000000A07D5956C0000000A0833E4340000000A0DA5656C000000040A4414340000000E00D5356C0000000004C404340000000A0FB5056C0000000001A414340000000A04E4956C0000000E031404340000000803D4956C0FFFFFF9FB63C434000000080A84956C0000000A05B1B434000000020396656C0000000A0C31B4340 4.45642699999999969
|
||||
51 0106000020E6100000010000000103000000010000002400000000000060E4A856C000000080440A43400000006018AA56C0000000E0FF0A434000000080FFA956C000000080EA0C434000000080D3AB56C0FFFFFF5F2F0C434000000080FEAB56C0000000C0710E43400000002017B256C0000000209F1A43400000006067AF56C000000040593243400000006054AF56C0000000C0573B4340000000202CAC56C000000040A33B434000000060CFAB56C000000040BE384340FFFFFFDFD4AA56C000000060A5384340000000801EAA56C000000020A63D4340000000C049A756C0000000A07B3C4340FFFFFFFFF5A556C0000000801A404340000000E0379A56C00000002001404340FFFFFF3F2B9A56C000000000263E4340FFFFFF1FE19A56C000000040623D434000000040129A56C0000000C07E3A4340FFFFFF1FAA9556C0000000A074394340000000406F9656C0000000800536434000000020BC9556C00000004007324340FFFFFFBFF49656C0FFFFFF1FC32E434000000060A39756C0000000606A29434000000060589756C000000080FD1D4340000000C08C9556C0000000C02718434000000060899256C0000000405A15434000000080429056C000000040A30F434000000060029356C000000020C60B4340FFFFFFDF129556C000000060CA0C4340000000E0919A56C0000000E0CE054340FFFFFF7F92A656C0FFFFFFBF5400434000000060F6A756C0000000E03B014340FFFFFF9F39A756C0000000E0A3024340000000E08CA756C0000000A00E064340000000A003A756C0000000C05F09434000000060E4A856C000000080440A4340 4.62926400000000005
|
||||
53 0106000020E6100000010000000103000000010000001F00000000000040E21957C0000000A0A6024340000000E0092157C0000000E02C03434000000000242157C0000000608104434000000060892357C0000000405C064340FFFFFF7FC12357C0000000A0EA074340000000A0D82457C00000000027084340FFFFFF7FDB2457C0000000E0450C434000000080C22557C0000000A0750C434000000020B82557C000000040160E434000000020652657C0000000402B0E434000000020632657C0000000A05C114340FFFFFF9F102757C00000006080114340000000A0F62657C0FFFFFFDF91154340000000C0FE2857C0FFFFFF3FEE154340000000A0342957C000000080811A4340FFFFFFDFD72C57C0000000A03B1C4340000000C0662C57C000000040292C434000000060CC2857C0FFFFFFBF582C4340000000800C2857C0FFFFFFBF01374340FFFFFF9FB91F57C0FFFFFFDF7D364340000000E0D81957C000000000F6354340000000C0281A57C000000080262B434000000040131257C000000040C52A4340000000C05C1057C0000000209229434000000060D80E57C000000080CC2A4340000000208D0C57C000000000AB2A434000000060850C57C000000080EC244340000000A0C10C57C00000008020154340000000E0AA0B57C00000004000154340FFFFFF1F090C57C0000000202E02434000000040E21957C0000000A0A6024340 3.99004100000000017
|
||||
55 0106000020E6100000010000000103000000010000002200000000000000181856C000000020FEF4424000000020F21756C000000040DA204340FFFFFF9FD60956C000000000352143400000006042FF55C00000004040214340FFFFFF9FB8FE55C0000000E0DB1E4340000000C01AFF55C0000000600E1E43400000006096FE55C0FFFFFFFFB0194340000000A0AAFB55C0000000A0E7154340FFFFFFBFA5FB55C0000000E02914434000000020D6FC55C00000006086114340000000E04DFE55C000000080DD104340000000E02F0156C000000000390D434000000000CA0056C000000000D20B434000000060C0FD55C000000040620C4340000000406BFE55C0000000206209434000000000390256C000000040EC06434000000000C20256C000000080C605434000000080A70256C000000020E704434000000080630156C0000000C04A044340000000A0DE0156C0000000E00D014340000000A0630156C0FFFFFF9FCEFC424000000080B80256C0000000E066FA4240FFFFFF5FAC0256C0000000A09DF74240FFFFFFBF220456C00000002003F74240000000600D0556C000000000D5F8424000000040600556C0000000803AF64240000000C0F20156C0000000A073F54240000000A0B30156C0000000E0EFF34240FFFFFF1FDF0256C000000040B0F24240FFFFFFBF670656C0FFFFFF5FFDF34240000000407E0656C00000006099F24240000000A0390956C0000000E0E8F54240000000E0CA0956C0000000201CF5424000000000181856C000000020FEF44240 3.04025299999999987
|
||||
56 0106000020E6100000010000000103000000010000000600000000000000181856C000000020FEF4424000000020572D56C0FFFFFF7F74F44240000000E0562D56C0000000208910434000000060492D56C0000000603E21434000000020F21756C000000040DA20434000000000181856C000000020FEF44240 3.90541099999999997
|
||||
57 0106000020E6100000010000000103000000010000001700000000000020488D56C000000040610B4340000000207D8256C0000000008611434000000020918256C0000000809A1C434000000060DE7956C0000000E08D1C434000000080B86D56C0FFFFFFFF081C434000000020396656C0000000A0C31B434000000000936656C0000000601DFA424000000040B46A56C0000000607CEB424000000060E56B56C0FFFFFFFF16EA4240000000403A6C56C00000008003E74240000000E09E6E56C0000000A0A5EB424000000080827656C000000020D9F34240FFFFFF5F1B7756C000000000E7F34240FFFFFFDF797756C00000000029F24240FFFFFF9FA27956C0000000A01DF0424000000020067C56C0000000C063F0424000000080A67E56C0000000A0B8F44240000000A0537D56C00000006058FB424000000020B18056C0000000A012FC4240000000E0AE8256C0FFFFFF5F21FF424000000040A38756C00000008021044340000000209F8856C0000000E0E706434000000020488D56C000000040610B4340 4.33283899999999988
|
||||
58 0106000020E6100000010000000103000000010000000B00000000000020864856C00000000054104340000000C0FA4856C0FFFFFF3FC70D434000000000E64756C000000060EA0B4340FFFFFFFFF54856C0000000E00F06434000000080504956C0000000C0DEFE4240000000E0744B56C0000000A07CF9424000000000936656C0000000601DFA424000000020396656C0000000A0C31B434000000080A84956C0000000A05B1B4340FFFFFF9FB84956C0000000409110434000000020864856C00000000054104340 3.8941110000000001
|
||||
61 0106000020E61000000100000001030000000100000013000000000000A0F60157C0000000C081014340000000405FFE56C0000000E06B014340000000605AFD56C0000000E05905434000000060BBFB56C0000000809A044340000000C01EFB56C00000002014064340FFFFFFDFD2F956C000000040E2064340FFFFFF3FF2E856C0000000A0A3064340000000A0D7E856C0FFFFFF1F1B14434000000060BCE256C0000000C023144340FFFFFFFF04E256C0FFFFFFBFD01343400000008044E256C0000000E0BEE44240000000803CF456C000000040BEE4424000000080DBF356C0FFFFFF9F97DF42400000004063F456C0FFFFFFBF64DB4240000000007EF456C000000000A6CC4240000000A0000257C00000002054CD424000000080730157C0000000C094E3424000000080EA0157C0000000409BE44240000000A0F60157C0000000C081014340 3.28216300000000016
|
||||
62 0106000020E6100000010000000103000000010000000C00000000000020572D56C0FFFFFF7F74F4424000000020682D56C0FFFFFF7F00EF4240000000C0E94956C000000080CDEE4240000000E0EC4956C0000000607AF94240000000E0744B56C0000000A07CF9424000000080504956C0000000C0DEFE4240FFFFFFFFF54856C0000000E00F06434000000000E64756C000000060EA0B4340000000C0FA4856C0FFFFFF3FC70D434000000020864856C00000000054104340000000E0562D56C0000000208910434000000020572D56C0FFFFFF7F74F44240 3.29576199999999986
|
||||
63 0106000020E61000000100000001030000000100000013000000000000E0718756C00000000011D64240FFFFFF5F418A56C0FFFFFF3F72DA4240FFFFFFDFFD8C56C00000004087D64240000000E0A59D56C0FFFFFF5FA4F0424000000000CE9456C0000000603BFE4240000000E0919A56C0000000E0CE054340FFFFFFDF129556C000000060CA0C434000000060029356C000000020C60B434000000080429056C000000040A30F434000000020488D56C000000040610B4340000000209F8856C0000000E0E706434000000040A38756C00000008021044340000000E0AE8256C0FFFFFF5F21FF424000000020B18056C0000000A012FC4240000000A0537D56C00000006058FB424000000080A67E56C0000000A0B8F4424000000020067C56C0000000C063F04240000000E0798056C0000000E0DEE84240000000E0718756C00000000011D64240 7.24967900000000043
|
||||
64 0106000020E6100000010000000103000000010000001100000000000060BC8956C00000004054D24240FFFFFF7F82A256C00000008046D2424000000040D6A956C0000000C024D242400000006098A956C0000000C019DE424000000060E4A856C000000080440A4340000000A003A756C0000000C05F094340000000E08CA756C0000000A00E064340FFFFFF9F39A756C0000000E0A302434000000060F6A756C0000000E03B014340FFFFFF7F92A656C0FFFFFFBF54004340000000E0919A56C0000000E0CE05434000000000CE9456C0000000603BFE4240000000E0A59D56C0FFFFFF5FA4F04240FFFFFFDFFD8C56C00000004087D64240FFFFFF5F418A56C0FFFFFF3F72DA4240000000E0718756C00000000011D6424000000060BC8956C00000004054D24240 3.04184600000000005
|
||||
65 0106000020E6100000010000000103000000010000000B000000000000E0F40F57C0000000C0B5CD4240FFFFFF9FF10F57C0000000000DD34240000000403A1A57C0000000E038DB4240000000001E1A57C00000002044EE424000000040E21957C0000000A0A6024340FFFFFF1F090C57C0000000202E024340000000A0F60157C0000000C08101434000000080EA0157C0000000409BE4424000000080730157C0000000C094E34240000000A0000257C00000002054CD4240000000E0F40F57C0000000C0B5CD4240 1.61801799999999996
|
||||
66 0106000020E6100000010000000103000000010000001400000000000000CE4956C00000004053CD4240000000C0655D56C0000000A09ECD4240FFFFFF7F825D56C0FFFFFF1FA9CA4240FFFFFF7F835E56C000000080FAC8424000000020996156C0000000E035C9424000000000DB6056C0FFFFFFBFD6CE4240000000403A6156C0000000803FD3424000000020DB6056C00000000005D74240000000A0606156C000000020EFD84240FFFFFF3F366556C0000000A061DA424000000040A76A56C0000000006BDF424000000040416B56C00000002059E44240000000403A6C56C00000008003E7424000000060E56B56C0FFFFFFFF16EA424000000040B46A56C0000000607CEB424000000000936656C0000000601DFA4240000000E0744B56C0000000A07CF94240000000E0EC4956C0000000607AF94240000000C0E94956C000000080CDEE424000000000CE4956C00000004053CD4240 4.91080100000000019
|
||||
67 0106000020E6100000010000000103000000010000002000000000000060BC8956C00000004054D24240000000E0718756C00000000011D64240000000E0798056C0000000E0DEE8424000000020067C56C0000000C063F04240FFFFFF9FA27956C0000000A01DF04240FFFFFFDF797756C00000000029F24240FFFFFF5F1B7756C000000000E7F3424000000080827656C000000020D9F34240000000E09E6E56C0000000A0A5EB4240000000403A6C56C00000008003E7424000000040416B56C00000002059E4424000000040A76A56C0000000006BDF4240FFFFFF3F366556C0000000A061DA4240000000A0606156C000000020EFD8424000000020DB6056C00000000005D74240000000403A6156C0000000803FD3424000000000DB6056C0FFFFFFBFD6CE424000000020996156C0000000E035C94240000000A0D56556C0FFFFFF3F7FC9424000000020FD6656C00000006065CC4240000000A08C6856C000000080A3CB424000000020126956C000000000DBCC424000000060DB6B56C0000000801BCB4240000000E03A6C56C00000008035CC424000000020756D56C000000020BACC4240000000A0296E56C000000080E9CB4240000000C0F16E56C0000000E0A9CC4240000000E0817156C0FFFFFF3F6FCB4240000000A0D07356C000000080EECC424000000060627756C000000060F8CC424000000000908956C0000000E0B3CC424000000060BC8956C00000004054D24240 1.99145700000000003
|
||||
69 0106000020E6100000010000000103000000010000001100000000000060E6E956C000000040FFB54240000000C0B1F056C00000006063B6424000000060EAF056C0000000E033CC4240000000007EF456C000000000A6CC42400000004063F456C0FFFFFFBF64DB424000000080DBF356C0FFFFFF9F97DF4240000000803CF456C000000040BEE442400000008044E256C0000000E0BEE442400000000065D456C00000004041E44240000000C086D456C000000040CED94240000000C080CA56C0000000001BD942400000008089CA56C00000008095CB4240000000408AD456C000000000C3CB4240000000A067D456C000000060BDC042400000008032CE56C00000006039C04240000000C049CE56C0000000E0D8B4424000000060E6E956C000000040FFB54240 7.26665000000000028
|
||||
70 0106000020E61000000100000001030000000100000014000000FFFFFF7F82A256C00000008046D24240FFFFFF1FC4A256C00000000069CC4240000000E078A356C00000002057CC4240000000408CA356C0000000C0F4A74240FFFFFF7FD8A356C0000000A004A34240000000808AAF56C0000000E0CBA24240FFFFFF3F5BB056C000000020F4A24240000000800DB056C00000002043AF424000000040D5B156C00000004066AF424000000080CAB156C0000000600DCD4240FFFFFF7F5EC056C0000000805BCD4240000000C00AC756C00000000081CB42400000008089CA56C00000008095CB4240000000C080CA56C0000000001BD9424000000060FBC956C0000000A01ED94240FFFFFF9FF7C956C0FFFFFF7F75DE42400000006010C756C000000020A7DE42400000006098A956C0000000C019DE424000000040D6A956C0000000C024D24240FFFFFF7F82A256C00000008046D24240 3.11090400000000011
|
||||
71 0106000020E6100000010000000103000000010000000900000000000060378E56C0000000A0EBA74240000000408CA356C0000000C0F4A74240000000E078A356C00000002057CC4240FFFFFF1FC4A256C00000000069CC4240FFFFFF7F82A256C00000008046D2424000000060BC8956C00000004054D2424000000000908956C0000000E0B3CC424000000040968956C000000040EAA7424000000060378E56C0000000A0EBA74240 2.98027100000000011
|
||||
72 0106000020E6100000010000000103000000010000000D00000000000080CD0557C0000000407487424000000000A11057C000000060E7874240000000A0F00F57C000000080AAA04240FFFFFF7F761057C0000000A0EEA0424000000000221057C0000000C028BD4240000000E0F40F57C0000000C0B5CD4240000000A0000257C00000002054CD4240000000007EF456C000000000A6CC424000000060EAF056C0000000E033CC4240000000C0B1F056C00000006063B6424000000060E6E956C000000040FFB5424000000000B0EA56C0000000004286424000000080CD0557C00000004074874240 3.86676699999999984
|
||||
73 0106000020E6100000010000000103000000010000000E000000000000E0FF5D56C0000000C071AB424000000020E35B56C00000002088AD4240000000605D5B56C0000000409CB4424000000020085D56C00000000002BA424000000080AA5F56C0000000E0F0BE424000000020996156C0000000E035C94240FFFFFF7F835E56C000000080FAC84240FFFFFF7F825D56C0FFFFFF1FA9CA4240000000C0655D56C0000000A09ECD424000000000CE4956C00000004053CD4240000000E0F64256C0FFFFFFDF38CD4240000000002E4356C0FFFFFFFF29AB4240000000C0BC4F56C0000000C03CAB4240000000E0FF5D56C0000000C071AB4240 1.86840800000000007
|
||||
74 0106000020E61000000100000001030000000100000024000000000000808AAF56C0000000E0CBA24240000000A093AF56C0000000E0549542400000006089B056C00000002032954240000000E0B1B056C0FFFFFFFF0E924240000000202CB256C00000002007924240000000C071B256C000000060B4864240FFFFFFBF2FBE56C0000000A04E874240000000802ABE56C000000080B48C4240FFFFFF7F90C156C0FFFFFF9FCB8C424000000080BAC156C0000000C003924240000000E09DC256C0000000A01B92424000000020C3C256C0000000807895424000000020D4C456C00000008020954240000000C0EAC456C0FFFFFF7F84964240000000E019C656C0000000409A964240000000E035C656C000000080E899424000000000C3C856C000000000D7994240000000A0D9C856C0000000C0899E42400000006055C856C0FFFFFF1FAB9E42400000000047C856C0000000804BA04240000000005BCA56C0000000A0D1A04240000000805DCA56C0000000204EA84240000000E096CB56C0000000E080A8424000000080B0CB56C000000040A1B44240000000C049CE56C0000000E0D8B442400000008032CE56C00000006039C04240000000A067D456C000000060BDC04240000000408AD456C000000000C3CB42400000008089CA56C00000008095CB4240000000C00AC756C00000000081CB4240FFFFFF7F5EC056C0000000805BCD424000000080CAB156C0000000600DCD424000000040D5B156C00000004066AF4240000000800DB056C00000002043AF4240FFFFFF3F5BB056C000000020F4A24240000000808AAF56C0000000E0CBA24240 12.5770339999999994
|
||||
75 0106000020E6100000010000000103000000010000000D000000000000A0A47756C0000000C0DA904240000000E07A7D56C000000060D090424000000060B67D56C00000000057884240000000E0BD7F56C00000008017884240000000C0D87F56C0000000805986424000000040568756C00000000039864240000000605B8756C0000000E0188B4240000000E02F8E56C0000000A0058B424000000060378E56C0000000A0EBA7424000000040968956C000000040EAA7424000000000908956C0000000E0B3CC424000000060627756C000000060F8CC4240000000A0A47756C0000000C0DA904240 7.80359900000000017
|
||||
76 0106000020E6100000010000000103000000010000002800000000000060627756C000000060F8CC4240000000A0D07356C000000080EECC4240000000E0817156C0FFFFFF3F6FCB4240000000C0F16E56C0000000E0A9CC4240000000A0296E56C000000080E9CB424000000020756D56C000000020BACC4240000000E03A6C56C00000008035CC424000000060DB6B56C0000000801BCB424000000020126956C000000000DBCC4240000000A08C6856C000000080A3CB424000000020FD6656C00000006065CC4240000000A0D56556C0FFFFFF3F7FC9424000000020996156C0000000E035C9424000000080AA5F56C0000000E0F0BE424000000020085D56C00000000002BA4240000000605D5B56C0000000409CB4424000000020E35B56C00000002088AD4240000000E0FF5D56C0000000C071AB424000000080096056C0FFFFFF1F2BAA424000000080E36056C00000000009A7424000000080E36056C0FFFFFF1F61A3424000000080555F56C0000000A0C4A0424000000060D06056C000000000079F4240000000C0F46556C000000000279E424000000000FE6556C0000000A01B9D424000000040236856C000000020EE9C4240FFFFFF7F196856C000000000C59B424000000000CD6956C0000000E06A9B424000000060CC6956C00000008027994240000000A0336C56C00000000008994240FFFFFFFF326C56C0FFFFFF9F2C974240FFFFFF7F876D56C0FFFFFF5FD296424000000020906D56C0000000208094424000000020866E56C0000000806194424000000080986E56C0000000E0FC924240000000A0A07056C000000080BF924240000000A0B27056C000000060B790424000000060BB7156C000000060A7904240000000A0A47756C0000000C0DA90424000000060627756C000000060F8CC4240 3.47149000000000019
|
||||
77 0106000020E6100000010000000103000000010000001800000000000000B0EA56C0000000004286424000000060E6E956C000000040FFB54240000000C049CE56C0000000E0D8B4424000000080B0CB56C000000040A1B44240000000E096CB56C0000000E080A84240000000805DCA56C0000000204EA84240000000005BCA56C0000000A0D1A042400000000047C856C0000000804BA042400000006055C856C0FFFFFF1FAB9E4240000000A0D9C856C0000000C0899E424000000000C3C856C000000000D7994240000000E035C656C000000080E8994240000000E019C656C0000000409A964240000000C0EAC456C0FFFFFF7F8496424000000020D4C456C0000000802095424000000020C3C256C00000008078954240000000E09DC256C0000000A01B92424000000080BAC156C0000000C003924240FFFFFF7F90C156C0FFFFFF9FCB8C4240000000E031C756C000000080E88A4240000000806ECE56C0000000E0E18A424000000040AFCE56C000000020DF704240000000C0B7EA56C0000000C06A71424000000000B0EA56C00000000042864240 4.33482199999999995
|
||||
78 0106000020E6100000010000000103000000010000001F000000000000E08FAB56C0000000807A76424000000040ABAC56C000000080A176424000000020BFAC56C0000000A0BC7B4240FFFFFFDFF6AD56C000000000E37B424000000000FEAD56C0000000604F7F42400000004052AF56C000000000847F42400000000061AF56C0FFFFFFBF6B864240000000C071B256C000000060B4864240000000202CB256C00000002007924240000000E0B1B056C0FFFFFFFF0E9242400000006089B056C00000002032954240000000A093AF56C0000000E054954240000000808AAF56C0000000E0CBA24240FFFFFF7FD8A356C0000000A004A34240000000408CA356C0000000C0F4A7424000000060378E56C0000000A0EBA74240000000E02F8E56C0000000A0058B4240000000605B8756C0000000E0188B424000000040568756C0000000003986424000000060BC8956C0000000604186424000000060E68956C0000000809C81424000000060D28A56C0000000207C81424000000000F58A56C000000060D07E424000000000108C56C0000000A0A07E424000000060338C56C000000040987C4240FFFFFFFF318D56C000000080777C424000000040438D56C0000000A0217B4240000000607A8E56C000000080E27A424000000000938E56C000000080EC77424000000040D09056C00000004054764240000000E08FAB56C0000000807A764240 8.45153700000000008
|
||||
\.
|
||||
|
||||
|
||||
CREATE INDEX getis_data_gix ON getis_data USING GIST(the_geom);
|
||||
15
src/pg/test/sql/16_getis_test.sql
Normal file
15
src/pg/test/sql/16_getis_test.sql
Normal file
@@ -0,0 +1,15 @@
|
||||
\pset format unaligned
|
||||
\set ECHO all
|
||||
\i test/fixtures/getis_data.sql
|
||||
|
||||
-- set random seed
|
||||
SELECT cdb_crankshaft._cdb_random_seeds(1234);
|
||||
|
||||
-- test against PySAL example dataset 'stl_hom'
|
||||
SELECT rowid, round(z_score, 4) As z_score, round(p_value, 4) As p_value
|
||||
FROM cdb_crankshaft.CDB_GetisOrdsG(
|
||||
'select * from getis_data',
|
||||
'hr8893', 'queen', NULL, 999,
|
||||
'the_geom', 'cartodb_id') As t(z_score, p_value, p_z_sim, rowid)
|
||||
WHERE round(p_value, 4) <= 0.05
|
||||
ORDER BY rowid ASC;
|
||||
85
src/pg/test/sql/18_outliers_test.sql
Normal file
85
src/pg/test/sql/18_outliers_test.sql
Normal file
@@ -0,0 +1,85 @@
|
||||
SET client_min_messages TO WARNING;
|
||||
\set ECHO none
|
||||
\pset format unaligned
|
||||
|
||||
--
|
||||
-- postgres=# select round(avg(i), 3) as avg,
|
||||
-- round(stddev(i), 3) as stddev,
|
||||
-- round(avg(i) + stddev(i), 3) as one_stddev,
|
||||
-- round(avg(i) + 2 * stddev(i), 3) As two_stddev
|
||||
-- from unnest(ARRAY[1,3,2,3,5,1,2,32,12,3,57,2,1,4,2,100]) As x(i);
|
||||
-- avg | stddev | one_stddev | two_stddev
|
||||
-- --------+--------+------------+------------
|
||||
-- 14.375 | 27.322 | 41.697 | 69.020
|
||||
|
||||
|
||||
-- With an threshold of 1.0 standard deviation, ids 11, 16, and 17 are outliers
|
||||
WITH a AS (
|
||||
SELECT
|
||||
ARRAY[1,3,2,3,5,1,2,32,12, 3,57, 2, 1, 4, 2,100,-100]::numeric[] As vals, ARRAY[1,2,3,4,5,6,7, 8, 9,10,11,12,13,14,15, 16, 17]::int[] As ids
|
||||
), b As (
|
||||
SELECT
|
||||
(cdb_crankshaft.cdb_StdDevOutlier(vals, 1.0, ids)).*
|
||||
FROM a
|
||||
ORDER BY ids)
|
||||
SELECT *
|
||||
FROM b
|
||||
WHERE is_outlier IS TRUE;
|
||||
|
||||
-- With a threshold of 2.0 standard deviations, id 16 is the only outlier
|
||||
WITH a AS (
|
||||
SELECT
|
||||
ARRAY[1,3,2,3,5,1,2,32,12, 3,57, 2, 1, 4, 2,100,-100]::numeric[] As vals,
|
||||
ARRAY[1,2,3,4,5,6,7, 8, 9,10,11,12,13,14,15, 16, 17]::int[] As ids
|
||||
), b As (
|
||||
SELECT
|
||||
(cdb_crankshaft.CDB_StdDevOutlier(vals, 2.0, ids)).*
|
||||
FROM a
|
||||
ORDER BY ids)
|
||||
SELECT *
|
||||
FROM b
|
||||
WHERE is_outlier IS TRUE;
|
||||
|
||||
-- With a Stddev of zero, should throw back error
|
||||
-- With a threshold of 2.0 standard deviations, id 16 is the only outlier
|
||||
WITH a AS (
|
||||
SELECT
|
||||
ARRAY[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]::numeric[] As vals,
|
||||
ARRAY[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]::int[] As ids
|
||||
), b As (
|
||||
SELECT
|
||||
(cdb_crankshaft.CDB_StdDevOutlier(vals, 1.0, ids)).*
|
||||
FROM a
|
||||
ORDER BY ids)
|
||||
SELECT *
|
||||
FROM b
|
||||
WHERE is_outlier IS TRUE;
|
||||
|
||||
-- With a ratio threshold of 2.0 threshold (100% above or below the mean)
|
||||
-- which is greater than ~21, which are values
|
||||
WITH a AS (
|
||||
SELECT
|
||||
ARRAY[1,3,2,3,5,1,2,32,12, 3,57, 2, 1, 4, 2,100,-100]::numeric[] As vals,
|
||||
ARRAY[1,2,3,4,5,6,7, 8, 9,10,11,12,13,14,15, 16, 17]::int[] As ids
|
||||
), b As (
|
||||
SELECT
|
||||
(cdb_crankshaft.CDB_PercentOutlier(vals, 2.0, ids)).*
|
||||
FROM a
|
||||
ORDER BY ids)
|
||||
SELECT *
|
||||
FROM b
|
||||
WHERE is_outlier IS TRUE;
|
||||
|
||||
-- With a static threshold of 11, what are the outliers
|
||||
WITH a AS (
|
||||
SELECT
|
||||
ARRAY[1,3,2,3,5,1,2,32,12, 3,57, 2, 1, 4, 2,100,-100]::numeric[] As vals,
|
||||
ARRAY[1,2,3,4,5,6,7, 8, 9,10,11,12,13,14,15, 16, 17]::int[] As ids
|
||||
), b As (
|
||||
SELECT unnest(vals) As v, unnest(ids) as i
|
||||
FROM a
|
||||
)
|
||||
SELECT cdb_crankshaft.CDB_StaticOutlier(v, 11.0) As is_outlier, i As rowid
|
||||
FROM b
|
||||
WHERE cdb_crankshaft.CDB_StaticOutlier(v, 11.0) is True
|
||||
ORDER BY i;
|
||||
@@ -3,3 +3,5 @@ import crankshaft.random_seeds
|
||||
import crankshaft.clustering
|
||||
import crankshaft.space_time_dynamics
|
||||
import crankshaft.segmentation
|
||||
import crankshaft.regression
|
||||
import analysis_data_provider
|
||||
|
||||
76
src/py/crankshaft/crankshaft/analysis_data_provider.py
Normal file
76
src/py/crankshaft/crankshaft/analysis_data_provider.py
Normal file
@@ -0,0 +1,76 @@
|
||||
"""class for fetching data"""
|
||||
import plpy
|
||||
import pysal_utils as pu
|
||||
|
||||
|
||||
class AnalysisDataProvider:
|
||||
def get_getis(self, w_type, params):
|
||||
"""fetch data for getis ord's g"""
|
||||
try:
|
||||
query = pu.construct_neighbor_query(w_type, params)
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(4)
|
||||
else:
|
||||
return result
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
def get_markov(self, w_type, params):
|
||||
"""fetch data for spatial markov"""
|
||||
try:
|
||||
query = pu.construct_neighbor_query(w_type, params)
|
||||
data = plpy.execute(query)
|
||||
|
||||
if len(data) == 0:
|
||||
return pu.empty_zipped_array(4)
|
||||
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
def get_moran(self, w_type, params):
|
||||
"""fetch data for moran's i analyses"""
|
||||
try:
|
||||
query = pu.construct_neighbor_query(w_type, params)
|
||||
data = plpy.execute(query)
|
||||
|
||||
# if there are no neighbors, exit
|
||||
if len(data) == 0:
|
||||
return pu.empty_zipped_array(2)
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % e)
|
||||
return pu.empty_zipped_array(2)
|
||||
|
||||
def get_nonspatial_kmeans(self, query):
|
||||
"""fetch data for non-spatial kmeans"""
|
||||
try:
|
||||
data = plpy.execute(query)
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
def get_spatial_kmeans(self, params):
|
||||
"""fetch data for spatial kmeans"""
|
||||
query = ("SELECT "
|
||||
"array_agg({id_col} ORDER BY {id_col}) as ids,"
|
||||
"array_agg(ST_X({geom_col}) ORDER BY {id_col}) As xs,"
|
||||
"array_agg(ST_Y({geom_col}) ORDER BY {id_col}) As ys "
|
||||
"FROM ({subquery}) As a "
|
||||
"WHERE {geom_col} IS NOT NULL").format(**params)
|
||||
try:
|
||||
data = plpy.execute(query)
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
def get_gwr(self, params):
|
||||
"""fetch data for gwr analysis"""
|
||||
query = pu.gwr_query(params)
|
||||
try:
|
||||
query_result = plpy.execute(query)
|
||||
return query_result
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
@@ -1,3 +1,4 @@
|
||||
"""Import all functions from for clustering"""
|
||||
from moran import *
|
||||
from kmeans import *
|
||||
from getis import *
|
||||
|
||||
50
src/py/crankshaft/crankshaft/clustering/getis.py
Normal file
50
src/py/crankshaft/crankshaft/clustering/getis.py
Normal file
@@ -0,0 +1,50 @@
|
||||
"""
|
||||
Getis-Ord's G geostatistics (hotspot/coldspot analysis)
|
||||
"""
|
||||
|
||||
import pysal as ps
|
||||
from collections import OrderedDict
|
||||
|
||||
# crankshaft modules
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
# High level interface ---------------------------------------
|
||||
|
||||
|
||||
class Getis:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
def getis_ord(self, subquery, attr,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Getis-Ord's G*
|
||||
Implementation building neighbors with a PostGIS database and PySAL's
|
||||
Getis-Ord's G* hotspot/coldspot module.
|
||||
Andy Eschbacher
|
||||
"""
|
||||
|
||||
# geometries with attributes that are null are ignored
|
||||
# resulting in a collection of not as near neighbors if kNN is chosen
|
||||
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_getis(w_type, qvals)
|
||||
attr_vals = pu.get_attributes(result)
|
||||
|
||||
# build PySAL weight object
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate Getis-Ord's G* z- and p-values
|
||||
getis = ps.esda.getisord.G_Local(attr_vals, weight,
|
||||
star=True, permutations=permutations)
|
||||
|
||||
return zip(getis.z_sim, getis.p_sim, getis.p_z_sim, weight.id_order)
|
||||
@@ -1,18 +1,32 @@
|
||||
from sklearn.cluster import KMeans
|
||||
import plpy
|
||||
import numpy as np
|
||||
|
||||
def kmeans(query, no_clusters, no_init=20):
|
||||
data = plpy.execute('''select array_agg(cartodb_id order by cartodb_id) as ids,
|
||||
array_agg(ST_X(the_geom) order by cartodb_id) xs,
|
||||
array_agg(ST_Y(the_geom) order by cartodb_id) ys from ({query}) a
|
||||
where the_geom is not null
|
||||
'''.format(query=query))
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
xs = data[0]['xs']
|
||||
ys = data[0]['ys']
|
||||
ids = data[0]['ids']
|
||||
|
||||
km = KMeans(n_clusters= no_clusters, n_init=no_init)
|
||||
labels = km.fit_predict(zip(xs,ys))
|
||||
return zip(ids,labels)
|
||||
class Kmeans:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
def spatial(self, query, no_clusters, no_init=20):
|
||||
"""
|
||||
find centers based on clusters of latitude/longitude pairs
|
||||
query: SQL query that has a WGS84 geometry (the_geom)
|
||||
"""
|
||||
params = {"subquery": query,
|
||||
"geom_col": "the_geom",
|
||||
"id_col": "cartodb_id"}
|
||||
|
||||
data = self.data_provider.get_spatial_kmeans(params)
|
||||
|
||||
# Unpack query response
|
||||
xs = data[0]['xs']
|
||||
ys = data[0]['ys']
|
||||
ids = data[0]['ids']
|
||||
|
||||
km = KMeans(n_clusters=no_clusters, n_init=no_init)
|
||||
labels = km.fit_predict(zip(xs, ys))
|
||||
return zip(ids, labels)
|
||||
|
||||
@@ -6,8 +6,8 @@ Moran's I geostatistics (global clustering & outliers presence)
|
||||
# average of the their neighborhood
|
||||
|
||||
import pysal as ps
|
||||
import plpy
|
||||
from collections import OrderedDict
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
# crankshaft module
|
||||
import crankshaft.pysal_utils as pu
|
||||
@@ -15,204 +15,162 @@ import crankshaft.pysal_utils as pu
|
||||
# High level interface ---------------------------------------
|
||||
|
||||
|
||||
def moran(subquery, attr_name,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I (global)
|
||||
Implementation building neighbors with a PostGIS database and Moran's I
|
||||
core clusters with PySAL.
|
||||
Andy Eschbacher
|
||||
"""
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr_name),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
class Moran:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
def global_stat(self, subquery, attr_name,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I (global)
|
||||
Implementation building neighbors with a PostGIS database and Moran's I
|
||||
core clusters with PySAL.
|
||||
Andy Eschbacher
|
||||
"""
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr_name),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(2)
|
||||
except plpy.SPIError, e:
|
||||
plpy.error('Analysis failed: %s' % e)
|
||||
return pu.empty_zipped_array(2)
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# collect attributes
|
||||
attr_vals = pu.get_attributes(result)
|
||||
# collect attributes
|
||||
attr_vals = pu.get_attributes(result)
|
||||
|
||||
# calculate weights
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
# calculate weights
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate moran global
|
||||
moran_global = ps.esda.moran.Moran(attr_vals, weight,
|
||||
permutations=permutations)
|
||||
# calculate moran global
|
||||
moran_global = ps.esda.moran.Moran(attr_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
return zip([moran_global.I], [moran_global.EI])
|
||||
return zip([moran_global.I], [moran_global.EI])
|
||||
|
||||
def local_stat(self, subquery, attr,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I implementation for PL/Python
|
||||
Andy Eschbacher
|
||||
"""
|
||||
|
||||
def moran_local(subquery, attr,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I implementation for PL/Python
|
||||
Andy Eschbacher
|
||||
"""
|
||||
# geometries with attributes that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
|
||||
# geometries with attributes that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
attr_vals = pu.get_attributes(result)
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(5)
|
||||
except plpy.SPIError, e:
|
||||
plpy.error('Analysis failed: %s' % e)
|
||||
return pu.empty_zipped_array(5)
|
||||
|
||||
attr_vals = pu.get_attributes(result)
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find quadrants for each geometry
|
||||
quads = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||
|
||||
|
||||
def moran_rate(subquery, numerator, denominator,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I Rate (global)
|
||||
Andy Eschbacher
|
||||
"""
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("attr1", numerator),
|
||||
("attr2", denominator)
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(2)
|
||||
except plpy.SPIError, e:
|
||||
plpy.error('Analysis failed: %s' % e)
|
||||
return pu.empty_zipped_array(2)
|
||||
|
||||
# collect attributes
|
||||
numer = pu.get_attributes(result, 1)
|
||||
denom = pu.get_attributes(result, 2)
|
||||
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate moran global rate
|
||||
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
return zip([lisa_rate.I], [lisa_rate.EI])
|
||||
# find quadrants for each geometry
|
||||
quads = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||
|
||||
def moran_local_rate(subquery, numerator, denominator,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I Local Rate
|
||||
def global_rate_stat(self, subquery, numerator, denominator,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I Rate (global)
|
||||
Andy Eschbacher
|
||||
"""
|
||||
# geometries with values that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
"""
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", numerator),
|
||||
("attr2", denominator)
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("numerator", numerator),
|
||||
("denominator", denominator),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
# collect attributes
|
||||
numer = pu.get_attributes(result, 1)
|
||||
denom = pu.get_attributes(result, 2)
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(5)
|
||||
except plpy.SPIError, e:
|
||||
plpy.error('Analysis failed: %s' % e)
|
||||
return pu.empty_zipped_array(5)
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# collect attributes
|
||||
numer = pu.get_attributes(result, 1)
|
||||
denom = pu.get_attributes(result, 2)
|
||||
# calculate moran global rate
|
||||
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
|
||||
permutations=permutations)
|
||||
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
return zip([lisa_rate.I], [lisa_rate.EI])
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
|
||||
permutations=permutations)
|
||||
def local_rate_stat(self, subquery, numerator, denominator,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I Local Rate
|
||||
Andy Eschbacher
|
||||
"""
|
||||
# geometries with values that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
|
||||
# find quadrants for each geometry
|
||||
quads = quad_position(lisa.q)
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("numerator", numerator),
|
||||
("denominator", denominator),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# collect attributes
|
||||
numer = pu.get_attributes(result, 1)
|
||||
denom = pu.get_attributes(result, 2)
|
||||
|
||||
def moran_local_bv(subquery, attr1, attr2,
|
||||
permutations, geom_col, id_col, w_type, num_ngbrs):
|
||||
"""
|
||||
Moran's I (local) Bivariate (untested)
|
||||
"""
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr1),
|
||||
("attr2", attr2),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
|
||||
permutations=permutations)
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
# find quadrants for each geometry
|
||||
quads = quad_position(lisa.q)
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(4)
|
||||
except plpy.SPIError:
|
||||
plpy.error("Error: areas of interest query failed, "
|
||||
"check input parameters")
|
||||
return pu.empty_zipped_array(4)
|
||||
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||
|
||||
# collect attributes
|
||||
attr1_vals = pu.get_attributes(result, 1)
|
||||
attr2_vals = pu.get_attributes(result, 2)
|
||||
def local_bivariate_stat(self, subquery, attr1, attr2,
|
||||
permutations, geom_col, id_col,
|
||||
w_type, num_ngbrs):
|
||||
"""
|
||||
Moran's I (local) Bivariate (untested)
|
||||
"""
|
||||
|
||||
# create weights
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr1),
|
||||
("attr2", attr2),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
|
||||
permutations=permutations)
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# find clustering of significance
|
||||
lisa_sig = quad_position(lisa.q)
|
||||
# collect attributes
|
||||
attr1_vals = pu.get_attributes(result, 1)
|
||||
attr2_vals = pu.get_attributes(result, 2)
|
||||
|
||||
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
|
||||
# create weights
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find clustering of significance
|
||||
lisa_sig = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
|
||||
|
||||
# Low level functions ----------------------------------------
|
||||
|
||||
|
||||
@@ -42,19 +42,33 @@ def get_weight(query_res, w_type='knn', num_ngbrs=5):
|
||||
return built_weight
|
||||
|
||||
|
||||
def query_attr_select(params):
|
||||
def query_attr_select(params, table_ref=True):
|
||||
"""
|
||||
Create portion of SELECT statement for attributes inolved in query.
|
||||
Defaults to order in the params
|
||||
@param params: dict of information used in query (column names,
|
||||
table name, etc.)
|
||||
Example:
|
||||
OrderedDict([('numerator', 'price'),
|
||||
('denominator', 'sq_meters'),
|
||||
('subquery', 'SELECT * FROM interesting_data')])
|
||||
Output:
|
||||
"i.\"price\"::numeric As attr1, " \
|
||||
"i.\"sq_meters\"::numeric As attr2, "
|
||||
"""
|
||||
|
||||
attr_string = ""
|
||||
template = "i.\"%(col)s\"::numeric As attr%(alias_num)s, "
|
||||
template = "\"%(col)s\"::numeric As attr%(alias_num)s, "
|
||||
|
||||
if 'time_cols' in params:
|
||||
# if markov analysis
|
||||
attrs = params['time_cols']
|
||||
if table_ref:
|
||||
template = "i." + template
|
||||
|
||||
if ('time_cols' in params) or ('ind_vars' in params):
|
||||
# if markov or gwr analysis
|
||||
attrs = (params['time_cols'] if 'time_cols' in params
|
||||
else params['ind_vars'])
|
||||
if 'ind_vars' in params:
|
||||
template = "array_agg(\"%(col)s\"::numeric) As attr%(alias_num)s, "
|
||||
|
||||
for idx, val in enumerate(attrs):
|
||||
attr_string += template % {"col": val, "alias_num": idx + 1}
|
||||
@@ -64,14 +78,14 @@ def query_attr_select(params):
|
||||
if k not in ('id_col', 'geom_col', 'subquery',
|
||||
'num_ngbrs', 'subquery')]
|
||||
|
||||
for idx, val in enumerate(sorted(attrs)):
|
||||
for idx, val in enumerate(attrs):
|
||||
attr_string += template % {"col": params[val],
|
||||
"alias_num": idx + 1}
|
||||
|
||||
return attr_string
|
||||
|
||||
|
||||
def query_attr_where(params):
|
||||
def query_attr_where(params, table_ref=True):
|
||||
"""
|
||||
Construct where conditions when building neighbors query
|
||||
Create portion of WHERE clauses for weeding out NULL-valued geometries
|
||||
@@ -80,8 +94,8 @@ def query_attr_where(params):
|
||||
'numerator': 'data1',
|
||||
'denominator': 'data2',
|
||||
'': ...}
|
||||
Output: 'idx_replace."data1" IS NOT NULL AND idx_replace."data2"
|
||||
IS NOT NULL'
|
||||
Output:
|
||||
'idx_replace."data1" IS NOT NULL AND idx_replace."data2" IS NOT NULL'
|
||||
Input:
|
||||
{'subquery': ...,
|
||||
'time_cols': ['time1', 'time2', 'time3'],
|
||||
@@ -90,11 +104,14 @@ def query_attr_where(params):
|
||||
NULL AND idx_replace."time3" IS NOT NULL'
|
||||
"""
|
||||
attr_string = []
|
||||
template = "idx_replace.\"%s\" IS NOT NULL"
|
||||
template = "\"%s\" IS NOT NULL"
|
||||
if table_ref:
|
||||
template = "idx_replace." + template
|
||||
|
||||
if 'time_cols' in params:
|
||||
# markov where clauses
|
||||
attrs = params['time_cols']
|
||||
if ('time_cols' in params) or ('ind_vars' in params):
|
||||
# markov or gwr where clauses
|
||||
attrs = (params['time_cols'] if 'time_cols' in params
|
||||
else params['ind_vars'])
|
||||
# add values to template
|
||||
for attr in attrs:
|
||||
attr_string.append(template % attr)
|
||||
@@ -102,15 +119,17 @@ def query_attr_where(params):
|
||||
# moran where clauses
|
||||
|
||||
# get keys
|
||||
attrs = sorted([k for k in params
|
||||
if k not in ('id_col', 'geom_col', 'subquery',
|
||||
'num_ngbrs', 'subquery')])
|
||||
attrs = [k for k in params
|
||||
if k not in ('id_col', 'geom_col', 'subquery',
|
||||
'num_ngbrs', 'subquery')]
|
||||
|
||||
# add values to template
|
||||
for attr in attrs:
|
||||
attr_string.append(template % params[attr])
|
||||
|
||||
if len(attrs) == 2:
|
||||
attr_string.append("idx_replace.\"%s\" <> 0" % params[attrs[1]])
|
||||
if 'denominator' in attrs:
|
||||
attr_string.append(
|
||||
"idx_replace.\"%s\" <> 0" % params['denominator'])
|
||||
|
||||
out = " AND ".join(attr_string)
|
||||
|
||||
@@ -122,8 +141,8 @@ def knn(params):
|
||||
@param vars: dict of values to fill template
|
||||
"""
|
||||
|
||||
attr_select = query_attr_select(params)
|
||||
attr_where = query_attr_where(params)
|
||||
attr_select = query_attr_select(params, table_ref=True)
|
||||
attr_where = query_attr_where(params, table_ref=True)
|
||||
|
||||
replacements = {"attr_select": attr_select,
|
||||
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
||||
@@ -177,6 +196,32 @@ def queen(params):
|
||||
|
||||
return query.format(**params)
|
||||
|
||||
|
||||
def gwr_query(params):
|
||||
"""
|
||||
GWR query
|
||||
"""
|
||||
|
||||
replacements = {"ind_vars_select": query_attr_select(params,
|
||||
table_ref=None),
|
||||
"ind_vars_where": query_attr_where(params,
|
||||
table_ref=None)}
|
||||
|
||||
query = '''
|
||||
SELECT
|
||||
array_agg(ST_X(ST_Centroid({geom_col}))) As x,
|
||||
array_agg(ST_Y(ST_Centroid({geom_col}))) As y,
|
||||
array_agg({dep_var}) As dep_var,
|
||||
%(ind_vars_select)s
|
||||
array_agg({id_col}) As rowid
|
||||
FROM ({subquery}) As q
|
||||
WHERE
|
||||
{dep_var} IS NOT NULL AND
|
||||
%(ind_vars_where)s
|
||||
''' % replacements
|
||||
|
||||
return query.format(**params).strip()
|
||||
|
||||
# to add more weight methods open a ticket or pull request
|
||||
|
||||
|
||||
|
||||
2
src/py/crankshaft/crankshaft/regression/__init__.py
Normal file
2
src/py/crankshaft/crankshaft/regression/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from crankshaft.regression.gwr import *
|
||||
from crankshaft.regression.glm import *
|
||||
@@ -0,0 +1,444 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Import GLM and pysal\n",
|
||||
"import os\n",
|
||||
"import numpy as np\n",
|
||||
"os.chdir('/Users/toshan/dev/pysal/pysal/contrib/glm')\n",
|
||||
"from glm import GLM\n",
|
||||
"import pysal\n",
|
||||
"import pandas as pd\n",
|
||||
"import statsmodels.formula.api as smf\n",
|
||||
"import statsmodels.api as sm\n",
|
||||
"from family import Gaussian, Binomial, Poisson, QuasiPoisson\n",
|
||||
"\n",
|
||||
"from statsmodels.api import families"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Prepare some test data - columbus example\n",
|
||||
"db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')\n",
|
||||
"y = np.array(db.by_col(\"HOVAL\"))\n",
|
||||
"y = np.reshape(y, (49,1))\n",
|
||||
"X = []\n",
|
||||
"#X.append(np.ones(len(y)))\n",
|
||||
"X.append(db.by_col(\"INC\"))\n",
|
||||
"X.append(db.by_col(\"CRIME\"))\n",
|
||||
"X = np.array(X).T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[[ 46.42818268]\n",
|
||||
" [ 0.62898397]\n",
|
||||
" [ -0.48488854]]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"#First fit pysal OLS model\n",
|
||||
"from pysal.spreg import ols\n",
|
||||
"OLS = ols.OLS(y, X)\n",
|
||||
"print OLS.betas"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<class 'family.Gaussian'>\n",
|
||||
"<class 'family.Gaussian'>\n",
|
||||
"<class 'family.Gaussian'>\n",
|
||||
"[ 46.42818268 0.62898397 -0.48488854]\n",
|
||||
"[ 46.42818268 0.62898397 -0.48488854]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"#Then fit Gaussian GLM\n",
|
||||
"\n",
|
||||
"#create Gaussian GLM model object\n",
|
||||
"model = GLM(y, X, Gaussian())\n",
|
||||
"model\n",
|
||||
"\n",
|
||||
"#Fit model to estimate coefficients and return GLMResults object\n",
|
||||
"results = model.fit()\n",
|
||||
"\n",
|
||||
"#Check coefficients - R betas [46.4282, 0.6290, -0.4849]\n",
|
||||
"print results.params\n",
|
||||
"\n",
|
||||
"# Gaussian GLM results from statsmodels\n",
|
||||
"sm_model = smf.GLM(y, sm.add_constant(X), family=families.Gaussian())\n",
|
||||
"sm_results = sm_model.fit()\n",
|
||||
"print sm_results.params"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2 2\n",
|
||||
"<class 'family.Gaussian'>\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"<class 'family.Gaussian'>\n",
|
||||
"<class 'family.Gaussian'>\n",
|
||||
"<class 'family.Gaussian'>\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print results.df_model, sm_results.df_model\n",
|
||||
"print np.allclose(results.aic, sm_results.aic)\n",
|
||||
"print np.allclose(results.bic, sm_results.bic)\n",
|
||||
"print np.allclose(results.deviance, sm_results.deviance)\n",
|
||||
"print np.allclose(results.df_model, sm_results.df_model)\n",
|
||||
"print np.allclose(results.df_resid, sm_results.df_resid)\n",
|
||||
"print np.allclose(results.llf, sm_results.llf)\n",
|
||||
"print np.allclose(results.mu, sm_results.mu)\n",
|
||||
"print np.allclose(results.n, sm_results.nobs)\n",
|
||||
"print np.allclose(results.null, sm_results.null)\n",
|
||||
"print np.allclose(results.null_deviance, sm_results.null_deviance)\n",
|
||||
"print np.allclose(results.params, sm_results.params)\n",
|
||||
"print np.allclose(results.pearson_chi2, sm_results.pearson_chi2)\n",
|
||||
"print np.allclose(results.resid_anscombe, sm_results.resid_anscombe)\n",
|
||||
"print np.allclose(results.resid_deviance, sm_results.resid_deviance)\n",
|
||||
"print np.allclose(results.resid_pearson, sm_results.resid_pearson)\n",
|
||||
"print np.allclose(results.resid_response, sm_results.resid_response)\n",
|
||||
"print np.allclose(results.resid_working, sm_results.resid_working)\n",
|
||||
"print np.allclose(results.scale, sm_results.scale)\n",
|
||||
"print np.allclose(results.normalized_cov_params, sm_results.normalized_cov_params)\n",
|
||||
"print np.allclose(results.cov_params(), sm_results.cov_params())\n",
|
||||
"print np.allclose(results.bse, sm_results.bse)\n",
|
||||
"print np.allclose(results.conf_int(), sm_results.conf_int())\n",
|
||||
"print np.allclose(results.pvalues, sm_results.pvalues)\n",
|
||||
"print np.allclose(results.tvalues, sm_results.tvalues)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<class 'family.Poisson'>\n",
|
||||
"<class 'family.Poisson'>\n",
|
||||
"<class 'family.Poisson'>\n",
|
||||
"[ 3.92159085 0.01183491 -0.01371397]\n",
|
||||
"[ 3.92159085 0.01183491 -0.01371397]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"#Now fit a Poisson GLM \n",
|
||||
"\n",
|
||||
"poisson_y = np.round(y).astype(int)\n",
|
||||
"\n",
|
||||
"#create Poisson GLM model object\n",
|
||||
"model = GLM(poisson_y, X, Poisson())\n",
|
||||
"model\n",
|
||||
"\n",
|
||||
"#Fit model to estimate coefficients and return GLMResults object\n",
|
||||
"results = model.fit()\n",
|
||||
"\n",
|
||||
"#Check coefficients - R betas [3.91926, 0.01198, -0.01371]\n",
|
||||
"print results.params.T\n",
|
||||
"\n",
|
||||
"# Poisson GLM results from statsmodels\n",
|
||||
"sm_results = smf.GLM(poisson_y, sm.add_constant(X), family=families.Poisson()).fit()\n",
|
||||
"print sm_results.params"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<class 'family.Poisson'>\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"<class 'family.Poisson'>\n",
|
||||
"<class 'family.Poisson'>\n",
|
||||
"<class 'family.Poisson'>\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"[ 0.13049161 0.00511599 0.00193769] [ 0.13049161 0.00511599 0.00193769]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print np.allclose(results.aic, sm_results.aic)\n",
|
||||
"print np.allclose(results.bic, sm_results.bic)\n",
|
||||
"print np.allclose(results.deviance, sm_results.deviance)\n",
|
||||
"print np.allclose(results.df_model, sm_results.df_model)\n",
|
||||
"print np.allclose(results.df_resid, sm_results.df_resid)\n",
|
||||
"print np.allclose(results.llf, sm_results.llf)\n",
|
||||
"print np.allclose(results.mu, sm_results.mu)\n",
|
||||
"print np.allclose(results.n, sm_results.nobs)\n",
|
||||
"print np.allclose(results.null, sm_results.null)\n",
|
||||
"print np.allclose(results.null_deviance, sm_results.null_deviance)\n",
|
||||
"print np.allclose(results.params, sm_results.params)\n",
|
||||
"print np.allclose(results.pearson_chi2, sm_results.pearson_chi2)\n",
|
||||
"print np.allclose(results.resid_anscombe, sm_results.resid_anscombe)\n",
|
||||
"print np.allclose(results.resid_deviance, sm_results.resid_deviance)\n",
|
||||
"print np.allclose(results.resid_pearson, sm_results.resid_pearson)\n",
|
||||
"print np.allclose(results.resid_response, sm_results.resid_response)\n",
|
||||
"print np.allclose(results.resid_working, sm_results.resid_working)\n",
|
||||
"print np.allclose(results.scale, sm_results.scale)\n",
|
||||
"print np.allclose(results.normalized_cov_params, sm_results.normalized_cov_params)\n",
|
||||
"print np.allclose(results.cov_params(), sm_results.cov_params())\n",
|
||||
"print np.allclose(results.bse, sm_results.bse)\n",
|
||||
"print np.allclose(results.conf_int(), sm_results.conf_int())\n",
|
||||
"print np.allclose(results.pvalues, sm_results.pvalues)\n",
|
||||
"print np.allclose(results.tvalues, sm_results.tvalues)\n",
|
||||
"print results.bse, sm_results.bse"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 82,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[-5.33638276 0.0287754 ]\n",
|
||||
"[-5.33638276 0.0287754 ]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"#Now fit a binomial GLM\n",
|
||||
"londonhp = pd.read_csv('/Users/toshan/projects/londonhp.csv')\n",
|
||||
"#londonhp = pd.read_csv('/Users/qszhao/Dropbox/pysal/pysal/contrib/gwr/londonhp.csv')\n",
|
||||
"y = londonhp['BATH2'].values\n",
|
||||
"y = np.reshape(y, (316,1))\n",
|
||||
"X = londonhp['FLOORSZ'].values\n",
|
||||
"X = np.reshape(X, (316,1))\n",
|
||||
"\n",
|
||||
"#create logistic GLM model object\n",
|
||||
"model = GLM(y, X, Binomial())\n",
|
||||
"model\n",
|
||||
"\n",
|
||||
"#Fit model to estimate coefficients and return GLMResults object\n",
|
||||
"results = model.fit()\n",
|
||||
"\n",
|
||||
"#Check coefficients - R betas [-5.33638, 0.02878]\n",
|
||||
"print results.params.T\n",
|
||||
"\n",
|
||||
"# Logistic GLM results from statsmodels\n",
|
||||
"sm_results = smf.GLM(y, sm.add_constant(X), family=families.Binomial()).fit()\n",
|
||||
"print sm_results.params"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 76,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1 1\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"True\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print results.df_model, sm_results.df_model\n",
|
||||
"print np.allclose(results.aic, sm_results.aic)\n",
|
||||
"print np.allclose(results.bic, sm_results.bic)\n",
|
||||
"print np.allclose(results.deviance, sm_results.deviance)\n",
|
||||
"print np.allclose(results.df_model, sm_results.df_model)\n",
|
||||
"print np.allclose(results.df_resid, sm_results.df_resid)\n",
|
||||
"print np.allclose(results.llf, sm_results.llf)\n",
|
||||
"print np.allclose(results.mu, sm_results.mu)\n",
|
||||
"print np.allclose(results.n, sm_results.nobs)\n",
|
||||
"print np.allclose(results.null, sm_results.null)\n",
|
||||
"print np.allclose(results.null_deviance, sm_results.null_deviance)\n",
|
||||
"print np.allclose(results.params, sm_results.params)\n",
|
||||
"print np.allclose(results.pearson_chi2, sm_results.pearson_chi2)\n",
|
||||
"print np.allclose(results.resid_anscombe, sm_results.resid_anscombe)\n",
|
||||
"print np.allclose(results.resid_deviance, sm_results.resid_deviance)\n",
|
||||
"print np.allclose(results.resid_pearson, sm_results.resid_pearson)\n",
|
||||
"print np.allclose(results.resid_response, sm_results.resid_response)\n",
|
||||
"print np.allclose(results.resid_working, sm_results.resid_working)\n",
|
||||
"print np.allclose(results.scale, sm_results.scale)\n",
|
||||
"print np.allclose(results.normalized_cov_params, sm_results.normalized_cov_params)\n",
|
||||
"print np.allclose(results.cov_params(), sm_results.cov_params())\n",
|
||||
"print np.allclose(results.bse, sm_results.bse)\n",
|
||||
"print np.allclose(results.conf_int(), sm_results.conf_int())\n",
|
||||
"print np.allclose(results.pvalues, sm_results.pvalues)\n",
|
||||
"print np.allclose(results.tvalues, sm_results.tvalues)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<class 'family.QuasiPoisson'>\n",
|
||||
"<class 'family.QuasiPoisson'>\n",
|
||||
"<class 'family.QuasiPoisson'>\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"#create QUasiPoisson GLM model object\n",
|
||||
"model = GLM(poisson_y, X, QuasiPoisson())\n",
|
||||
"model\n",
|
||||
"\n",
|
||||
"#Fit model to estimate coefficients and return GLMResults object\n",
|
||||
"results = model.fit()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 2",
|
||||
"language": "python",
|
||||
"name": "python2"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
4
src/py/crankshaft/crankshaft/regression/glm/__init__.py
Normal file
4
src/py/crankshaft/crankshaft/regression/glm/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
import glm
|
||||
import family
|
||||
import utils
|
||||
import iwls
|
||||
959
src/py/crankshaft/crankshaft/regression/glm/base.py
Normal file
959
src/py/crankshaft/crankshaft/regression/glm/base.py
Normal file
@@ -0,0 +1,959 @@
|
||||
|
||||
from __future__ import print_function
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
from utils import cache_readonly
|
||||
|
||||
class Results(object):
|
||||
"""
|
||||
Class to contain model results
|
||||
Parameters
|
||||
----------
|
||||
model : class instance
|
||||
the previously specified model instance
|
||||
params : array
|
||||
parameter estimates from the fit model
|
||||
"""
|
||||
def __init__(self, model, params, **kwd):
|
||||
self.__dict__.update(kwd)
|
||||
self.initialize(model, params, **kwd)
|
||||
self._data_attr = []
|
||||
|
||||
def initialize(self, model, params, **kwd):
|
||||
self.params = params
|
||||
self.model = model
|
||||
if hasattr(model, 'k_constant'):
|
||||
self.k_constant = model.k_constant
|
||||
|
||||
def predict(self, exog=None, transform=True, *args, **kwargs):
|
||||
"""
|
||||
Call self.model.predict with self.params as the first argument.
|
||||
Parameters
|
||||
----------
|
||||
exog : array-like, optional
|
||||
The values for which you want to predict.
|
||||
transform : bool, optional
|
||||
If the model was fit via a formula, do you want to pass
|
||||
exog through the formula. Default is True. E.g., if you fit
|
||||
a model y ~ log(x1) + log(x2), and transform is True, then
|
||||
you can pass a data structure that contains x1 and x2 in
|
||||
their original form. Otherwise, you'd need to log the data
|
||||
first.
|
||||
args, kwargs :
|
||||
Some models can take additional arguments or keywords, see the
|
||||
predict method of the model for the details.
|
||||
Returns
|
||||
-------
|
||||
prediction : ndarray or pandas.Series
|
||||
See self.model.predict
|
||||
"""
|
||||
if transform and hasattr(self.model, 'formula') and exog is not None:
|
||||
from patsy import dmatrix
|
||||
exog = dmatrix(self.model.data.design_info.builder,
|
||||
exog)
|
||||
|
||||
if exog is not None:
|
||||
exog = np.asarray(exog)
|
||||
if exog.ndim == 1 and (self.model.exog.ndim == 1 or
|
||||
self.model.exog.shape[1] == 1):
|
||||
exog = exog[:, None]
|
||||
exog = np.atleast_2d(exog) # needed in count model shape[1]
|
||||
|
||||
return self.model.predict(self.params, exog, *args, **kwargs)
|
||||
|
||||
|
||||
#TODO: public method?
|
||||
class LikelihoodModelResults(Results):
|
||||
"""
|
||||
Class to contain results from likelihood models
|
||||
Parameters
|
||||
-----------
|
||||
model : LikelihoodModel instance or subclass instance
|
||||
LikelihoodModelResults holds a reference to the model that is fit.
|
||||
params : 1d array_like
|
||||
parameter estimates from estimated model
|
||||
normalized_cov_params : 2d array
|
||||
Normalized (before scaling) covariance of params. (dot(X.T,X))**-1
|
||||
scale : float
|
||||
For (some subset of models) scale will typically be the
|
||||
mean square error from the estimated model (sigma^2)
|
||||
Returns
|
||||
-------
|
||||
**Attributes**
|
||||
mle_retvals : dict
|
||||
Contains the values returned from the chosen optimization method if
|
||||
full_output is True during the fit. Available only if the model
|
||||
is fit by maximum likelihood. See notes below for the output from
|
||||
the different methods.
|
||||
mle_settings : dict
|
||||
Contains the arguments passed to the chosen optimization method.
|
||||
Available if the model is fit by maximum likelihood. See
|
||||
LikelihoodModel.fit for more information.
|
||||
model : model instance
|
||||
LikelihoodResults contains a reference to the model that is fit.
|
||||
params : ndarray
|
||||
The parameters estimated for the model.
|
||||
scale : float
|
||||
The scaling factor of the model given during instantiation.
|
||||
tvalues : array
|
||||
The t-values of the standard errors.
|
||||
Notes
|
||||
-----
|
||||
The covariance of params is given by scale times normalized_cov_params.
|
||||
Return values by solver if full_output is True during fit:
|
||||
'newton'
|
||||
fopt : float
|
||||
The value of the (negative) loglikelihood at its
|
||||
minimum.
|
||||
iterations : int
|
||||
Number of iterations performed.
|
||||
score : ndarray
|
||||
The score vector at the optimum.
|
||||
Hessian : ndarray
|
||||
The Hessian at the optimum.
|
||||
warnflag : int
|
||||
1 if maxiter is exceeded. 0 if successful convergence.
|
||||
converged : bool
|
||||
True: converged. False: did not converge.
|
||||
allvecs : list
|
||||
List of solutions at each iteration.
|
||||
'nm'
|
||||
fopt : float
|
||||
The value of the (negative) loglikelihood at its
|
||||
minimum.
|
||||
iterations : int
|
||||
Number of iterations performed.
|
||||
warnflag : int
|
||||
1: Maximum number of function evaluations made.
|
||||
2: Maximum number of iterations reached.
|
||||
converged : bool
|
||||
True: converged. False: did not converge.
|
||||
allvecs : list
|
||||
List of solutions at each iteration.
|
||||
'bfgs'
|
||||
fopt : float
|
||||
Value of the (negative) loglikelihood at its minimum.
|
||||
gopt : float
|
||||
Value of gradient at minimum, which should be near 0.
|
||||
Hinv : ndarray
|
||||
value of the inverse Hessian matrix at minimum. Note
|
||||
that this is just an approximation and will often be
|
||||
different from the value of the analytic Hessian.
|
||||
fcalls : int
|
||||
Number of calls to loglike.
|
||||
gcalls : int
|
||||
Number of calls to gradient/score.
|
||||
warnflag : int
|
||||
1: Maximum number of iterations exceeded. 2: Gradient
|
||||
and/or function calls are not changing.
|
||||
converged : bool
|
||||
True: converged. False: did not converge.
|
||||
allvecs : list
|
||||
Results at each iteration.
|
||||
'lbfgs'
|
||||
fopt : float
|
||||
Value of the (negative) loglikelihood at its minimum.
|
||||
gopt : float
|
||||
Value of gradient at minimum, which should be near 0.
|
||||
fcalls : int
|
||||
Number of calls to loglike.
|
||||
warnflag : int
|
||||
Warning flag:
|
||||
- 0 if converged
|
||||
- 1 if too many function evaluations or too many iterations
|
||||
- 2 if stopped for another reason
|
||||
converged : bool
|
||||
True: converged. False: did not converge.
|
||||
'powell'
|
||||
fopt : float
|
||||
Value of the (negative) loglikelihood at its minimum.
|
||||
direc : ndarray
|
||||
Current direction set.
|
||||
iterations : int
|
||||
Number of iterations performed.
|
||||
fcalls : int
|
||||
Number of calls to loglike.
|
||||
warnflag : int
|
||||
1: Maximum number of function evaluations. 2: Maximum number
|
||||
of iterations.
|
||||
converged : bool
|
||||
True : converged. False: did not converge.
|
||||
allvecs : list
|
||||
Results at each iteration.
|
||||
'cg'
|
||||
fopt : float
|
||||
Value of the (negative) loglikelihood at its minimum.
|
||||
fcalls : int
|
||||
Number of calls to loglike.
|
||||
gcalls : int
|
||||
Number of calls to gradient/score.
|
||||
warnflag : int
|
||||
1: Maximum number of iterations exceeded. 2: Gradient and/
|
||||
or function calls not changing.
|
||||
converged : bool
|
||||
True: converged. False: did not converge.
|
||||
allvecs : list
|
||||
Results at each iteration.
|
||||
'ncg'
|
||||
fopt : float
|
||||
Value of the (negative) loglikelihood at its minimum.
|
||||
fcalls : int
|
||||
Number of calls to loglike.
|
||||
gcalls : int
|
||||
Number of calls to gradient/score.
|
||||
hcalls : int
|
||||
Number of calls to hessian.
|
||||
warnflag : int
|
||||
1: Maximum number of iterations exceeded.
|
||||
converged : bool
|
||||
True: converged. False: did not converge.
|
||||
allvecs : list
|
||||
Results at each iteration.
|
||||
"""
|
||||
|
||||
# by default we use normal distribution
|
||||
# can be overwritten by instances or subclasses
|
||||
use_t = False
|
||||
|
||||
def __init__(self, model, params, normalized_cov_params=None, scale=1.,
|
||||
**kwargs):
|
||||
super(LikelihoodModelResults, self).__init__(model, params)
|
||||
self.normalized_cov_params = normalized_cov_params
|
||||
self.scale = scale
|
||||
|
||||
# robust covariance
|
||||
# We put cov_type in kwargs so subclasses can decide in fit whether to
|
||||
# use this generic implementation
|
||||
if 'use_t' in kwargs:
|
||||
use_t = kwargs['use_t']
|
||||
if use_t is not None:
|
||||
self.use_t = use_t
|
||||
if 'cov_type' in kwargs:
|
||||
cov_type = kwargs.get('cov_type', 'nonrobust')
|
||||
cov_kwds = kwargs.get('cov_kwds', {})
|
||||
|
||||
if cov_type == 'nonrobust':
|
||||
self.cov_type = 'nonrobust'
|
||||
self.cov_kwds = {'description' : 'Standard Errors assume that the ' +
|
||||
'covariance matrix of the errors is correctly ' +
|
||||
'specified.'}
|
||||
else:
|
||||
from statsmodels.base.covtype import get_robustcov_results
|
||||
if cov_kwds is None:
|
||||
cov_kwds = {}
|
||||
use_t = self.use_t
|
||||
# TODO: we shouldn't need use_t in get_robustcov_results
|
||||
get_robustcov_results(self, cov_type=cov_type, use_self=True,
|
||||
use_t=use_t, **cov_kwds)
|
||||
|
||||
|
||||
def normalized_cov_params(self):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def _get_robustcov_results(self, cov_type='nonrobust', use_self=True,
|
||||
use_t=None, **cov_kwds):
|
||||
from statsmodels.base.covtype import get_robustcov_results
|
||||
if cov_kwds is None:
|
||||
cov_kwds = {}
|
||||
|
||||
if cov_type == 'nonrobust':
|
||||
self.cov_type = 'nonrobust'
|
||||
self.cov_kwds = {'description' : 'Standard Errors assume that the ' +
|
||||
'covariance matrix of the errors is correctly ' +
|
||||
'specified.'}
|
||||
else:
|
||||
# TODO: we shouldn't need use_t in get_robustcov_results
|
||||
get_robustcov_results(self, cov_type=cov_type, use_self=True,
|
||||
use_t=use_t, **cov_kwds)
|
||||
|
||||
@cache_readonly
|
||||
def llf(self):
|
||||
return self.model.loglike(self.params)
|
||||
|
||||
@cache_readonly
|
||||
def bse(self):
|
||||
return np.sqrt(np.diag(self.cov_params()))
|
||||
|
||||
@cache_readonly
|
||||
def tvalues(self):
|
||||
"""
|
||||
Return the t-statistic for a given parameter estimate.
|
||||
"""
|
||||
return self.params / self.bse
|
||||
|
||||
@cache_readonly
|
||||
def pvalues(self):
|
||||
if self.use_t:
|
||||
df_resid = getattr(self, 'df_resid_inference', self.df_resid)
|
||||
return stats.t.sf(np.abs(self.tvalues), df_resid)*2
|
||||
else:
|
||||
return stats.norm.sf(np.abs(self.tvalues))*2
|
||||
|
||||
|
||||
def cov_params(self, r_matrix=None, column=None, scale=None, cov_p=None,
|
||||
other=None):
|
||||
"""
|
||||
Returns the variance/covariance matrix.
|
||||
The variance/covariance matrix can be of a linear contrast
|
||||
of the estimates of params or all params multiplied by scale which
|
||||
will usually be an estimate of sigma^2. Scale is assumed to be
|
||||
a scalar.
|
||||
Parameters
|
||||
----------
|
||||
r_matrix : array-like
|
||||
Can be 1d, or 2d. Can be used alone or with other.
|
||||
column : array-like, optional
|
||||
Must be used on its own. Can be 0d or 1d see below.
|
||||
scale : float, optional
|
||||
Can be specified or not. Default is None, which means that
|
||||
the scale argument is taken from the model.
|
||||
other : array-like, optional
|
||||
Can be used when r_matrix is specified.
|
||||
Returns
|
||||
-------
|
||||
cov : ndarray
|
||||
covariance matrix of the parameter estimates or of linear
|
||||
combination of parameter estimates. See Notes.
|
||||
Notes
|
||||
-----
|
||||
(The below are assumed to be in matrix notation.)
|
||||
If no argument is specified returns the covariance matrix of a model
|
||||
``(scale)*(X.T X)^(-1)``
|
||||
If contrast is specified it pre and post-multiplies as follows
|
||||
``(scale) * r_matrix (X.T X)^(-1) r_matrix.T``
|
||||
If contrast and other are specified returns
|
||||
``(scale) * r_matrix (X.T X)^(-1) other.T``
|
||||
If column is specified returns
|
||||
``(scale) * (X.T X)^(-1)[column,column]`` if column is 0d
|
||||
OR
|
||||
``(scale) * (X.T X)^(-1)[column][:,column]`` if column is 1d
|
||||
"""
|
||||
if (hasattr(self, 'mle_settings') and
|
||||
self.mle_settings['optimizer'] in ['l1', 'l1_cvxopt_cp']):
|
||||
dot_fun = nan_dot
|
||||
else:
|
||||
dot_fun = np.dot
|
||||
|
||||
if (cov_p is None and self.normalized_cov_params is None and
|
||||
not hasattr(self, 'cov_params_default')):
|
||||
raise ValueError('need covariance of parameters for computing '
|
||||
'(unnormalized) covariances')
|
||||
if column is not None and (r_matrix is not None or other is not None):
|
||||
raise ValueError('Column should be specified without other '
|
||||
'arguments.')
|
||||
if other is not None and r_matrix is None:
|
||||
raise ValueError('other can only be specified with r_matrix')
|
||||
|
||||
if cov_p is None:
|
||||
if hasattr(self, 'cov_params_default'):
|
||||
cov_p = self.cov_params_default
|
||||
else:
|
||||
if scale is None:
|
||||
scale = self.scale
|
||||
cov_p = self.normalized_cov_params * scale
|
||||
|
||||
if column is not None:
|
||||
column = np.asarray(column)
|
||||
if column.shape == ():
|
||||
return cov_p[column, column]
|
||||
else:
|
||||
#return cov_p[column][:, column]
|
||||
return cov_p[column[:, None], column]
|
||||
elif r_matrix is not None:
|
||||
r_matrix = np.asarray(r_matrix)
|
||||
if r_matrix.shape == ():
|
||||
raise ValueError("r_matrix should be 1d or 2d")
|
||||
if other is None:
|
||||
other = r_matrix
|
||||
else:
|
||||
other = np.asarray(other)
|
||||
tmp = dot_fun(r_matrix, dot_fun(cov_p, np.transpose(other)))
|
||||
return tmp
|
||||
else: # if r_matrix is None and column is None:
|
||||
return cov_p
|
||||
|
||||
#TODO: make sure this works as needed for GLMs
|
||||
def t_test(self, r_matrix, cov_p=None, scale=None,
|
||||
use_t=None):
|
||||
"""
|
||||
Compute a t-test for a each linear hypothesis of the form Rb = q
|
||||
Parameters
|
||||
----------
|
||||
r_matrix : array-like, str, tuple
|
||||
- array : If an array is given, a p x k 2d array or length k 1d
|
||||
array specifying the linear restrictions. It is assumed
|
||||
that the linear combination is equal to zero.
|
||||
- str : The full hypotheses to test can be given as a string.
|
||||
See the examples.
|
||||
- tuple : A tuple of arrays in the form (R, q). If q is given,
|
||||
can be either a scalar or a length p row vector.
|
||||
cov_p : array-like, optional
|
||||
An alternative estimate for the parameter covariance matrix.
|
||||
If None is given, self.normalized_cov_params is used.
|
||||
scale : float, optional
|
||||
An optional `scale` to use. Default is the scale specified
|
||||
by the model fit.
|
||||
use_t : bool, optional
|
||||
If use_t is None, then the default of the model is used.
|
||||
If use_t is True, then the p-values are based on the t
|
||||
distribution.
|
||||
If use_t is False, then the p-values are based on the normal
|
||||
distribution.
|
||||
Returns
|
||||
-------
|
||||
res : ContrastResults instance
|
||||
The results for the test are attributes of this results instance.
|
||||
The available results have the same elements as the parameter table
|
||||
in `summary()`.
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> import statsmodels.api as sm
|
||||
>>> data = sm.datasets.longley.load()
|
||||
>>> data.exog = sm.add_constant(data.exog)
|
||||
>>> results = sm.OLS(data.endog, data.exog).fit()
|
||||
>>> r = np.zeros_like(results.params)
|
||||
>>> r[5:] = [1,-1]
|
||||
>>> print(r)
|
||||
[ 0. 0. 0. 0. 0. 1. -1.]
|
||||
r tests that the coefficients on the 5th and 6th independent
|
||||
variable are the same.
|
||||
>>> T_test = results.t_test(r)
|
||||
>>> print(T_test)
|
||||
<T contrast: effect=-1829.2025687192481, sd=455.39079425193762,
|
||||
t=-4.0167754636411717, p=0.0015163772380899498, df_denom=9>
|
||||
>>> T_test.effect
|
||||
-1829.2025687192481
|
||||
>>> T_test.sd
|
||||
455.39079425193762
|
||||
>>> T_test.tvalue
|
||||
-4.0167754636411717
|
||||
>>> T_test.pvalue
|
||||
0.0015163772380899498
|
||||
Alternatively, you can specify the hypothesis tests using a string
|
||||
>>> from statsmodels.formula.api import ols
|
||||
>>> dta = sm.datasets.longley.load_pandas().data
|
||||
>>> formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR'
|
||||
>>> results = ols(formula, dta).fit()
|
||||
>>> hypotheses = 'GNPDEFL = GNP, UNEMP = 2, YEAR/1829 = 1'
|
||||
>>> t_test = results.t_test(hypotheses)
|
||||
>>> print(t_test)
|
||||
See Also
|
||||
---------
|
||||
tvalues : individual t statistics
|
||||
f_test : for F tests
|
||||
patsy.DesignInfo.linear_constraint
|
||||
"""
|
||||
from patsy import DesignInfo
|
||||
names = self.model.data.param_names
|
||||
LC = DesignInfo(names).linear_constraint(r_matrix)
|
||||
r_matrix, q_matrix = LC.coefs, LC.constants
|
||||
num_ttests = r_matrix.shape[0]
|
||||
num_params = r_matrix.shape[1]
|
||||
|
||||
if (cov_p is None and self.normalized_cov_params is None and
|
||||
not hasattr(self, 'cov_params_default')):
|
||||
raise ValueError('Need covariance of parameters for computing '
|
||||
'T statistics')
|
||||
if num_params != self.params.shape[0]:
|
||||
raise ValueError('r_matrix and params are not aligned')
|
||||
if q_matrix is None:
|
||||
q_matrix = np.zeros(num_ttests)
|
||||
else:
|
||||
q_matrix = np.asarray(q_matrix)
|
||||
q_matrix = q_matrix.squeeze()
|
||||
if q_matrix.size > 1:
|
||||
if q_matrix.shape[0] != num_ttests:
|
||||
raise ValueError("r_matrix and q_matrix must have the same "
|
||||
"number of rows")
|
||||
|
||||
if use_t is None:
|
||||
#switch to use_t false if undefined
|
||||
use_t = (hasattr(self, 'use_t') and self.use_t)
|
||||
|
||||
_t = _sd = None
|
||||
|
||||
_effect = np.dot(r_matrix, self.params)
|
||||
# nan_dot multiplies with the convention nan * 0 = 0
|
||||
|
||||
# Perform the test
|
||||
if num_ttests > 1:
|
||||
_sd = np.sqrt(np.diag(self.cov_params(
|
||||
r_matrix=r_matrix, cov_p=cov_p)))
|
||||
else:
|
||||
_sd = np.sqrt(self.cov_params(r_matrix=r_matrix, cov_p=cov_p))
|
||||
_t = (_effect - q_matrix) * recipr(_sd)
|
||||
|
||||
df_resid = getattr(self, 'df_resid_inference', self.df_resid)
|
||||
|
||||
if use_t:
|
||||
return ContrastResults(effect=_effect, t=_t, sd=_sd,
|
||||
df_denom=df_resid)
|
||||
else:
|
||||
return ContrastResults(effect=_effect, statistic=_t, sd=_sd,
|
||||
df_denom=df_resid,
|
||||
distribution='norm')
|
||||
|
||||
def f_test(self, r_matrix, cov_p=None, scale=1.0, invcov=None):
|
||||
"""
|
||||
Compute the F-test for a joint linear hypothesis.
|
||||
This is a special case of `wald_test` that always uses the F
|
||||
distribution.
|
||||
Parameters
|
||||
----------
|
||||
r_matrix : array-like, str, or tuple
|
||||
- array : An r x k array where r is the number of restrictions to
|
||||
test and k is the number of regressors. It is assumed
|
||||
that the linear combination is equal to zero.
|
||||
- str : The full hypotheses to test can be given as a string.
|
||||
See the examples.
|
||||
- tuple : A tuple of arrays in the form (R, q), ``q`` can be
|
||||
either a scalar or a length k row vector.
|
||||
cov_p : array-like, optional
|
||||
An alternative estimate for the parameter covariance matrix.
|
||||
If None is given, self.normalized_cov_params is used.
|
||||
scale : float, optional
|
||||
Default is 1.0 for no scaling.
|
||||
invcov : array-like, optional
|
||||
A q x q array to specify an inverse covariance matrix based on a
|
||||
restrictions matrix.
|
||||
Returns
|
||||
-------
|
||||
res : ContrastResults instance
|
||||
The results for the test are attributes of this results instance.
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> import statsmodels.api as sm
|
||||
>>> data = sm.datasets.longley.load()
|
||||
>>> data.exog = sm.add_constant(data.exog)
|
||||
>>> results = sm.OLS(data.endog, data.exog).fit()
|
||||
>>> A = np.identity(len(results.params))
|
||||
>>> A = A[1:,:]
|
||||
This tests that each coefficient is jointly statistically
|
||||
significantly different from zero.
|
||||
>>> print(results.f_test(A))
|
||||
<F contrast: F=330.28533923463488, p=4.98403052872e-10,
|
||||
df_denom=9, df_num=6>
|
||||
Compare this to
|
||||
>>> results.fvalue
|
||||
330.2853392346658
|
||||
>>> results.f_pvalue
|
||||
4.98403096572e-10
|
||||
>>> B = np.array(([0,0,1,-1,0,0,0],[0,0,0,0,0,1,-1]))
|
||||
This tests that the coefficient on the 2nd and 3rd regressors are
|
||||
equal and jointly that the coefficient on the 5th and 6th regressors
|
||||
are equal.
|
||||
>>> print(results.f_test(B))
|
||||
<F contrast: F=9.740461873303655, p=0.00560528853174, df_denom=9,
|
||||
df_num=2>
|
||||
Alternatively, you can specify the hypothesis tests using a string
|
||||
>>> from statsmodels.datasets import longley
|
||||
>>> from statsmodels.formula.api import ols
|
||||
>>> dta = longley.load_pandas().data
|
||||
>>> formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR'
|
||||
>>> results = ols(formula, dta).fit()
|
||||
>>> hypotheses = '(GNPDEFL = GNP), (UNEMP = 2), (YEAR/1829 = 1)'
|
||||
>>> f_test = results.f_test(hypotheses)
|
||||
>>> print(f_test)
|
||||
See Also
|
||||
--------
|
||||
statsmodels.stats.contrast.ContrastResults
|
||||
wald_test
|
||||
t_test
|
||||
patsy.DesignInfo.linear_constraint
|
||||
Notes
|
||||
-----
|
||||
The matrix `r_matrix` is assumed to be non-singular. More precisely,
|
||||
r_matrix (pX pX.T) r_matrix.T
|
||||
is assumed invertible. Here, pX is the generalized inverse of the
|
||||
design matrix of the model. There can be problems in non-OLS models
|
||||
where the rank of the covariance of the noise is not full.
|
||||
"""
|
||||
res = self.wald_test(r_matrix, cov_p=cov_p, scale=scale,
|
||||
invcov=invcov, use_f=True)
|
||||
return res
|
||||
|
||||
#TODO: untested for GLMs?
|
||||
def wald_test(self, r_matrix, cov_p=None, scale=1.0, invcov=None,
|
||||
use_f=None):
|
||||
"""
|
||||
Compute a Wald-test for a joint linear hypothesis.
|
||||
Parameters
|
||||
----------
|
||||
r_matrix : array-like, str, or tuple
|
||||
- array : An r x k array where r is the number of restrictions to
|
||||
test and k is the number of regressors. It is assumed that the
|
||||
linear combination is equal to zero.
|
||||
- str : The full hypotheses to test can be given as a string.
|
||||
See the examples.
|
||||
- tuple : A tuple of arrays in the form (R, q), ``q`` can be
|
||||
either a scalar or a length p row vector.
|
||||
cov_p : array-like, optional
|
||||
An alternative estimate for the parameter covariance matrix.
|
||||
If None is given, self.normalized_cov_params is used.
|
||||
scale : float, optional
|
||||
Default is 1.0 for no scaling.
|
||||
invcov : array-like, optional
|
||||
A q x q array to specify an inverse covariance matrix based on a
|
||||
restrictions matrix.
|
||||
use_f : bool
|
||||
If True, then the F-distribution is used. If False, then the
|
||||
asymptotic distribution, chisquare is used. If use_f is None, then
|
||||
the F distribution is used if the model specifies that use_t is True.
|
||||
The test statistic is proportionally adjusted for the distribution
|
||||
by the number of constraints in the hypothesis.
|
||||
Returns
|
||||
-------
|
||||
res : ContrastResults instance
|
||||
The results for the test are attributes of this results instance.
|
||||
See also
|
||||
--------
|
||||
statsmodels.stats.contrast.ContrastResults
|
||||
f_test
|
||||
t_test
|
||||
patsy.DesignInfo.linear_constraint
|
||||
Notes
|
||||
-----
|
||||
The matrix `r_matrix` is assumed to be non-singular. More precisely,
|
||||
r_matrix (pX pX.T) r_matrix.T
|
||||
is assumed invertible. Here, pX is the generalized inverse of the
|
||||
design matrix of the model. There can be problems in non-OLS models
|
||||
where the rank of the covariance of the noise is not full.
|
||||
"""
|
||||
if use_f is None:
|
||||
#switch to use_t false if undefined
|
||||
use_f = (hasattr(self, 'use_t') and self.use_t)
|
||||
|
||||
from patsy import DesignInfo
|
||||
names = self.model.data.param_names
|
||||
LC = DesignInfo(names).linear_constraint(r_matrix)
|
||||
r_matrix, q_matrix = LC.coefs, LC.constants
|
||||
|
||||
if (self.normalized_cov_params is None and cov_p is None and
|
||||
invcov is None and not hasattr(self, 'cov_params_default')):
|
||||
raise ValueError('need covariance of parameters for computing '
|
||||
'F statistics')
|
||||
|
||||
cparams = np.dot(r_matrix, self.params[:, None])
|
||||
J = float(r_matrix.shape[0]) # number of restrictions
|
||||
if q_matrix is None:
|
||||
q_matrix = np.zeros(J)
|
||||
else:
|
||||
q_matrix = np.asarray(q_matrix)
|
||||
if q_matrix.ndim == 1:
|
||||
q_matrix = q_matrix[:, None]
|
||||
if q_matrix.shape[0] != J:
|
||||
raise ValueError("r_matrix and q_matrix must have the same "
|
||||
"number of rows")
|
||||
Rbq = cparams - q_matrix
|
||||
if invcov is None:
|
||||
cov_p = self.cov_params(r_matrix=r_matrix, cov_p=cov_p)
|
||||
if np.isnan(cov_p).max():
|
||||
raise ValueError("r_matrix performs f_test for using "
|
||||
"dimensions that are asymptotically "
|
||||
"non-normal")
|
||||
invcov = np.linalg.inv(cov_p)
|
||||
|
||||
if (hasattr(self, 'mle_settings') and
|
||||
self.mle_settings['optimizer'] in ['l1', 'l1_cvxopt_cp']):
|
||||
F = nan_dot(nan_dot(Rbq.T, invcov), Rbq)
|
||||
else:
|
||||
F = np.dot(np.dot(Rbq.T, invcov), Rbq)
|
||||
|
||||
df_resid = getattr(self, 'df_resid_inference', self.df_resid)
|
||||
if use_f:
|
||||
F /= J
|
||||
return ContrastResults(F=F, df_denom=df_resid,
|
||||
df_num=invcov.shape[0])
|
||||
else:
|
||||
return ContrastResults(chi2=F, df_denom=J, statistic=F,
|
||||
distribution='chi2', distargs=(J,))
|
||||
|
||||
|
||||
def wald_test_terms(self, skip_single=False, extra_constraints=None,
|
||||
combine_terms=None):
|
||||
"""
|
||||
Compute a sequence of Wald tests for terms over multiple columns
|
||||
This computes joined Wald tests for the hypothesis that all
|
||||
coefficients corresponding to a `term` are zero.
|
||||
`Terms` are defined by the underlying formula or by string matching.
|
||||
Parameters
|
||||
----------
|
||||
skip_single : boolean
|
||||
If true, then terms that consist only of a single column and,
|
||||
therefore, refers only to a single parameter is skipped.
|
||||
If false, then all terms are included.
|
||||
extra_constraints : ndarray
|
||||
not tested yet
|
||||
combine_terms : None or list of strings
|
||||
Each string in this list is matched to the name of the terms or
|
||||
the name of the exogenous variables. All columns whose name
|
||||
includes that string are combined in one joint test.
|
||||
Returns
|
||||
-------
|
||||
test_result : result instance
|
||||
The result instance contains `table` which is a pandas DataFrame
|
||||
with the test results: test statistic, degrees of freedom and
|
||||
pvalues.
|
||||
Examples
|
||||
--------
|
||||
>>> res_ols = ols("np.log(Days+1) ~ C(Duration, Sum)*C(Weight, Sum)",
|
||||
data).fit()
|
||||
>>> res_ols.wald_test_terms()
|
||||
<class 'statsmodels.stats.contrast.WaldTestResults'>
|
||||
F P>F df constraint df denom
|
||||
Intercept 279.754525 2.37985521351e-22 1 51
|
||||
C(Duration, Sum) 5.367071 0.0245738436636 1 51
|
||||
C(Weight, Sum) 12.432445 3.99943118767e-05 2 51
|
||||
C(Duration, Sum):C(Weight, Sum) 0.176002 0.83912310946 2 51
|
||||
>>> res_poi = Poisson.from_formula("Days ~ C(Weight) * C(Duration)",
|
||||
data).fit(cov_type='HC0')
|
||||
>>> wt = res_poi.wald_test_terms(skip_single=False,
|
||||
combine_terms=['Duration', 'Weight'])
|
||||
>>> print(wt)
|
||||
chi2 P>chi2 df constraint
|
||||
Intercept 15.695625 7.43960374424e-05 1
|
||||
C(Weight) 16.132616 0.000313940174705 2
|
||||
C(Duration) 1.009147 0.315107378931 1
|
||||
C(Weight):C(Duration) 0.216694 0.897315972824 2
|
||||
Duration 11.187849 0.010752286833 3
|
||||
Weight 30.263368 4.32586407145e-06 4
|
||||
"""
|
||||
# lazy import
|
||||
from collections import defaultdict
|
||||
|
||||
result = self
|
||||
if extra_constraints is None:
|
||||
extra_constraints = []
|
||||
if combine_terms is None:
|
||||
combine_terms = []
|
||||
design_info = getattr(result.model.data.orig_exog, 'design_info', None)
|
||||
|
||||
if design_info is None and extra_constraints is None:
|
||||
raise ValueError('no constraints, nothing to do')
|
||||
|
||||
|
||||
identity = np.eye(len(result.params))
|
||||
constraints = []
|
||||
combined = defaultdict(list)
|
||||
if design_info is not None:
|
||||
for term in design_info.terms:
|
||||
cols = design_info.slice(term)
|
||||
name = term.name()
|
||||
constraint_matrix = identity[cols]
|
||||
|
||||
# check if in combined
|
||||
for cname in combine_terms:
|
||||
if cname in name:
|
||||
combined[cname].append(constraint_matrix)
|
||||
|
||||
k_constraint = constraint_matrix.shape[0]
|
||||
if skip_single:
|
||||
if k_constraint == 1:
|
||||
continue
|
||||
|
||||
constraints.append((name, constraint_matrix))
|
||||
|
||||
combined_constraints = []
|
||||
for cname in combine_terms:
|
||||
combined_constraints.append((cname, np.vstack(combined[cname])))
|
||||
else:
|
||||
# check by exog/params names if there is no formula info
|
||||
for col, name in enumerate(result.model.exog_names):
|
||||
constraint_matrix = identity[col]
|
||||
|
||||
# check if in combined
|
||||
for cname in combine_terms:
|
||||
if cname in name:
|
||||
combined[cname].append(constraint_matrix)
|
||||
|
||||
if skip_single:
|
||||
continue
|
||||
|
||||
constraints.append((name, constraint_matrix))
|
||||
|
||||
combined_constraints = []
|
||||
for cname in combine_terms:
|
||||
combined_constraints.append((cname, np.vstack(combined[cname])))
|
||||
|
||||
use_t = result.use_t
|
||||
distribution = ['chi2', 'F'][use_t]
|
||||
|
||||
res_wald = []
|
||||
index = []
|
||||
for name, constraint in constraints + combined_constraints + extra_constraints:
|
||||
wt = result.wald_test(constraint)
|
||||
row = [wt.statistic.item(), wt.pvalue, constraint.shape[0]]
|
||||
if use_t:
|
||||
row.append(wt.df_denom)
|
||||
res_wald.append(row)
|
||||
index.append(name)
|
||||
|
||||
# distribution nerutral names
|
||||
col_names = ['statistic', 'pvalue', 'df_constraint']
|
||||
if use_t:
|
||||
col_names.append('df_denom')
|
||||
# TODO: maybe move DataFrame creation to results class
|
||||
from pandas import DataFrame
|
||||
table = DataFrame(res_wald, index=index, columns=col_names)
|
||||
res = WaldTestResults(None, distribution, None, table=table)
|
||||
# TODO: remove temp again, added for testing
|
||||
res.temp = constraints + combined_constraints + extra_constraints
|
||||
return res
|
||||
|
||||
|
||||
def conf_int(self, alpha=.05, cols=None, method='default'):
|
||||
"""
|
||||
Returns the confidence interval of the fitted parameters.
|
||||
Parameters
|
||||
----------
|
||||
alpha : float, optional
|
||||
The significance level for the confidence interval.
|
||||
ie., The default `alpha` = .05 returns a 95% confidence interval.
|
||||
cols : array-like, optional
|
||||
`cols` specifies which confidence intervals to return
|
||||
method : string
|
||||
Not Implemented Yet
|
||||
Method to estimate the confidence_interval.
|
||||
"Default" : uses self.bse which is based on inverse Hessian for MLE
|
||||
"hjjh" :
|
||||
"jac" :
|
||||
"boot-bse"
|
||||
"boot_quant"
|
||||
"profile"
|
||||
Returns
|
||||
--------
|
||||
conf_int : array
|
||||
Each row contains [lower, upper] limits of the confidence interval
|
||||
for the corresponding parameter. The first column contains all
|
||||
lower, the second column contains all upper limits.
|
||||
Examples
|
||||
--------
|
||||
>>> import statsmodels.api as sm
|
||||
>>> data = sm.datasets.longley.load()
|
||||
>>> data.exog = sm.add_constant(data.exog)
|
||||
>>> results = sm.OLS(data.endog, data.exog).fit()
|
||||
>>> results.conf_int()
|
||||
array([[-5496529.48322745, -1467987.78596704],
|
||||
[ -177.02903529, 207.15277984],
|
||||
[ -0.1115811 , 0.03994274],
|
||||
[ -3.12506664, -0.91539297],
|
||||
[ -1.5179487 , -0.54850503],
|
||||
[ -0.56251721, 0.460309 ],
|
||||
[ 798.7875153 , 2859.51541392]])
|
||||
>>> results.conf_int(cols=(2,3))
|
||||
array([[-0.1115811 , 0.03994274],
|
||||
[-3.12506664, -0.91539297]])
|
||||
Notes
|
||||
-----
|
||||
The confidence interval is based on the standard normal distribution.
|
||||
Models wish to use a different distribution should overwrite this
|
||||
method.
|
||||
"""
|
||||
bse = self.bse
|
||||
|
||||
if self.use_t:
|
||||
dist = stats.t
|
||||
df_resid = getattr(self, 'df_resid_inference', self.df_resid)
|
||||
q = dist.ppf(1 - alpha / 2, df_resid)
|
||||
else:
|
||||
dist = stats.norm
|
||||
q = dist.ppf(1 - alpha / 2)
|
||||
|
||||
if cols is None:
|
||||
lower = self.params - q * bse
|
||||
upper = self.params + q * bse
|
||||
else:
|
||||
cols = np.asarray(cols)
|
||||
lower = self.params[cols] - q * bse[cols]
|
||||
upper = self.params[cols] + q * bse[cols]
|
||||
return np.asarray(lzip(lower, upper))
|
||||
|
||||
def save(self, fname, remove_data=False):
|
||||
'''
|
||||
save a pickle of this instance
|
||||
Parameters
|
||||
----------
|
||||
fname : string or filehandle
|
||||
fname can be a string to a file path or filename, or a filehandle.
|
||||
remove_data : bool
|
||||
If False (default), then the instance is pickled without changes.
|
||||
If True, then all arrays with length nobs are set to None before
|
||||
pickling. See the remove_data method.
|
||||
In some cases not all arrays will be set to None.
|
||||
Notes
|
||||
-----
|
||||
If remove_data is true and the model result does not implement a
|
||||
remove_data method then this will raise an exception.
|
||||
'''
|
||||
|
||||
from statsmodels.iolib.smpickle import save_pickle
|
||||
|
||||
if remove_data:
|
||||
self.remove_data()
|
||||
|
||||
save_pickle(self, fname)
|
||||
|
||||
@classmethod
|
||||
def load(cls, fname):
|
||||
'''
|
||||
load a pickle, (class method)
|
||||
Parameters
|
||||
----------
|
||||
fname : string or filehandle
|
||||
fname can be a string to a file path or filename, or a filehandle.
|
||||
Returns
|
||||
-------
|
||||
unpickled instance
|
||||
'''
|
||||
|
||||
from statsmodels.iolib.smpickle import load_pickle
|
||||
return load_pickle(fname)
|
||||
|
||||
def remove_data(self):
|
||||
'''remove data arrays, all nobs arrays from result and model
|
||||
This reduces the size of the instance, so it can be pickled with less
|
||||
memory. Currently tested for use with predict from an unpickled
|
||||
results and model instance.
|
||||
.. warning:: Since data and some intermediate results have been removed
|
||||
calculating new statistics that require them will raise exceptions.
|
||||
The exception will occur the first time an attribute is accessed
|
||||
that has been set to None.
|
||||
Not fully tested for time series models, tsa, and might delete too much
|
||||
for prediction or not all that would be possible.
|
||||
The list of arrays to delete is maintained as an attribute of the
|
||||
result and model instance, except for cached values. These lists could
|
||||
be changed before calling remove_data.
|
||||
'''
|
||||
def wipe(obj, att):
|
||||
#get to last element in attribute path
|
||||
p = att.split('.')
|
||||
att_ = p.pop(-1)
|
||||
try:
|
||||
obj_ = reduce(getattr, [obj] + p)
|
||||
|
||||
#print(repr(obj), repr(att))
|
||||
#print(hasattr(obj_, att_))
|
||||
if hasattr(obj_, att_):
|
||||
#print('removing3', att_)
|
||||
setattr(obj_, att_, None)
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
model_attr = ['model.' + i for i in self.model._data_attr]
|
||||
for att in self._data_attr + model_attr:
|
||||
#print('removing', att)
|
||||
wipe(self, att)
|
||||
|
||||
data_in_cache = getattr(self, 'data_in_cache', [])
|
||||
data_in_cache += ['fittedvalues', 'resid', 'wresid']
|
||||
for key in data_in_cache:
|
||||
try:
|
||||
self._cache[key] = None
|
||||
except (AttributeError, KeyError):
|
||||
pass
|
||||
|
||||
def lzip(*args, **kwargs):
|
||||
return list(zip(*args, **kwargs))
|
||||
1845
src/py/crankshaft/crankshaft/regression/glm/family.py
Normal file
1845
src/py/crankshaft/crankshaft/regression/glm/family.py
Normal file
File diff suppressed because it is too large
Load Diff
326
src/py/crankshaft/crankshaft/regression/glm/glm.py
Normal file
326
src/py/crankshaft/crankshaft/regression/glm/glm.py
Normal file
@@ -0,0 +1,326 @@
|
||||
|
||||
import numpy as np
|
||||
import numpy.linalg as la
|
||||
from pysal.spreg.utils import RegressionPropsY, spdot
|
||||
import pysal.spreg.user_output as USER
|
||||
from utils import cache_readonly
|
||||
from base import LikelihoodModelResults
|
||||
import family
|
||||
from iwls import iwls
|
||||
|
||||
__all__ = ['GLM']
|
||||
|
||||
class GLM(RegressionPropsY):
|
||||
"""
|
||||
Generalised linear models. Can currently estimate Guassian, Poisson and
|
||||
Logisitc regression coefficients. GLM object prepares model input and fit
|
||||
method performs estimation which then returns a GLMResults object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : array
|
||||
n*1, dependent variable.
|
||||
X : array
|
||||
n*k, independent variable, exlcuding the constant.
|
||||
family : string
|
||||
Model type: 'Gaussian', 'Poisson', 'Binomial'
|
||||
|
||||
Attributes
|
||||
----------
|
||||
y : array
|
||||
n*1, dependent variable.
|
||||
X : array
|
||||
n*k, independent variable, including constant.
|
||||
family : string
|
||||
Model type: 'Gaussian', 'Poisson', 'logistic'
|
||||
n : integer
|
||||
Number of observations
|
||||
k : integer
|
||||
Number of independent variables
|
||||
df_model : float
|
||||
k-1, where k is the number of variables (including
|
||||
intercept)
|
||||
df_residual : float
|
||||
observations minus variables (n-k)
|
||||
mean_y : float
|
||||
Mean of y
|
||||
std_y : float
|
||||
Standard deviation of y
|
||||
fit_params : dict
|
||||
Parameters passed into fit method to define estimation
|
||||
routine.
|
||||
normalized_cov_params : array
|
||||
k*k, approximates [X.T*X]-1
|
||||
"""
|
||||
def __init__(self, y, X, family=family.Gaussian(), constant=True):
|
||||
"""
|
||||
Initialize class
|
||||
"""
|
||||
self.n = USER.check_arrays(y, X)
|
||||
USER.check_y(y, self.n)
|
||||
self.y = y
|
||||
if constant:
|
||||
self.X = USER.check_constant(X)
|
||||
else:
|
||||
self.X = X
|
||||
self.family = family
|
||||
self.k = self.X.shape[1]
|
||||
self.fit_params = {}
|
||||
|
||||
def fit(self, ini_betas=None, tol=1.0e-6, max_iter=200, solve='iwls'):
|
||||
"""
|
||||
Method that fits a model with a particular estimation routine.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
ini_betas : array
|
||||
k*1, initial coefficient values, including constant.
|
||||
Default is None, which calculates initial values during
|
||||
estimation.
|
||||
tol: float
|
||||
Tolerence for estimation convergence.
|
||||
max_iter : integer
|
||||
Maximum number of iterations if convergence not
|
||||
achieved.
|
||||
solve :string
|
||||
Technique to solve MLE equations.
|
||||
'iwls' = iteratively (re)weighted least squares (default)
|
||||
"""
|
||||
self.fit_params['ini_betas'] = ini_betas
|
||||
self.fit_params['tol'] = tol
|
||||
self.fit_params['max_iter'] = max_iter
|
||||
self.fit_params['solve']=solve
|
||||
if solve.lower() == 'iwls':
|
||||
params, predy, w, n_iter = iwls(self.y, self.X, self.family,
|
||||
ini_betas=ini_betas, tol=tol, max_iter=max_iter)
|
||||
self.fit_params['n_iter'] = n_iter
|
||||
return GLMResults(self, params.flatten(), predy, w)
|
||||
|
||||
@cache_readonly
|
||||
def df_model(self):
|
||||
return self.X.shape[1] - 1
|
||||
|
||||
@cache_readonly
|
||||
def df_resid(self):
|
||||
return self.n - self.df_model - 1
|
||||
|
||||
class GLMResults(LikelihoodModelResults):
|
||||
"""
|
||||
Results of estimated GLM and diagnostics.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model : GLM object
|
||||
Pointer to GLM object with estimation parameters.
|
||||
params : array
|
||||
k*1, estimared coefficients
|
||||
mu : array
|
||||
n*1, predicted y values.
|
||||
w : array
|
||||
n*1, final weight used for iwls
|
||||
|
||||
Attributes
|
||||
----------
|
||||
model : GLM Object
|
||||
Points to GLM object for which parameters have been
|
||||
estimated.
|
||||
y : array
|
||||
n*1, dependent variable.
|
||||
x : array
|
||||
n*k, independent variable, including constant.
|
||||
family : string
|
||||
Model type: 'Gaussian', 'Poisson', 'Logistic'
|
||||
n : integer
|
||||
Number of observations
|
||||
k : integer
|
||||
Number of independent variables
|
||||
df_model : float
|
||||
k-1, where k is the number of variables (including
|
||||
intercept)
|
||||
df_residual : float
|
||||
observations minus variables (n-k)
|
||||
fit_params : dict
|
||||
parameters passed into fit method to define estimation
|
||||
routine.
|
||||
scale : float
|
||||
sigma squared used for subsequent computations.
|
||||
params : array
|
||||
n*k, estimared beta coefficients
|
||||
w : array
|
||||
n*1, final weight values of x
|
||||
mu : array
|
||||
n*1, predicted value of y (i.e., fittedvalues)
|
||||
cov_params : array
|
||||
Variance covariance matrix (kxk) of betas which has been
|
||||
appropriately scaled by sigma-squared
|
||||
bse : array
|
||||
k*1, standard errors of betas
|
||||
pvalues : array
|
||||
k*1, two-tailed pvalues of parameters
|
||||
tvalues : array
|
||||
k*1, the tvalues of the standard errors
|
||||
null : array
|
||||
n*1, predicted values of y for null model
|
||||
deviance : float
|
||||
value of the deviance function evalued at params;
|
||||
see family.py for distribution-specific deviance
|
||||
null_deviance : float
|
||||
value of the deviance function for the model fit with
|
||||
a constant as the only regressor
|
||||
llf : float
|
||||
value of the loglikelihood function evalued at params;
|
||||
see family.py for distribution-specific loglikelihoods
|
||||
llnull : float
|
||||
value of log-likelihood function evaluated at null
|
||||
aic : float
|
||||
AIC
|
||||
bic : float
|
||||
BIC
|
||||
D2 : float
|
||||
percent deviance explained
|
||||
adj_D2 : float
|
||||
adjusted percent deviance explained
|
||||
pseudo_R2 : float
|
||||
McFadden's pseudo R2 (coefficient of determination)
|
||||
adj_pseudoR2 : float
|
||||
adjusted McFadden's pseudo R2
|
||||
resid_response : array
|
||||
response residuals; defined as y-mu
|
||||
resid_pearson : array
|
||||
Pearson residuals; defined as (y-mu)/sqrt(VAR(mu))
|
||||
where VAR is the distribution specific variance
|
||||
function; see family.py and varfuncs.py for more information.
|
||||
resid_working : array
|
||||
Working residuals; the working residuals are defined as
|
||||
resid_response/link'(mu); see links.py for the
|
||||
derivatives of the link functions.
|
||||
|
||||
resid_anscombe : array
|
||||
Anscombe residuals; see family.py for
|
||||
distribution-specific Anscombe residuals.
|
||||
|
||||
resid_deviance : array
|
||||
deviance residuals; see family.py for
|
||||
distribution-specific deviance residuals.
|
||||
|
||||
pearson_chi2 : float
|
||||
chi-Squared statistic is defined as the sum
|
||||
of the squares of the Pearson residuals
|
||||
|
||||
normalized_cov_params : array
|
||||
k*k, approximates [X.T*X]-1
|
||||
"""
|
||||
def __init__(self, model, params, mu, w):
|
||||
self.model = model
|
||||
self.n = model.n
|
||||
self.y = model.y.T.flatten()
|
||||
self.X = model.X
|
||||
self.k = model.k
|
||||
self.family = model.family
|
||||
self.fit_params = model.fit_params
|
||||
self.params = params
|
||||
self.w = w
|
||||
self.mu = mu.flatten()
|
||||
self._cache = {}
|
||||
|
||||
@cache_readonly
|
||||
def df_model(self):
|
||||
return self.model.df_model
|
||||
|
||||
@cache_readonly
|
||||
def df_resid(self):
|
||||
return self.model.df_resid
|
||||
|
||||
@cache_readonly
|
||||
def normalized_cov_params(self):
|
||||
return la.inv(spdot(self.w.T, self.w))
|
||||
|
||||
@cache_readonly
|
||||
def resid_response(self):
|
||||
return (self.y-self.mu)
|
||||
|
||||
@cache_readonly
|
||||
def resid_pearson(self):
|
||||
return ((self.y-self.mu) /
|
||||
np.sqrt(self.family.variance(self.mu)))
|
||||
|
||||
@cache_readonly
|
||||
def resid_working(self):
|
||||
return (self.resid_response / self.family.link.deriv(self.mu))
|
||||
|
||||
@cache_readonly
|
||||
def resid_anscombe(self):
|
||||
return (self.family.resid_anscombe(self.y, self.mu))
|
||||
|
||||
@cache_readonly
|
||||
def resid_deviance(self):
|
||||
return (self.family.resid_dev(self.y, self.mu))
|
||||
|
||||
@cache_readonly
|
||||
def pearson_chi2(self):
|
||||
chisq = (self.y - self.mu)**2 / self.family.variance(self.mu)
|
||||
chisqsum = np.sum(chisq)
|
||||
return chisqsum
|
||||
|
||||
@cache_readonly
|
||||
def null(self):
|
||||
y = np.reshape(self.y, (-1,1))
|
||||
model = self.model
|
||||
X = np.ones((len(y), 1))
|
||||
null_mod = GLM(y, X, family=self.family, constant=False)
|
||||
return null_mod.fit().mu
|
||||
|
||||
@cache_readonly
|
||||
def scale(self):
|
||||
if isinstance(self.family, (family.Binomial, family.Poisson)):
|
||||
return 1.
|
||||
else:
|
||||
return (((np.power(self.resid_response, 2) /
|
||||
self.family.variance(self.mu))).sum() /
|
||||
(self.df_resid))
|
||||
@cache_readonly
|
||||
def deviance(self):
|
||||
return self.family.deviance(self.y, self.mu)
|
||||
|
||||
@cache_readonly
|
||||
def null_deviance(self):
|
||||
return self.family.deviance(self.y, self.null)
|
||||
|
||||
@cache_readonly
|
||||
def llnull(self):
|
||||
return self.family.loglike(self.y, self.null, scale=self.scale)
|
||||
|
||||
@cache_readonly
|
||||
def llf(self):
|
||||
return self.family.loglike(self.y, self.mu, scale=self.scale)
|
||||
|
||||
@cache_readonly
|
||||
def aic(self):
|
||||
if isinstance(self.family, family.QuasiPoisson):
|
||||
return np.nan
|
||||
else:
|
||||
return -2 * self.llf + 2*(self.df_model+1)
|
||||
|
||||
@cache_readonly
|
||||
def bic(self):
|
||||
return (self.deviance -
|
||||
(self.model.n - self.df_model - 1) *
|
||||
np.log(self.model.n))
|
||||
|
||||
@cache_readonly
|
||||
def D2(self):
|
||||
return 1 - (self.deviance / self.null_deviance)
|
||||
|
||||
@cache_readonly
|
||||
def adj_D2(self):
|
||||
return 1.0 - (float(self.n) - 1.0)/(float(self.n) - float(self.k)) * (1.0-self.D2)
|
||||
|
||||
@cache_readonly
|
||||
def pseudoR2(self):
|
||||
return 1 - (self.llf/self.llnull)
|
||||
|
||||
@cache_readonly
|
||||
def adj_pseudoR2(self):
|
||||
return 1 - ((self.llf-self.k)/self.llnull)
|
||||
|
||||
84
src/py/crankshaft/crankshaft/regression/glm/iwls.py
Normal file
84
src/py/crankshaft/crankshaft/regression/glm/iwls.py
Normal file
@@ -0,0 +1,84 @@
|
||||
import numpy as np
|
||||
import numpy.linalg as la
|
||||
from scipy import sparse as sp
|
||||
from scipy.sparse import linalg as spla
|
||||
from pysal.spreg.utils import spdot, spmultiply
|
||||
from family import Binomial, Poisson
|
||||
|
||||
def _compute_betas(y, x):
|
||||
"""
|
||||
compute MLE coefficients using iwls routine
|
||||
|
||||
Methods: p189, Iteratively (Re)weighted Least Squares (IWLS),
|
||||
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002).
|
||||
Geographically weighted regression: the analysis of spatially varying relationships.
|
||||
"""
|
||||
xT = x.T
|
||||
xtx = spdot(xT, x)
|
||||
xtx_inv = la.inv(xtx)
|
||||
xtx_inv = sp.csr_matrix(xtx_inv)
|
||||
xTy = spdot(xT, y, array_out=False)
|
||||
betas = spdot(xtx_inv, xTy)
|
||||
return betas
|
||||
|
||||
def _compute_betas_gwr(y, x, wi):
|
||||
"""
|
||||
compute MLE coefficients using iwls routine
|
||||
|
||||
Methods: p189, Iteratively (Re)weighted Least Squares (IWLS),
|
||||
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002).
|
||||
Geographically weighted regression: the analysis of spatially varying relationships.
|
||||
"""
|
||||
xT = (x * wi).T
|
||||
xtx = np.dot(xT, x)
|
||||
xtx_inv = la.inv(xtx)
|
||||
xtx_inv_xt = np.dot(xtx_inv, xT)
|
||||
betas = np.dot(xtx_inv_xt, y)
|
||||
return betas, xtx_inv_xt
|
||||
|
||||
def iwls(y, x, family, offset=1.0, ini_betas=None, tol=1.0e-8, max_iter=200, wi=None):
|
||||
"""
|
||||
Iteratively re-weighted least squares estimation routine
|
||||
"""
|
||||
n_iter = 0
|
||||
diff = 1.0e6
|
||||
if ini_betas is None:
|
||||
betas = np.zeros((x.shape[1], 1), np.float)
|
||||
else:
|
||||
betas = ini_betas
|
||||
if isinstance(family, Binomial):
|
||||
y = family.link._clean(y)
|
||||
if isinstance(family, Poisson):
|
||||
y_off = y/offset
|
||||
y_off = family.starting_mu(y_off)
|
||||
v = family.predict(y_off)
|
||||
mu = family.starting_mu(y)
|
||||
else:
|
||||
mu = family.starting_mu(y)
|
||||
v = family.predict(mu)
|
||||
|
||||
while diff > tol and n_iter < max_iter:
|
||||
n_iter += 1
|
||||
w = family.weights(mu)
|
||||
z = v + (family.link.deriv(mu)*(y-mu))
|
||||
w = np.sqrt(w)
|
||||
if type(x) != np.ndarray:
|
||||
w = sp.csr_matrix(w)
|
||||
z = sp.csr_matrix(z)
|
||||
wx = spmultiply(x, w, array_out=False)
|
||||
wz = spmultiply(z, w, array_out=False)
|
||||
if wi is None:
|
||||
n_betas = _compute_betas(wz, wx)
|
||||
else:
|
||||
n_betas, xtx_inv_xt = _compute_betas_gwr(wz, wx, wi)
|
||||
v = spdot(x, n_betas)
|
||||
mu = family.fitted(v)
|
||||
if isinstance(family, Poisson):
|
||||
mu = mu * offset
|
||||
diff = min(abs(n_betas-betas))
|
||||
betas = n_betas
|
||||
|
||||
if wi is None:
|
||||
return betas, mu, wx, n_iter
|
||||
else:
|
||||
return betas, mu, v, w, z, xtx_inv_xt, n_iter
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user