Compare commits
81 Commits
check-trav
...
better_dot
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e479f84cf9 | ||
|
|
f9c1b57dfd | ||
|
|
4c175c9565 | ||
|
|
de6f228e72 | ||
|
|
87f9b2c787 | ||
|
|
3c8ac7d45d | ||
|
|
fda5d93cf4 | ||
|
|
0748212610 | ||
|
|
27b18f5e1c | ||
|
|
3649f958c8 | ||
|
|
15b460eeb9 | ||
|
|
b0dcd7f572 | ||
|
|
2547318f59 | ||
|
|
25e453a882 | ||
|
|
62076bb48c | ||
|
|
faaf5e419a | ||
|
|
1f3b74e54f | ||
|
|
7c63b66fdd | ||
|
|
538ab9a071 | ||
|
|
2bc6b0782a | ||
|
|
ffd651b91a | ||
|
|
a271593fe9 | ||
|
|
83219270ae | ||
|
|
215e61396a | ||
|
|
c7e690980f | ||
|
|
da1449331c | ||
|
|
c7f5c24510 | ||
|
|
11c33ce3fa | ||
|
|
0a53a6e71d | ||
|
|
b8fe05b388 | ||
|
|
fa4e5ae686 | ||
|
|
ecb4bd9606 | ||
|
|
ecc9814a88 | ||
|
|
6846014a4f | ||
|
|
23b2ad57c5 | ||
|
|
99856ce956 | ||
|
|
f11982f531 | ||
|
|
bd05e7739d | ||
|
|
5754087140 | ||
|
|
8bc6f69a1b | ||
|
|
b54c62890f | ||
|
|
acde384157 | ||
|
|
b8accb48fc | ||
|
|
f2bb0b496b | ||
|
|
aaa36569de | ||
|
|
803816f5c9 | ||
|
|
1ef3f86474 | ||
|
|
f1d420a6f7 | ||
|
|
06452562b9 | ||
|
|
07e4062237 | ||
|
|
5443b67470 | ||
|
|
795413e46d | ||
|
|
e5ea836493 | ||
|
|
258322fcca | ||
|
|
166e9e223f | ||
|
|
29de72de33 | ||
|
|
eff548dec9 | ||
|
|
dcb364c3ee | ||
|
|
1d09eac3e7 | ||
|
|
5127845100 | ||
|
|
ee4eb795b7 | ||
|
|
2ede55d165 | ||
|
|
df5faa6745 | ||
|
|
06f0cb0dc4 | ||
|
|
11176b71b3 | ||
|
|
b5445da303 | ||
|
|
5d109acd8d | ||
|
|
2937c97fea | ||
|
|
c392aec98a | ||
|
|
4e42625d79 | ||
|
|
b71152a884 | ||
|
|
ce4cc637ae | ||
|
|
ccccf68066 | ||
|
|
60f52633fa | ||
|
|
1148aa417a | ||
|
|
e29f6f2861 | ||
|
|
44dc5811b5 | ||
|
|
40481f1286 | ||
|
|
622235d787 | ||
|
|
623613aa5c | ||
|
|
a451fb5b6a |
9
.github/PULL_REQUEST_TEMPLATE.md
vendored
9
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -2,6 +2,9 @@
|
||||
- [ ] All declared geometries are `geometry(Geometry, 4326)` for general geoms, or `geometry(Point, 4326)`
|
||||
- [ ] Existing functions in crankshaft python library called from the extension are kept at least from version N to version N+1 (to avoid breakage during upgrades).
|
||||
- [ ] Docs for public-facing functions are written
|
||||
- [ ] New functions follow the naming conventions: `CDB_NameOfFunction`. Where internal functions begin with an underscore `_`.
|
||||
- [ ] If appropriate, new functions accepts an arbitrary query as an input (see [Crankshaft Issue #6](https://github.com/CartoDB/crankshaft/issues/6) for more information)
|
||||
|
||||
- [ ] New functions follow the naming conventions: `CDB_NameOfFunction`. Where internal functions begin with an underscore
|
||||
- [ ] Video explaining the analysis and showing examples
|
||||
- [ ] Analysis Documentation written [template](https://docs.google.com/a/cartodb.com/document/d/1X2KOtaiEBKWNMp8UjwcLB-kE9aIOw09aOjX3oaCjeME/edit?usp=sharing)
|
||||
- [ ] Smoke test written
|
||||
- [ ] Hand-off document for camshaft node written
|
||||
- [ ] If function is in Python, code conforms to [PEP8 Style Guide](https://www.python.org/dev/peps/pep-0008/)
|
||||
|
||||
14
.travis.yml
14
.travis.yml
@@ -35,14 +35,18 @@ before_install:
|
||||
- sudo apt-get -y remove --purge postgresql-9.2
|
||||
- sudo apt-get -y remove --purge postgresql-9.3
|
||||
- sudo apt-get -y remove --purge postgresql-9.4
|
||||
- sudo apt-get -y remove --purge postgis
|
||||
- sudo apt-get -y remove --purge postgresql-9.5
|
||||
- sudo rm -rf /var/lib/postgresql/
|
||||
- sudo rm -rf /var/log/postgresql/
|
||||
- sudo rm -rf /etc/postgresql/
|
||||
- sudo apt-get -y remove --purge postgis-2.2
|
||||
- sudo apt-get -y autoremove
|
||||
|
||||
- sudo apt-get -y install postgresql-9.5=9.5.2-2ubuntu1
|
||||
- sudo apt-get -y install postgresql-server-dev-9.5=9.5.2-2ubuntu1
|
||||
- sudo apt-get -y install postgresql-plpython-9.5=9.5.2-2ubuntu1
|
||||
- sudo apt-get -y install postgresql-9.5-postgis-2.2=2.2.2.0-cdb2
|
||||
- sudo apt-get -y install postgresql-9.5=9.5.2-3cdb2
|
||||
- sudo apt-get -y install postgresql-server-dev-9.5=9.5.2-3cdb2
|
||||
- sudo apt-get -y install postgresql-plpython-9.5=9.5.2-3cdb2
|
||||
- sudo apt-get -y install postgresql-9.5-postgis-scripts=2.2.2.0-cdb2
|
||||
- sudo apt-get -y install postgresql-9.5-postgis-2.2=2.2.2.0-cdb2
|
||||
|
||||
# configure it to accept local connections from postgres
|
||||
- echo -e "# TYPE DATABASE USER ADDRESS METHOD \nlocal all postgres trust\nlocal all all trust\nhost all all 127.0.0.1/32 trust" \
|
||||
|
||||
40
doc/16_getis_ord_gstar.md
Normal file
40
doc/16_getis_ord_gstar.md
Normal file
@@ -0,0 +1,40 @@
|
||||
## Getis-Ord's G\*
|
||||
|
||||
Getis-Ord's G\* is a geo-statistical measurement of the intensity of clustering of high or low values. The clustering of high values can be referred to as "hotspots" because these are areas of high activity or large (relative to the global mean) measurement values. Coldspots are clustered areas with low activity or small measurement values.
|
||||
|
||||
### CDB_GetisOrdsG(subquery text, column_name text)
|
||||
|
||||
#### Arguments
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| subquery | text | A query of the data you want to pass to the function. It must include `column_name`, a geometry column (usually `the_geom`) and an id column (usually `cartodb_id`) |
|
||||
| column_name | text | This is the column of interest for performing this analysis on. This column should be a numeric type. |
|
||||
| w_type (optional) | text | Type of weight to use when finding neighbors. Currently available options are 'knn' (default) and 'queen'. Read more about weight types in [PySAL's weights documentation.](https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/weights.html) |
|
||||
| num_ngbrs (optional) | integer | Default: 5. If `knn` is chosen, this will set the number of neighbors. If `knn` is not chosen, any entered value will be ignored. Use `NULL` if not choosing `knn`. |
|
||||
| permutations (optional) | integer | The number of permutations for calculating p-values. Default: 999 |
|
||||
| geom_col (optional) | text | The column where the geometry information is stored. The format must be PostGIS Geometry type (SRID 4326). Default: `the_geom`. |
|
||||
| id_col (optional) | text | The column that has the unique row identifier. |
|
||||
|
||||
### Returns
|
||||
|
||||
Returns a table with the following columns.
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| z_score | numeric | z-score, a measure of the intensity of clustering of high values (hotspots) or low values (coldspots). Positive values represent 'hotspots', while negative values represent 'coldspots'. |
|
||||
| p_value | numeric | p-value, a measure of the significance of the intensity of clustering |
|
||||
| p_z_sim | numeric | p-value based on standard normal approximation from permutations |
|
||||
| rowid | integer | The original `id_col` that can be used to associate the outputs with the original geometry and inputs |
|
||||
|
||||
#### Example Usage
|
||||
|
||||
The following query returns the original table augmented with the values calculated from the Getis-Ord's G\* analysis.
|
||||
|
||||
```sql
|
||||
SELECT i.*, m.z_score, m.p_value
|
||||
FROM cdb_crankshaft.CDB_GetisOrdsG('SELECT * FROM incident_reports_clustered',
|
||||
'num_incidents') As m
|
||||
JOIN incident_reports_clustered As i
|
||||
ON i.cartodb_id = m.rowid;
|
||||
```
|
||||
163
doc/18_outliers.md
Normal file
163
doc/18_outliers.md
Normal file
@@ -0,0 +1,163 @@
|
||||
## Outlier Detection
|
||||
|
||||
This set of functions detects the presence of outliers. There are three functions for finding outliers from non-spatial data:
|
||||
|
||||
1. Static Outliers
|
||||
1. Percentage Outliers
|
||||
1. Standard Deviation Outliers
|
||||
|
||||
### CDB_StaticOutlier(column_value numeric, threshold numeric)
|
||||
|
||||
#### Arguments
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| column_value | numeric | The column of values on which to apply the threshold |
|
||||
| threshold | numeric | The static threshold which is used to indicate whether a `column_value` is an outlier or not |
|
||||
|
||||
### Returns
|
||||
|
||||
Returns a boolean (true/false) depending on whether a value is above or below (or equal to) the threshold
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| outlier | boolean | classification of whether a row is an outlier or not |
|
||||
|
||||
#### Example Usage
|
||||
|
||||
With a table `website_visits` and a column of the number of website visits in units of 10,000 visits:
|
||||
|
||||
```
|
||||
| id | visits_10k |
|
||||
|----|------------|
|
||||
| 1 | 1 |
|
||||
| 2 | 3 |
|
||||
| 3 | 5 |
|
||||
| 4 | 1 |
|
||||
| 5 | 32 |
|
||||
| 6 | 3 |
|
||||
| 7 | 57 |
|
||||
| 8 | 2 |
|
||||
```
|
||||
|
||||
```sql
|
||||
SELECT
|
||||
id,
|
||||
CDB_StaticOutlier(visits_10k, 11.0) As outlier,
|
||||
visits_10k
|
||||
FROM website_visits
|
||||
```
|
||||
|
||||
```
|
||||
| id | outlier | visits_10k |
|
||||
|----|---------|------------|
|
||||
| 1 | f | 1 |
|
||||
| 2 | f | 3 |
|
||||
| 3 | f | 5 |
|
||||
| 4 | f | 1 |
|
||||
| 5 | t | 32 |
|
||||
| 6 | f | 3 |
|
||||
| 7 | t | 57 |
|
||||
| 8 | f | 2 |
|
||||
```
|
||||
|
||||
### CDB_PercentOutlier(column_values numeric[], outlier_fraction numeric, ids int[])
|
||||
|
||||
`CDB_PercentOutlier` calculates whether or not a value falls above a given threshold based on a percentage above the mean value of the input values.
|
||||
|
||||
#### Arguments
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| column_values | numeric[] | An array of the values to calculate the outlier classification on |
|
||||
| outlier_fraction | numeric | The threshold above which a column value divided by the mean of all values is considered an outlier |
|
||||
| ids | int[] | An array of the unique row ids of the input data (usually `cartodb_id`) |
|
||||
|
||||
### Returns
|
||||
|
||||
Returns a table of the outlier classification with the following columns
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| is_outlier | boolean | classification of whether a row is an outlier or not |
|
||||
| rowid | int | original row id (e.g., input `cartodb_id`) of the row which has the outlier classification |
|
||||
|
||||
#### Example Usage
|
||||
|
||||
This example find outliers which are more than 100% larger than the average (that is, more than 2.0 times larger).
|
||||
|
||||
```sql
|
||||
WITH cte As (
|
||||
SELECT
|
||||
unnest(Array[1,2,3,4,5,6,7,8]) As id,
|
||||
unnest(Array[1,3,5,1,32,3,57,2]) As visits_10k
|
||||
)
|
||||
SELECT
|
||||
(CDB_PercentOutlier(array_agg(visits_10k), 2.0, array_agg(id))).*
|
||||
FROM cte;
|
||||
```
|
||||
|
||||
Output
|
||||
```
|
||||
| outlier | rowid |
|
||||
|---------+-------|
|
||||
| f | 1 |
|
||||
| f | 2 |
|
||||
| f | 3 |
|
||||
| f | 4 |
|
||||
| t | 5 |
|
||||
| f | 6 |
|
||||
| t | 7 |
|
||||
| f | 8 |
|
||||
```
|
||||
|
||||
### CDB_StdDevOutlier(column_values numeric[], num_deviations numeric, ids int[], is_symmetric boolean DEFAULT true)
|
||||
|
||||
`CDB_StdDevOutlier` calculates whether or not a value falls above or below a given threshold based on the number of standard deviations from the mean.
|
||||
|
||||
#### Arguments
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| column_values | numeric[] | An array of the values to calculate the outlier classification on |
|
||||
| num_deviations | numeric | The threshold in units of standard deviation |
|
||||
| ids | int[] | An array of the unique row ids of the input data (usually `cartodb_id`) |
|
||||
| is_symmetric (optional) | boolean | Consider outliers that are symmetric about the mean (default: true) |
|
||||
|
||||
### Returns
|
||||
|
||||
Returns a table of the outlier classification with the following columns
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| is_outlier | boolean | classification of whether a row is an outlier or not |
|
||||
| rowid | int | original row id (e.g., input `cartodb_id`) of the row which has the outlier classification |
|
||||
|
||||
#### Example Usage
|
||||
|
||||
This example find outliers which are more than 100% larger than the average (that is, more than 2.0 times larger).
|
||||
|
||||
```sql
|
||||
WITH cte As (
|
||||
SELECT
|
||||
unnest(Array[1,2,3,4,5,6,7,8]) As id,
|
||||
unnest(Array[1,3,5,1,32,3,57,2]) As visits_10k
|
||||
)
|
||||
SELECT
|
||||
(CDB_StdDevOutlier(array_agg(visits_10k), 2.0, array_agg(id))).*
|
||||
FROM cte;
|
||||
```
|
||||
|
||||
Output
|
||||
```
|
||||
| outlier | rowid |
|
||||
|---------+-------|
|
||||
| f | 1 |
|
||||
| f | 2 |
|
||||
| f | 3 |
|
||||
| f | 4 |
|
||||
| f | 5 |
|
||||
| f | 6 |
|
||||
| t | 7 |
|
||||
| f | 8 |
|
||||
```
|
||||
5
release/python/0.4.2/crankshaft/requirements.txt
Normal file
5
release/python/0.4.2/crankshaft/requirements.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
joblib==0.8.3
|
||||
numpy==1.6.1
|
||||
scipy==0.14.0
|
||||
pysal==1.11.2
|
||||
scikit-learn==0.14.1
|
||||
18
src/pg/sql/16_getis.sql
Normal file
18
src/pg/sql/16_getis.sql
Normal file
@@ -0,0 +1,18 @@
|
||||
-- Getis-Ord's G
|
||||
-- Hotspot/Coldspot Analysis tool
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetisOrdsG(
|
||||
subquery TEXT,
|
||||
column_name TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 999,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (z_score NUMERIC, p_value NUMERIC, p_z_sim NUMERIC, rowid BIGINT)
|
||||
AS $$
|
||||
from crankshaft.clustering import getis_ord
|
||||
return getis_ord(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- TODO: make a version that accepts the values as arrays
|
||||
75
src/pg/sql/18_outliers.sql
Normal file
75
src/pg/sql/18_outliers.sql
Normal file
@@ -0,0 +1,75 @@
|
||||
|
||||
-- Find outliers using a static threshold
|
||||
--
|
||||
CREATE OR REPLACE FUNCTION CDB_StaticOutlier(column_value numeric, threshold numeric)
|
||||
RETURNS boolean
|
||||
AS $$
|
||||
BEGIN
|
||||
|
||||
RETURN column_value > threshold;
|
||||
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
-- Find outliers by a percentage above the threshold
|
||||
-- TODO: add symmetric option? `is_symmetric boolean DEFAULT false`
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_PercentOutlier(column_values numeric[], outlier_fraction numeric, ids int[])
|
||||
RETURNS TABLE(is_outlier boolean, rowid int)
|
||||
AS $$
|
||||
DECLARE
|
||||
avg_val numeric;
|
||||
out_vals boolean[];
|
||||
BEGIN
|
||||
|
||||
SELECT avg(i) INTO avg_val
|
||||
FROM unnest(column_values) As x(i);
|
||||
|
||||
IF avg_val = 0 THEN
|
||||
RAISE EXCEPTION 'Mean value is zero. Try another outlier method.';
|
||||
END IF;
|
||||
|
||||
SELECT array_agg(
|
||||
outlier_fraction < i / avg_val) INTO out_vals
|
||||
FROM unnest(column_values) As x(i);
|
||||
|
||||
RETURN QUERY
|
||||
SELECT unnest(out_vals) As is_outlier,
|
||||
unnest(ids) As rowid;
|
||||
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
-- Find outliers above a given number of standard deviations from the mean
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_StdDevOutlier(column_values numeric[], num_deviations numeric, ids int[], is_symmetric boolean DEFAULT true)
|
||||
RETURNS TABLE(is_outlier boolean, rowid int)
|
||||
AS $$
|
||||
DECLARE
|
||||
stddev_val numeric;
|
||||
avg_val numeric;
|
||||
out_vals boolean[];
|
||||
BEGIN
|
||||
|
||||
SELECT stddev(i), avg(i) INTO stddev_val, avg_val
|
||||
FROM unnest(column_values) As x(i);
|
||||
|
||||
IF stddev_val = 0 THEN
|
||||
RAISE EXCEPTION 'Standard deviation of input data is zero';
|
||||
END IF;
|
||||
|
||||
IF is_symmetric THEN
|
||||
SELECT array_agg(
|
||||
abs(i - avg_val) / stddev_val > num_deviations) INTO out_vals
|
||||
FROM unnest(column_values) As x(i);
|
||||
ELSE
|
||||
SELECT array_agg(
|
||||
(i - avg_val) / stddev_val > num_deviations) INTO out_vals
|
||||
FROM unnest(column_values) As x(i);
|
||||
END IF;
|
||||
|
||||
RETURN QUERY
|
||||
SELECT unnest(out_vals) As is_outlier,
|
||||
unnest(ids) As rowid;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
@@ -10,45 +10,192 @@
|
||||
-- misses per point the funciton accepts before giving up.
|
||||
--
|
||||
-- Returns: Multipoint with the requested points
|
||||
CREATE OR REPLACE FUNCTION cdb_dot_density(geom geometry , no_points Integer, max_iter_per_point Integer DEFAULT 1000)
|
||||
RETURNS GEOMETRY AS $$
|
||||
DECLARE
|
||||
extent GEOMETRY;
|
||||
test_point Geometry;
|
||||
width NUMERIC;
|
||||
height NUMERIC;
|
||||
x0 NUMERIC;
|
||||
y0 NUMERIC;
|
||||
xp NUMERIC;
|
||||
yp NUMERIC;
|
||||
no_left INTEGER;
|
||||
remaining_iterations INTEGER;
|
||||
points GEOMETRY[];
|
||||
bbox_line GEOMETRY;
|
||||
intersection_line GEOMETRY;
|
||||
BEGIN
|
||||
extent := ST_Envelope(geom);
|
||||
width := ST_XMax(extent) - ST_XMIN(extent);
|
||||
height := ST_YMax(extent) - ST_YMIN(extent);
|
||||
x0 := ST_XMin(extent);
|
||||
y0 := ST_YMin(extent);
|
||||
no_left := no_points;
|
||||
|
||||
LOOP
|
||||
if(no_left=0) THEN
|
||||
EXIT;
|
||||
END IF;
|
||||
yp = y0 + height*random();
|
||||
bbox_line = ST_MakeLine(
|
||||
ST_SetSRID(ST_MakePoint(yp, x0),4326),
|
||||
ST_SetSRID(ST_MakePoint(yp, x0+width),4326)
|
||||
);
|
||||
intersection_line = ST_Intersection(bbox_line,geom);
|
||||
test_point = ST_LineInterpolatePoint(st_makeline(st_linemerge(intersection_line)),random());
|
||||
points := points || test_point;
|
||||
no_left = no_left - 1 ;
|
||||
END LOOP;
|
||||
RETURN ST_Collect(points);
|
||||
CREATE OR REPLACE FUNCTION CDB_DotDensity(g geometry(Polygon, 4326), no_points integer, max_iter integer DEFAULT 1000)
|
||||
RETURNS SETOF geometry(Point, 4326)
|
||||
AS $$
|
||||
DECLARE
|
||||
extent GEOMETRY;
|
||||
eq_area_geom GEOMETRY;
|
||||
test_point Geometry;
|
||||
iter NUMERIC;
|
||||
width NUMERIC;
|
||||
height NUMERIC;
|
||||
x0 NUMERIC;
|
||||
y0 NUMERIC;
|
||||
no_left INTEGER;
|
||||
sample_points GEOMETRY[];
|
||||
points GEOMETRY[];
|
||||
BEGIN
|
||||
eq_area_geom := ST_TRANSFORM(g, 2163);
|
||||
extent := ST_Envelope(eq_area_geom);
|
||||
iter := 0;
|
||||
width := ST_XMax(extent) - ST_XMIN(extent);
|
||||
height := ST_YMax(extent) - ST_YMIN(extent);
|
||||
x0 := ST_XMin(extent);
|
||||
y0 := ST_YMin(extent);
|
||||
no_left := no_points;
|
||||
|
||||
LOOP
|
||||
IF(no_left <= 0 or iter >= max_iter) THEN
|
||||
RETURN;
|
||||
END IF;
|
||||
|
||||
|
||||
with random_points as(
|
||||
SELECT ST_SetSRID(ST_MAKEPOINT( x0 + width*random(), y0 + height*random()), 2163) as p
|
||||
FROM generate_series(1,no_left)
|
||||
)
|
||||
SELECT array_agg(p) from random_points
|
||||
WHERE ST_WITHIN(p, eq_area_geom)
|
||||
into sample_points;
|
||||
|
||||
RETURN QUERY select ST_TRANSFORM(a, 4326) from unnest(sample_points) as a;
|
||||
|
||||
IF sample_points IS NOT null THEN
|
||||
no_left := no_left - array_length(sample_points, 1);
|
||||
END IF;
|
||||
iter = iter + 1;
|
||||
END LOOP;
|
||||
|
||||
RETURN;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
-- DEPRECATED
|
||||
|
||||
CREATE OR REPLACE FUNCTION cdb_dot_density(geom geometry, no_points Integer, max_iter_per_point Integer DEFAULT 1000)
|
||||
RETURNS GEOMETRY
|
||||
AS $$
|
||||
DECLARE
|
||||
final_points GEOMETRY;
|
||||
|
||||
BEGIN
|
||||
|
||||
with new_points as(
|
||||
SELECT * FROM CDB_DotDensity(geom, no_points, max_iter_per_point) as a
|
||||
)
|
||||
SELECT ST_Collect(a) FROM new_points
|
||||
into final_points;
|
||||
RETURN final_points;
|
||||
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
--
|
||||
-- Creates N points randomly distributed in the specified secondary polygons
|
||||
--
|
||||
-- @param g - array of the geometries to be turned in to points
|
||||
--
|
||||
-- @param no_points - the number of points to generate
|
||||
--
|
||||
-- @params max_iter_per_point - the function generates points in the polygon's bounding box
|
||||
-- and discards points which don't lie in the polygon. max_iter_per_point specifies how many
|
||||
-- misses per point the funciton accepts before giving up.
|
||||
--
|
||||
-- Returns: Multipoint with the requested points
|
||||
|
||||
|
||||
|
||||
--
|
||||
-- Generate a random response based on the weights given
|
||||
--
|
||||
-- @param array_ids an array of ids representing the category to return
|
||||
--
|
||||
-- @param weights an array of weights for each category
|
||||
--
|
||||
-- Returns : The randomly selected ID.
|
||||
|
||||
CREATE OR REPLACE function _cdb_SelectRandomWeights(array_ids numeric[], weights numeric[]) returns NUMERIC
|
||||
as $$
|
||||
DECLARE
|
||||
result NUMERIC;
|
||||
BEGIN
|
||||
|
||||
WITH idw as (
|
||||
select unnest(array_ids) as id, unnest(weights) as percent
|
||||
),
|
||||
CTE AS (
|
||||
SELECT random() * (SELECT SUM(percent) FROM idw) R
|
||||
)
|
||||
SELECT *
|
||||
FROM (
|
||||
SELECT id, SUM(percent) OVER (ORDER BY id) S, R
|
||||
FROM idw as percent CROSS JOIN CTE
|
||||
) Q
|
||||
WHERE S >= R
|
||||
ORDER BY id
|
||||
LIMIT 1
|
||||
into result;
|
||||
return result;
|
||||
END
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
--
|
||||
-- Weighted Dot Density
|
||||
--
|
||||
-- @param no_points the number of points to generate
|
||||
--
|
||||
-- @param geoms the target geometries to place the points in
|
||||
--
|
||||
-- @param weights the weight for each of the target polygons
|
||||
--
|
||||
-- RETURNS set of points
|
||||
|
||||
CREATE OR REPLACE FUNCTION _cdb_WeightedDD(no_points numeric, geoms geometry[], weights numeric[])
|
||||
RETURNS SETOF geometry
|
||||
AS $$
|
||||
DECLARE
|
||||
i NUMERIC;
|
||||
ids NUMERIC[];
|
||||
perGeom NUMERIC[];
|
||||
selected_poly NUMERIC;
|
||||
BEGIN
|
||||
with idseries as (
|
||||
select generate_series(1,array_upper(geoms,1)) as id
|
||||
)
|
||||
select array_agg(id) from idseries into ids;
|
||||
|
||||
FOR i in 1..no_points
|
||||
LOOP
|
||||
select cdb_crankshaft._cdb_SelectRandomWeights(ids, weights) INTO selected_poly;
|
||||
perGeom[selected_poly] = coalesce(perGeom[selected_poly] + 1, 0 );
|
||||
END LOOP;
|
||||
|
||||
raise notice 'pergeom %', perGeom;
|
||||
|
||||
FOR i in 1..array_length(ids,1)
|
||||
LOOP
|
||||
return QUERY
|
||||
select cdb_crankshaft.CDB_DotDensity(geoms[i], coalesce(perGeom[i],0)::INTEGER);
|
||||
END LOOP;
|
||||
END
|
||||
$$
|
||||
LANGUAGE plpgsql VOLATILE;
|
||||
LANGUAGE plpgsql;
|
||||
|
||||
|
||||
--
|
||||
-- Daysymetric Dot Density
|
||||
--
|
||||
-- @param geom: the geometry that has the
|
||||
--
|
||||
-- @param no_points: the total number of points to create
|
||||
--
|
||||
-- @param targetGeoms: the geometry that has the
|
||||
--
|
||||
-- @param weights: targetGeom weights
|
||||
--
|
||||
-- RETURNS setof points
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_DasymetricDotDensity(geom GEOMETRY, no_points NUMERIC, targetGeoms GEOMETRY[], weights numeric [])
|
||||
RETURNS setof GEOMETRY
|
||||
AS $$
|
||||
BEGIN
|
||||
RAISE NOTICE 'running Dasymetric';
|
||||
RETURN QUERY
|
||||
SELECT cdb_crankshaft._CDB_WeightedDD(no_points, array_agg( ST_INTERSECTION(geom,g)), array_agg(ST_AREA(ST_INTERSECTION(geom,g))*w)::NUMERIC[])
|
||||
FROM unnest(targetGeoms) as g , unnest(weights) as w
|
||||
WHERE geom && g;
|
||||
END
|
||||
$$
|
||||
LANGUAGE plpgsql;
|
||||
|
||||
@@ -149,135 +149,135 @@ _cdb_random_seeds
|
||||
|
||||
(1 row)
|
||||
code|quads
|
||||
01|LL
|
||||
02|LH
|
||||
03|HH
|
||||
04|HH
|
||||
05|LL
|
||||
06|HH
|
||||
07|LL
|
||||
08|LL
|
||||
09|LL
|
||||
10|HH
|
||||
11|HH
|
||||
12|HL
|
||||
13|LL
|
||||
14|HH
|
||||
01|HH
|
||||
02|HL
|
||||
03|LL
|
||||
04|LL
|
||||
05|LH
|
||||
06|LL
|
||||
07|HH
|
||||
08|HH
|
||||
09|HH
|
||||
10|LL
|
||||
11|LL
|
||||
12|LL
|
||||
13|HL
|
||||
14|LL
|
||||
15|LL
|
||||
16|LL
|
||||
17|LL
|
||||
18|LH
|
||||
19|LL
|
||||
20|LL
|
||||
21|HH
|
||||
22|LL
|
||||
23|HL
|
||||
16|HH
|
||||
17|HH
|
||||
18|LL
|
||||
19|HH
|
||||
20|HH
|
||||
21|LL
|
||||
22|HH
|
||||
23|LL
|
||||
24|LL
|
||||
25|LL
|
||||
26|LL
|
||||
25|HH
|
||||
26|HH
|
||||
27|LL
|
||||
28|LL
|
||||
29|LH
|
||||
30|HH
|
||||
31|LL
|
||||
28|HH
|
||||
29|LL
|
||||
30|LL
|
||||
31|HH
|
||||
32|LL
|
||||
33|LL
|
||||
34|LL
|
||||
35|LH
|
||||
36|HL
|
||||
37|LH
|
||||
38|LH
|
||||
39|LL
|
||||
40|LL
|
||||
41|LH
|
||||
42|HL
|
||||
43|LL
|
||||
44|HL
|
||||
45|LL
|
||||
46|HL
|
||||
33|HL
|
||||
34|LH
|
||||
35|LL
|
||||
36|LL
|
||||
37|HL
|
||||
38|HL
|
||||
39|HH
|
||||
40|HH
|
||||
41|HL
|
||||
42|LH
|
||||
43|LH
|
||||
44|LL
|
||||
45|LH
|
||||
46|LL
|
||||
47|LL
|
||||
48|LL
|
||||
49|HL
|
||||
50|LL
|
||||
51|HH
|
||||
(51 rows)
|
||||
48|HH
|
||||
49|LH
|
||||
50|HH
|
||||
51|LL
|
||||
52|LL
|
||||
(52 rows)
|
||||
_cdb_random_seeds
|
||||
|
||||
(1 row)
|
||||
code|quads
|
||||
03|HH
|
||||
04|HH
|
||||
06|HH
|
||||
10|HH
|
||||
11|HH
|
||||
12|HL
|
||||
14|HH
|
||||
21|HH
|
||||
23|HL
|
||||
30|HH
|
||||
36|HL
|
||||
42|HL
|
||||
44|HL
|
||||
46|HL
|
||||
49|HL
|
||||
51|HH
|
||||
(16 rows)
|
||||
01|HH
|
||||
02|HL
|
||||
07|HH
|
||||
08|HH
|
||||
09|HH
|
||||
13|HL
|
||||
16|HH
|
||||
17|HH
|
||||
19|HH
|
||||
20|HH
|
||||
22|HH
|
||||
25|HH
|
||||
26|HH
|
||||
28|HH
|
||||
31|HH
|
||||
33|HL
|
||||
37|HL
|
||||
38|HL
|
||||
39|HH
|
||||
40|HH
|
||||
41|HL
|
||||
48|HH
|
||||
50|HH
|
||||
(23 rows)
|
||||
_cdb_random_seeds
|
||||
|
||||
(1 row)
|
||||
code|quads
|
||||
01|LL
|
||||
02|LH
|
||||
05|LL
|
||||
07|LL
|
||||
08|LL
|
||||
09|LL
|
||||
13|LL
|
||||
03|LL
|
||||
04|LL
|
||||
05|LH
|
||||
06|LL
|
||||
10|LL
|
||||
11|LL
|
||||
12|LL
|
||||
14|LL
|
||||
15|LL
|
||||
16|LL
|
||||
17|LL
|
||||
18|LH
|
||||
19|LL
|
||||
20|LL
|
||||
22|LL
|
||||
18|LL
|
||||
21|LL
|
||||
23|LL
|
||||
24|LL
|
||||
25|LL
|
||||
26|LL
|
||||
27|LL
|
||||
28|LL
|
||||
29|LH
|
||||
31|LL
|
||||
29|LL
|
||||
30|LL
|
||||
32|LL
|
||||
33|LL
|
||||
34|LL
|
||||
35|LH
|
||||
37|LH
|
||||
38|LH
|
||||
39|LL
|
||||
40|LL
|
||||
41|LH
|
||||
43|LL
|
||||
45|LL
|
||||
34|LH
|
||||
35|LL
|
||||
36|LL
|
||||
42|LH
|
||||
43|LH
|
||||
44|LL
|
||||
45|LH
|
||||
46|LL
|
||||
47|LL
|
||||
48|LL
|
||||
50|LL
|
||||
(35 rows)
|
||||
49|LH
|
||||
51|LL
|
||||
52|LL
|
||||
(29 rows)
|
||||
_cdb_random_seeds
|
||||
|
||||
(1 row)
|
||||
code|quads
|
||||
02|LH
|
||||
12|HL
|
||||
18|LH
|
||||
23|HL
|
||||
29|LH
|
||||
35|LH
|
||||
36|HL
|
||||
37|LH
|
||||
38|LH
|
||||
41|LH
|
||||
42|HL
|
||||
44|HL
|
||||
46|HL
|
||||
49|HL
|
||||
(14 rows)
|
||||
02|HL
|
||||
05|LH
|
||||
13|HL
|
||||
33|HL
|
||||
34|LH
|
||||
37|HL
|
||||
38|HL
|
||||
41|HL
|
||||
42|LH
|
||||
43|LH
|
||||
45|LH
|
||||
49|LH
|
||||
(12 rows)
|
||||
|
||||
@@ -1,16 +0,0 @@
|
||||
WITH g AS (
|
||||
SELECT ST_Buffer(ST_SetSRID(ST_MakePoint(0,0),4326)::geometry, 1000)::geometry AS g
|
||||
),
|
||||
points AS(
|
||||
SELECT (
|
||||
ST_Dump(
|
||||
cdb_crankshaft.cdb_dot_density(g.g, 100)
|
||||
)
|
||||
).geom AS p FROM g
|
||||
)
|
||||
SELECT count(*), sum(CASE WHEN ST_Contains(g,p) THEN 1 ELSE 0 END) FROM points, g
|
||||
count | sum
|
||||
-------+-----
|
||||
100 | 100
|
||||
(1 row)
|
||||
|
||||
|
||||
21
src/pg/test/expected/16_getis_test.out
Normal file
21
src/pg/test/expected/16_getis_test.out
Normal file
@@ -0,0 +1,21 @@
|
||||
\pset format unaligned
|
||||
\set ECHO all
|
||||
\i test/fixtures/getis_data.sql
|
||||
SET client_min_messages TO WARNING;
|
||||
\set ECHO none
|
||||
_cdb_random_seeds
|
||||
|
||||
(1 row)
|
||||
rowid|z_score|p_value
|
||||
9|-0.7862|0.0500
|
||||
22|-0.3955|0.0330
|
||||
33|2.7045|0.0050
|
||||
35|1.9524|0.0130
|
||||
36|-1.2056|0.0170
|
||||
37|3.4785|0.0020
|
||||
38|-1.4622|0.0020
|
||||
40|5.7098|0.0030
|
||||
46|3.4704|0.0120
|
||||
47|-0.9994|0.0320
|
||||
48|-1.3650|0.0340
|
||||
(11 rows)
|
||||
23
src/pg/test/expected/18_outliers_test.out
Normal file
23
src/pg/test/expected/18_outliers_test.out
Normal file
@@ -0,0 +1,23 @@
|
||||
SET client_min_messages TO WARNING;
|
||||
\set ECHO none
|
||||
is_outlier|rowid
|
||||
t|11
|
||||
t|16
|
||||
t|17
|
||||
(3 rows)
|
||||
is_outlier|rowid
|
||||
t|16
|
||||
t|17
|
||||
(2 rows)
|
||||
ERROR: Standard deviation of input data is zero
|
||||
is_outlier|rowid
|
||||
t|8
|
||||
t|11
|
||||
t|16
|
||||
(3 rows)
|
||||
is_outlier|rowid
|
||||
t|8
|
||||
t|9
|
||||
t|11
|
||||
t|16
|
||||
(4 rows)
|
||||
98
src/pg/test/fixtures/getis_data.sql
vendored
Normal file
98
src/pg/test/fixtures/getis_data.sql
vendored
Normal file
@@ -0,0 +1,98 @@
|
||||
SET client_min_messages TO WARNING;
|
||||
\set ECHO none
|
||||
|
||||
--
|
||||
-- Getis-Ord's G* test dataset, subsetted from PySAL examples:
|
||||
-- https://github.com/pysal/pysal/tree/952ea04029165048a774d9a1846cf86ad000c096/pysal/examples/stl
|
||||
--
|
||||
|
||||
|
||||
CREATE TABLE getis_data (
|
||||
cartodb_id integer,
|
||||
the_geom geometry(Geometry,4326),
|
||||
hr8893 numeric
|
||||
);
|
||||
|
||||
COPY getis_data (cartodb_id, the_geom, hr8893) FROM stdin;
|
||||
22 0106000020E61000000100000001030000000100000007000000000000E0B10056C0000000C0B8964340FFFFFFFF4C1756C00000002054964340000000A00F1E56C00000004072964340000000C02D1E56C0000000A0439B434000000060381E56C00000000036B04340000000E0E20056C0000000608CB04340000000E0B10056C0000000C0B8964340 10.8557430000000004
|
||||
32 0106000020E6100000010000000103000000010000000B000000FFFFFF1FC26656C0FFFFFFBFE25E4340000000A0D86656C0000000E0976F4340000000A03A6956C0000000C0966F434000000020526956C0000000E08A7F4340000000E0F26556C000000000C87F4340000000E0066656C0000000209C834340000000407F5056C0000000803C83434000000020635056C0000000E016814340000000A0F45056C0000000A0F980434000000060D25056C000000060FA5E4340FFFFFF1FC26656C0FFFFFFBFE25E4340 9.92424500000000087
|
||||
10 0106000020E610000001000000010300000001000000170000000000000002CD56C000000080CDCC4340000000A054D456C000000020CCD74340000000607ED756C000000000C1DC434000000020E6D756C00000006071E143400000004007BB56C00000000007E2434000000080FABA56C0000000A079EC43400000000040B856C0000000E0D6EB4340FFFFFF3FEEA456C0000000A037EC4340000000C0A9A556C0000000A0ADE7434000000040F3A656C0000000E09FE543400000004063A956C0000000E034DA4340FFFFFF9F04A956C00000008005D74340000000402FA756C00000008069D243400000004046A556C00000002068C84340000000009EA556C0FFFFFF7F3CC34340000000C0C3A756C000000080BCB543400000006082A756C00000004051B2434000000040AABC56C00000006046B343400000006053C256C0FFFFFF7FE2B84340000000E01EC456C000000080ABBC4340000000C0FDC556C0000000E0B3C3434000000000FFC956C000000060BBC643400000000002CD56C000000080CDCC4340 3.79060700000000006
|
||||
43 0106000020E6100000010000000103000000010000000F0000000000004025D856C000000020FA1A43400000008092E256C000000060481B434000000060BCE256C0000000C023144340000000A0D7E856C0FFFFFF1F1B14434000000020BEE956C0000000C030144340FFFFFF9FB0E956C0FFFFFF1F1425434000000000D4E956C0000000C00D5A4340000000A0D3E956C0000000202C5A43400000000004E656C00000004066574340000000E0EEE356C0000000A0E35643400000008099DF56C0000000601B5A43400000000033DB56C0000000804A5B43400000004001D856C00000006079594340000000E0A7D756C0000000E0553543400000004025D856C000000020FA1A4340 5.93309800000000021
|
||||
6 0106000020E6100000010000000103000000010000000F000000000000A00F4256C0000000E008D4434000000000674956C00000004015D44340000000608C4956C00000004098E64340FFFFFFBF434C56C0FFFFFF3F77E84340000000004C4E56C000000020E5E74340000000C0624E56C0FFFFFF3F97F5434000000020B44956C000000000AFF54340000000E0C64956C00000004009074440FFFFFF1F523056C0FFFFFFDF91074440000000C0EB2F56C000000040BBE54340000000E0B93056C0000000E09FE54340000000E0D63056C0000000007DDE4340000000E0213456C0000000005ADE4340000000802E3456C000000020F7D34340000000A00F4256C0000000E008D44340 9.04867300000000085
|
||||
16 0106000020E6100000010000000103000000010000001500000000000020D73356C000000060729B4340000000201F4956C000000000BE9B4340000000A0E34856C000000060CCAC434000000040094256C0FFFFFFDFB1AC4340000000A00F4256C0000000E008D44340000000802E3456C000000020F7D34340000000E0083456C0000000E0ADCA4340000000801D2E56C0000000A06FCA4340FFFFFF7F132E56C00000000079C34340000000607F2956C0000000402EC3434000000080652956C0000000A0EAC04340FFFFFF5FF22756C000000060E5C0434000000080F52756C000000080DDBE434000000020B32656C0000000E0E7BE434000000000AC2656C0FFFFFFFF38BD4340FFFFFFDFC12556C0000000C026BD434000000060C72556C000000060BAB9434000000040441E56C000000020C9B9434000000060381E56C00000000036B04340000000C02D1E56C0000000A0439B434000000020D73356C000000060729B4340 0.74509000000000003
|
||||
29 0106000020E610000001000000010300000001000000080000000000002025FD55C0FFFFFF1F7F6D434000000080C61056C0000000A04C6D4340000000A0631756C000000000D56D4340000000C05E1756C0FFFFFF5F24754340FFFFFFFF4C1756C00000002054964340000000E0B10056C0000000C0B89643400000006029FD55C000000080C09643400000002025FD55C0FFFFFF1F7F6D4340 3.12759000000000009
|
||||
54 0106000020E6100000010000000103000000010000000F000000FFFFFF1F090C57C0000000202E024340000000E0AA0B57C00000004000154340000000A0C10C57C0000000802015434000000060850C57C000000080EC244340FFFFFF9FB0E956C0FFFFFF1F1425434000000020BEE956C0000000C030144340000000A0D7E856C0FFFFFF1F1B144340FFFFFF3FF2E856C0000000A0A3064340FFFFFFDFD2F956C000000040E2064340000000C01EFB56C0000000201406434000000060BBFB56C0000000809A044340000000605AFD56C0000000E059054340000000405FFE56C0000000E06B014340000000A0F60157C0000000C081014340FFFFFF1F090C57C0000000202E024340 2.06432400000000005
|
||||
13 0106000020E6100000010000000103000000010000000F000000000000009EA556C0FFFFFF7F3CC343400000004046A556C00000002068C84340000000402FA756C00000008069D24340FFFFFF9F04A956C00000008005D743400000004063A956C0000000E034DA434000000040F3A656C0000000E09FE54340000000E0F09E56C0000000005AE54340FFFFFF3F069F56C000000040B5E04340FFFFFF1F0E9856C000000020A3E0434000000060109856C0000000E07ED5434000000040E29556C0000000A077D54340FFFFFFDFDC9556C0000000A0EDD1434000000080399356C0000000A0D8D1434000000020699356C0000000E029C34340000000009EA556C0FFFFFF7F3CC34340 0
|
||||
28 0106000020E61000000100000001030000000100000008000000000000C05E1756C0FFFFFF5F24754340000000C0DD2C56C0000000407A75434000000080DE3356C0000000406375434000000020D73356C000000060729B4340000000C02D1E56C0000000A0439B4340000000A00F1E56C00000004072964340FFFFFFFF4C1756C00000002054964340000000C05E1756C0FFFFFF5F24754340 1.57115800000000005
|
||||
36 0106000020E6100000010000000103000000010000000D00000000000000EE2C56C000000060424E434000000040F72C56C000000000486A4340000000C0DD2C56C0000000407A754340000000C05E1756C0FFFFFF5F24754340000000A0631756C000000000D56D434000000080C61056C0000000A04C6D4340000000C0BE1056C0000000A0065F4340000000407C1256C0FFFFFF7FA75E434000000000BD1156C000000020A954434000000040D01256C0000000605C524340000000404F1256C000000040734F434000000040011156C000000000AF4D434000000000EE2C56C000000060424E4340 0
|
||||
68 0106000020E61000000100000001030000000100000006000000000000809F2D56C00000002078CD4240000000E0F64256C0FFFFFFDF38CD424000000000CE4956C00000004053CD4240000000C0E94956C000000080CDEE424000000020682D56C0FFFFFF7F00EF4240000000809F2D56C00000002078CD4240 3.1461920000000001
|
||||
27 0106000020E6100000010000000103000000010000000D000000000000407F5056C0000000803C83434000000060615056C000000040A99B4340000000201F4956C000000000BE9B434000000020D73356C000000060729B434000000080DE3356C00000004063754340000000C0DD2C56C0000000407A75434000000040F72C56C000000000486A4340000000202B4956C000000080AC69434000000040454956C000000040E25E434000000060D25056C000000060FA5E4340000000A0F45056C0000000A0F980434000000020635056C0000000E016814340000000407F5056C0000000803C834340 1.5920399999999999
|
||||
40 0106000020E6100000010000000103000000010000000F00000000000000B89056C0000000C03144434000000000419456C0000000A03D4A434000000020609356C000000020CC55434000000020578F56C0000000A0725D4340000000004D8C56C0000000C05E614340000000E0F48A56C000000020B164434000000060CA8756C00000002077664340000000C0A68856C0000000C08A64434000000020758A56C0000000E0F4624340000000A0948C56C0000000E0AA5C4340FFFFFF7FF18C56C000000080A5594340000000C0BF8B56C0000000A052544340000000E0C18B56C0000000601D4E4340000000A06B8F56C0000000000A48434000000000B89056C0000000C031444340 45.9054059999999993
|
||||
52 0106000020E61000000100000001030000000100000008000000000000E0562D56C0000000208910434000000020864856C00000000054104340FFFFFF9FB84956C0000000409110434000000080A84956C0000000A05B1B4340000000803D4956C0FFFFFF9FB63C434000000080062D56C0FFFFFF7FAE3C434000000060492D56C0000000603E214340000000E0562D56C00000002089104340 4.94153299999999973
|
||||
59 0106000020E6100000010000000103000000010000000F0000000000006010C756C000000020A7DE4240FFFFFF9FF7C956C0FFFFFF7F75DE424000000060FBC956C0000000A01ED94240000000C080CA56C0000000001BD94240000000C086D456C000000040CED942400000000065D456C00000004041E442400000008044E256C0000000E0BEE44240FFFFFFFF04E256C0FFFFFFBFD013434000000060BCE256C0000000C0231443400000008092E256C000000060481B43400000004025D856C000000020FA1A4340FFFFFF5F2CD856C0000000E0381A43400000000009D656C0FFFFFFDF1C1A4340000000A08DC656C000000000241A43400000006010C756C000000020A7DE4240 6.82879400000000025
|
||||
1 0106000020E61000000100000001030000000100000010000000FFFFFF3F746556C00000002049FD434000000080316556C0000000A0240C4440000000C0A76656C000000000330C444000000000C76656C0000000606C11444000000000106756C000000000A0294440000000C0375156C0000000402F2A444000000020305156C0000000E08D244440000000E0E54956C00000004094244440000000E0C64956C0000000400907444000000020B44956C000000000AFF54340000000C0624E56C0FFFFFF3F97F54340000000E05B5A56C00000006082F5434000000060655A56C00000002040F7434000000060B15F56C0000000807CF74340000000008A5F56C0000000C076FD4340FFFFFF3F746556C00000002049FD4340 1.62445799999999996
|
||||
2 0106000020E6100000010000000103000000010000001000000000000080FABA56C0000000A079EC43400000004007BB56C00000000007E2434000000020E6D756C00000006071E14340000000006ED856C000000000E2E64340FFFFFF7FBFDC56C00000006078EE434000000000DDDC56C0000000A04FF1434000000080C7DB56C0000000206FF34340000000808BDB56C0000000C0FEF54340000000A09FDC56C0000000A018F94340000000C02FDF56C000000080BC004440000000A041E056C0000000008A084440FFFFFF3F08E156C0000000C038114440000000406BE056C0000000A0A8194440FFFFFFBFF5BA56C0000000E02A1944400000004014BB56C000000060E70D444000000080FABA56C0000000A079EC4340 2.25549199999999983
|
||||
3 0106000020E61000000100000001030000000100000018000000000000A0D87F56C000000080FEF3434000000020048056C0FFFFFF7FB00E444000000080CB7D56C0000000E0F411444000000080237B56C0000000800812444000000060227956C0000000400F114440000000A04A7856C00000002084124440000000C0667756C0000000E0B810444000000080187656C0000000A001124440000000A0037556C0FFFFFF5F36104440000000005C7356C0000000206510444000000080D27156C00000004081114440000000A0657056C000000040EE104440000000A0EF6D56C000000060AE12444000000000BE6C56C0000000E073124440000000802A6A56C0000000402115444000000000C76656C0000000606C114440000000C0A76656C000000000330C444000000080316556C0000000A0240C4440FFFFFF3F746556C00000002049FD4340000000602C6D56C00000004009FD4340FFFFFF5F786D56C0FFFFFFDFC7F54340000000E0447156C000000080A6F54340000000A09C7156C0FFFFFF9F41F44340000000A0D87F56C000000080FEF34340 1.46788999999999992
|
||||
4 0106000020E610000001000000010300000001000000160000000000008076A556C000000020BCF0434000000060BCA256C0FFFFFF5F7BF5434000000060F5A056C000000040AEFE4340000000204C9C56C00000008095024440000000A0609B56C000000060EC084440FFFFFFFFC49956C0000000C00C0A444000000000E19856C000000040490F444000000040A79656C0000000805C10444000000080199456C0000000E0120E4440FFFFFFBF879256C00000006094084440000000A0699156C00000006012084440000000807E9056C000000000F408444000000060378F56C00000000049074440000000A0E98C56C0FFFFFF5FE4074440000000E0F48B56C0000000201009444000000020618856C000000040ED08444000000020A88556C000000060CF0A4440FFFFFFDF0C8456C000000080250D444000000020048056C0FFFFFF7FB00E4440000000A0D87F56C000000080FEF34340FFFFFF3FDF7F56C0000000C047F043400000008076A556C000000020BCF04340 2.4842559999999998
|
||||
5 0106000020E61000000100000001030000000100000012000000FFFFFF3FEEA456C0000000A037EC43400000000040B856C0000000E0D6EB434000000080FABA56C0000000A079EC43400000004014BB56C000000060E70D444000000020B9AC56C0000000409F0D4440000000A094AD56C0000000005B0A4440000000A07FAB56C0000000A0C1094440FFFFFFBFA8AB56C000000060DD054440000000E04BA956C0FFFFFFFFB30344400000002042A756C0FFFFFFBF900344400000002005A756C0000000409502444000000060D2A756C000000040EE014440000000C0D9A656C0000000008E004440000000E0C0A656C0000000E0F1FD434000000060F5A056C000000040AEFE434000000060BCA256C0FFFFFF5F7BF543400000008076A556C000000020BCF04340FFFFFF3FEEA456C0000000A037EC4340 0
|
||||
15 0106000020E6100000010000000103000000010000000B000000000000806CDC56C00000006020A9434000000080A4ED56C000000020E3A94340000000A050EE56C0FFFFFFDF8BAB434000000000C4ED56C00000000058CD4340000000A039EE56C0000000C062CD4340000000C041EE56C00000006068D44340000000E031EE56C000000080D5D74340000000A054D456C000000020CCD743400000000002CD56C000000080CDCC434000000040CDDD56C0000000407EBA4340000000806CDC56C00000006020A94340 1.9498120000000001
|
||||
7 0106000020E6100000010000000103000000010000001C000000000000C00D6D56C0000000A096C34340000000E0847B56C00000000075C3434000000060747B56C00000002076C74340000000601B7F56C0000000203CDA4340FFFFFF3FDF7F56C0000000C047F04340000000A0D87F56C000000080FEF34340000000A09C7156C0FFFFFF9F41F44340000000E0447156C000000080A6F54340FFFFFF5F786D56C0FFFFFFDFC7F54340000000602C6D56C00000004009FD4340FFFFFF3F746556C00000002049FD4340000000008A5F56C0000000C076FD434000000060B15F56C0000000807CF7434000000060655A56C00000002040F74340000000E05B5A56C00000006082F54340000000C0624E56C0FFFFFF3F97F54340000000004C4E56C000000020E5E7434000000080B55056C0000000C010E94340FFFFFFDF215256C0000000C096E5434000000020475556C0000000A0D3E14340000000A0245A56C0000000200DDF434000000060E75B56C000000000C0DF434000000000F25B56C0000000C0DBD74340FFFFFF5F635F56C0FFFFFFFF91D74340000000E04F5F56C000000020C1D24340FFFFFF7F996256C00000004094D24340000000A08E6256C0000000C0AAC34340000000C00D6D56C0000000A096C34340 6.02948899999999988
|
||||
8 0106000020E6100000010000000103000000010000000E000000FFFFFF1F72F656C000000080A1D443400000004048F656C0000000008EF94340000000A09FDC56C0000000A018F94340000000808BDB56C0000000C0FEF5434000000080C7DB56C0000000206FF3434000000000DDDC56C0000000A04FF14340FFFFFF7FBFDC56C00000006078EE4340000000006ED856C000000000E2E6434000000020E6D756C00000006071E14340000000607ED756C000000000C1DC4340000000A054D456C000000020CCD74340000000E031EE56C000000080D5D74340000000C041EE56C00000006068D44340FFFFFF1F72F656C000000080A1D44340 1.8003849999999999
|
||||
9 0106000020E6100000010000000103000000010000001200000000000040E88956C00000004046C3434000000020699356C0000000E029C3434000000080399356C0000000A0D8D14340FFFFFFDFDC9556C0000000A0EDD1434000000040E29556C0000000A077D5434000000060109856C0000000E07ED54340FFFFFF1F0E9856C000000020A3E04340FFFFFF3F069F56C000000040B5E04340000000E0F09E56C0000000005AE5434000000040F3A656C0000000E09FE54340000000C0A9A556C0000000A0ADE74340FFFFFF3FEEA456C0000000A037EC43400000008076A556C000000020BCF04340FFFFFF3FDF7F56C0000000C047F04340000000601B7F56C0000000203CDA434000000060747B56C00000002076C74340000000E0847B56C00000000075C3434000000040E88956C00000004046C34340 4.58125099999999996
|
||||
30 0106000020E6100000010000000103000000010000000D0000000000000033DB56C0000000804A5B43400000008099DF56C0000000601B5A4340000000E0EEE356C0000000A0E35643400000000004E656C00000004066574340000000A0D3E956C0000000202C5A4340000000A02EE956C0FFFFFF1F09884340000000A0D9E856C0FFFFFFDF03934340000000A0B8DA56C000000060E592434000000080F4D056C0000000605F9243400000000038D156C0000000A0817F434000000000A0D156C0000000A0FF6B4340000000E0C8DA56C000000080986C43400000000033DB56C0000000804A5B4340 4.41689600000000038
|
||||
11 0106000020E61000000100000001030000000100000013000000000000A08E6256C0000000C0AAC34340FFFFFF7F996256C00000004094D24340000000E04F5F56C000000020C1D24340FFFFFF5F635F56C0FFFFFFFF91D7434000000000F25B56C0000000C0DBD7434000000060E75B56C000000000C0DF4340000000A0245A56C0000000200DDF434000000020475556C0000000A0D3E14340FFFFFFDF215256C0000000C096E5434000000080B55056C0000000C010E94340000000004C4E56C000000020E5E74340FFFFFFBF434C56C0FFFFFF3F77E84340000000608C4956C00000004098E6434000000000674956C00000004015D44340000000A00F4256C0000000E008D4434000000040094256C0FFFFFFDFB1AC4340000000A0E34856C000000060CCAC434000000020666256C0FFFFFF9FBFAC4340000000A08E6256C0000000C0AAC34340 1.44743599999999994
|
||||
12 0106000020E6100000010000000103000000010000001400000000000040441E56C000000020C9B9434000000060C72556C000000060BAB94340FFFFFFDFC12556C0000000C026BD434000000000AC2656C0FFFFFFFF38BD434000000020B32656C0000000E0E7BE434000000080F52756C000000080DDBE4340FFFFFF5FF22756C000000060E5C0434000000080652956C0000000A0EAC04340000000607F2956C0000000402EC34340FFFFFF7F132E56C00000000079C34340000000801D2E56C0000000A06FCA4340000000E0083456C0000000E0ADCA4340000000802E3456C000000020F7D34340000000E0213456C0000000005ADE4340000000E0D63056C0000000007DDE4340000000E0B93056C0000000E09FE54340000000C0EB2F56C000000040BBE54340FFFFFF5F741E56C00000008040E54340000000605A1E56C0000000E042D3434000000040441E56C000000020C9B94340 1.19196600000000008
|
||||
14 0106000020E6100000010000000103000000010000000A000000000000E0E20056C0000000608CB0434000000060381E56C00000000036B0434000000040441E56C000000020C9B94340000000605A1E56C0000000E042D3434000000040BB0356C00000000030D4434000000060CF0356C000000080C9D74340FFFFFFBFFDFD55C0000000E02BD84340000000A0C5FD55C0000000400DBE434000000040E60056C0FFFFFF9F20BE4340000000E0E20056C0000000608CB04340 1.60801700000000003
|
||||
17 0106000020E61000000100000001030000000100000011000000000000A0B8DA56C000000060E5924340000000806CDC56C00000006020A9434000000040CDDD56C0000000407EBA43400000000002CD56C000000080CDCC434000000000FFC956C000000060BBC64340000000C0FDC556C0000000E0B3C34340000000E01EC456C000000080ABBC43400000006053C256C0FFFFFF7FE2B8434000000040AABC56C00000006046B34340000000806EB656C0000000A0DBAC4340000000C0E0B156C0000000A0FDA54340000000C03CAF56C000000040B89F4340000000A0DEAE56C0FFFFFF7FC49C4340000000E0F3CB56C0FFFFFF9F039D4340000000205CCC56C0000000805392434000000080F4D056C0000000605F924340000000A0B8DA56C000000060E5924340 4.17331800000000008
|
||||
18 0106000020E6100000010000000103000000010000000E000000FFFFFF3FF56C56C000000020977F4340000000A07A6D56C0000000605DAD4340000000800F6D56C0000000A06CAD4340000000C00D6D56C0000000A096C34340000000A08E6256C0000000C0AAC3434000000020666256C0FFFFFF9FBFAC4340000000A0E34856C000000060CCAC4340000000201F4956C000000000BE9B434000000060615056C000000040A99B4340000000407F5056C0000000803C834340000000E0066656C0000000209C834340000000E0F26556C000000000C87F434000000020526956C0000000E08A7F4340FFFFFF3FF56C56C000000020977F4340 3.78325200000000006
|
||||
19 0106000020E61000000100000001030000000100000009000000000000A0B78956C0000000A0BD7F4340000000C0C08956C0000000000BA1434000000040E88956C00000004046C34340000000E0847B56C00000000075C34340000000C00D6D56C0000000A096C34340000000800F6D56C0000000A06CAD4340000000A07A6D56C0000000605DAD4340FFFFFF3FF56C56C000000020977F4340000000A0B78956C0000000A0BD7F4340 2.08513599999999988
|
||||
20 0106000020E61000000100000001030000000100000015000000000000C0C08956C0000000000BA1434000000060188D56C00000008040A04340000000C0278D56C0000000E0E29C4340000000E04C9456C000000080CC9C4340000000A0579456C0000000E0B4964340FFFFFFFF819F56C0000000806D9643400000006068A056C0FFFFFF1FBB944340000000203AA156C0000000E0CA9743400000002061A456C000000080AE974340000000C08CA556C0000000A0BB964340FFFFFF9F44A556C0000000609794434000000040EFA656C0000000C00C8F43400000004050A756C0FFFFFFBFEA9343400000000062A656C0FFFFFFFF6A9B434000000080DCA756C0000000208AAE43400000006082A756C00000004051B24340000000C0C3A756C000000080BCB54340000000009EA556C0FFFFFF7F3CC3434000000020699356C0000000E029C3434000000040E88956C00000004046C34340000000C0C08956C0000000000BA14340 2.17630200000000018
|
||||
21 0106000020E6100000010000000103000000010000001B00000000000040EFA656C0000000C00C8F4340FFFFFF5F1DA756C000000020C58D434000000020E1A456C0000000E00F84434000000020D1A456C0000000A0B2804340FFFFFFDF3AA356C000000040247C4340000000800BA256C0FFFFFF5F987A434000000020409F56C000000000CD7B4340000000E0119E56C000000060C67A434000000080F2A156C000000040207243400000004080A456C0000000A0876F43400000004024A856C0000000E0BD704340FFFFFFDFCEAA56C000000060B67743400000004030AD56C000000060D6844340FFFFFF1F49AD56C00000006072874340000000802FAC56C000000060FE8B434000000000DFAD56C00000008075924340FFFFFFDFF6AD56C00000006012994340000000A0DEAE56C0FFFFFF7FC49C4340000000C03CAF56C000000040B89F4340000000C0E0B156C0000000A0FDA54340000000806EB656C0000000A0DBAC434000000040AABC56C00000006046B343400000006082A756C00000004051B2434000000080DCA756C0000000208AAE43400000000062A656C0FFFFFFFF6A9B43400000004050A756C0FFFFFFBFEA93434000000040EFA656C0000000C00C8F4340 6.30934699999999982
|
||||
23 0106000020E6100000010000000103000000010000000B000000FFFFFF1F491457C000000060E99F4340FFFFFF5F1C1457C00000000075AC4340000000A050EE56C0FFFFFFDF8BAB434000000080A4ED56C000000020E3A94340000000806CDC56C00000006020A94340000000A0B8DA56C000000060E5924340000000A0D9E856C0FFFFFFDF03934340000000A02EE956C0FFFFFF1F0988434000000020290757C0FFFFFF3F92884340000000A0B00657C000000080FE9E4340FFFFFF1F491457C000000060E99F4340 4.21135400000000004
|
||||
24 0106000020E61000000100000001030000000100000019000000000000A0B78956C0000000A0BD7F4340FFFFFF1FDD9156C000000060B47F434000000000DA9156C0000000205D764340000000A0769456C00000006063764340000000C06F9A56C0000000A02D7B4340000000E0119E56C000000060C67A434000000020409F56C000000000CD7B4340000000800BA256C0FFFFFF5F987A4340FFFFFFDF3AA356C000000040247C434000000020D1A456C0000000A0B280434000000020E1A456C0000000E00F844340FFFFFF5F1DA756C000000020C58D434000000040EFA656C0000000C00C8F4340FFFFFF9F44A556C00000006097944340000000C08CA556C0000000A0BB9643400000002061A456C000000080AE974340000000203AA156C0000000E0CA9743400000006068A056C0FFFFFF1FBB944340FFFFFFFF819F56C0000000806D964340000000A0579456C0000000E0B4964340000000E04C9456C000000080CC9C4340000000C0278D56C0000000E0E29C434000000060188D56C00000008040A04340000000C0C08956C0000000000BA14340000000A0B78956C0000000A0BD7F4340 0.804810000000000025
|
||||
47 0106000020E61000000100000001030000000100000009000000FFFFFF9FD60956C0000000003521434000000020F21756C000000040DA20434000000060492D56C0000000603E21434000000080062D56C0FFFFFF7FAE3C434000000000EE2C56C000000060424E434000000040011156C000000000AF4D434000000040780956C0000000005A4D4340000000808A0956C000000080C1494340FFFFFF9FD60956C00000000035214340 0.969790999999999959
|
||||
25 0106000020E6100000010000000103000000010000001E000000000000A0491957C0FFFFFF9F355E434000000020381A57C0000000A05B61434000000000201957C0000000803D654340000000802D1957C000000040E867434000000060B41B57C0000000C078694340000000A0611E57C000000040A06E4340000000C0FF1F57C00000006083754340000000803C2457C0000000E0ED7B4340000000A0332457C00000004047804340FFFFFF9FB41B57C0FFFFFF5F08A04340FFFFFF1F491457C000000060E99F4340000000A0B00657C000000080FE9E434000000020290757C0FFFFFF3F92884340FFFFFFBFC70857C000000020EC874340000000C0F20957C000000020DE764340000000C0E50A57C000000040E172434000000000260A57C0000000A03A71434000000000750A57C000000080796F4340FFFFFF7F310957C00000000064684340FFFFFF3FFF0B57C000000020765E434000000000060E57C000000000B45B434000000000640E57C00000000022594340000000A0C40C57C0000000801D57434000000040600C57C0000000C049544340FFFFFF5F100E57C000000000B851434000000060091157C0000000E05353434000000020B21257C0FFFFFFDF48554340FFFFFF3FC11657C00000004060564340000000005F1657C0FFFFFF5FD95B4340000000A0491957C0FFFFFF9F355E4340 3.21533099999999994
|
||||
26 0106000020E6100000010000000103000000010000001D000000000000008BBD56C0000000608A6F43400000006075C756C0000000A0EE6F43400000000093C756C0FFFFFF3FF3764340FFFFFFBFD7CC56C0FFFFFF7F7277434000000020BECC56C0FFFFFFFF1B7F43400000000038D156C0000000A0817F434000000080F4D056C0000000605F924340000000205CCC56C00000008053924340000000E0F3CB56C0FFFFFF9F039D4340000000A0DEAE56C0FFFFFF7FC49C4340FFFFFFDFF6AD56C0000000601299434000000000DFAD56C00000008075924340000000802FAC56C000000060FE8B4340FFFFFF1F49AD56C000000060728743400000004030AD56C000000060D6844340FFFFFFDFCEAA56C000000060B6774340FFFFFFDF6EAC56C000000060557743400000002088AC56C000000060887543400000000071AD56C000000080B07543400000004047AD56C0000000C04C744340000000C0FDAE56C0000000406D754340000000C0DAAE56C0000000802B774340000000C070B256C0000000A0FE754340FFFFFFBF86B356C000000040A3744340000000A00EB456C0000000A0907043400000008058B856C000000000FB7143400000004020BC56C0000000C09A714340000000C058BD56C0000000C09E724340000000008BBD56C0000000608A6F4340 2.83366400000000018
|
||||
38 0106000020E6100000010000000103000000010000000E000000000000605FFD55C000000020A5494340000000808A0956C000000080C149434000000040780956C0000000005A4D434000000040011156C000000000AF4D4340000000404F1256C000000040734F434000000040D01256C0000000605C52434000000000BD1156C000000020A9544340000000407C1256C0FFFFFF7FA75E4340000000C0BE1056C0000000A0065F434000000080C61056C0000000A04C6D43400000002025FD55C0FFFFFF1F7F6D434000000080B9FA55C0000000607E6D434000000020A9FA55C00000008093494340000000605FFD55C000000020A5494340 1.00387500000000007
|
||||
31 0106000020E6100000010000000103000000010000001B000000FFFFFF5F100E57C000000000B851434000000040600C57C0000000C049544340000000A0C40C57C0000000801D57434000000000640E57C0000000002259434000000000060E57C000000000B45B4340FFFFFF3FFF0B57C000000020765E4340FFFFFF7F310957C0000000006468434000000000750A57C000000080796F434000000000260A57C0000000A03A714340000000C0E50A57C000000040E1724340000000C0F20957C000000020DE764340FFFFFFBFC70857C000000020EC87434000000020290757C0FFFFFF3F92884340000000A02EE956C0FFFFFF1F09884340000000A0D3E956C0000000202C5A434000000000D4E956C0000000C00D5A4340FFFFFF7F6BEF56C0000000A0605A4340FFFFFFFFACF056C000000040975843400000008054F356C0FFFFFFDFFB56434000000060C1F656C0000000E0725643400000000014FD56C000000000744C4340000000E005FF56C000000020904B434000000040220257C0000000405C484340000000E0880657C0FFFFFFDFF147434000000000EA0A57C0000000407C4A4340000000E0B10C57C000000020054D4340FFFFFF5F100E57C000000000B8514340 3.01748599999999989
|
||||
33 0106000020E6100000010000000103000000010000001400000000000060CA8756C00000002077664340000000603D8756C0000000C04C6A434000000000808856C0FFFFFF1F306D4340000000809C8F56C0000000A00E75434000000000DA9156C0000000205D764340FFFFFF1FDD9156C000000060B47F4340000000A0B78956C0000000A0BD7F4340FFFFFF3FF56C56C000000020977F434000000020526956C0000000E08A7F4340000000A03A6956C0000000C0966F4340000000A0D86656C0000000E0976F4340FFFFFF1FC26656C0FFFFFFBFE25E434000000000AD6656C0000000408054434000000060BA6D56C00000006031544340000000C0BF8B56C0000000A052544340FFFFFF7FF18C56C000000080A5594340000000A0948C56C0000000E0AA5C434000000020758A56C0000000E0F4624340000000C0A68856C0000000C08A64434000000060CA8756C00000002077664340 7.97395700000000041
|
||||
34 0106000020E61000000100000001030000000100000015000000FFFFFF5FFEBD56C0000000C0ED454340000000C0E0C056C0000000401048434000000040E0C356C0000000C0AC4D434000000060B0C556C000000000094E4340000000201BC956C0000000E0D74C4340FFFFFF3F1ECD56C0000000204D4E4340000000806BCE56C0000000600150434000000020DDCF56C0000000A015544340000000E0F7D256C0000000801D584340000000E067D556C000000080E65943400000004001D856C000000060795943400000000033DB56C0000000804A5B4340000000E0C8DA56C000000080986C434000000000A0D156C0000000A0FF6B43400000000038D156C0000000A0817F434000000020BECC56C0FFFFFFFF1B7F4340FFFFFFBFD7CC56C0FFFFFF7F727743400000000093C756C0FFFFFF3FF37643400000006075C756C0000000A0EE6F4340000000008BBD56C0000000608A6F4340FFFFFF5FFEBD56C0000000C0ED454340 5.00546399999999991
|
||||
35 0106000020E61000000100000001030000000100000031000000FFFFFF9F36AF56C0000000E037514340000000602AB256C0FFFFFFDFE74943400000008057B356C000000020CF4A434000000060A8B456C0000000C07D4A4340000000005FBA56C00000006033454340FFFFFF5FFEBD56C0000000C0ED454340000000008BBD56C0000000608A6F4340000000C058BD56C0000000C09E7243400000004020BC56C0000000C09A7143400000008058B856C000000000FB714340000000A00EB456C0000000A090704340FFFFFFBF86B356C000000040A3744340000000C070B256C0000000A0FE754340000000C0DAAE56C0000000802B774340000000C0FDAE56C0000000406D7543400000004047AD56C0000000C04C7443400000000071AD56C000000080B07543400000002088AC56C00000006088754340FFFFFFDF6EAC56C00000006055774340FFFFFFDFCEAA56C000000060B67743400000004024A856C0000000E0BD7043400000004080A456C0000000A0876F434000000080F2A156C00000004020724340000000E0119E56C000000060C67A4340000000C06F9A56C0000000A02D7B4340000000A0769456C0000000606376434000000000DA9156C0000000205D764340000000809C8F56C0000000A00E75434000000000808856C0FFFFFF1F306D4340000000603D8756C0000000C04C6A434000000060CA8756C0000000207766434000000060A28856C0000000A04C69434000000020CB8C56C0000000409A69434000000080AB9056C0000000608F6D4340FFFFFFFF6D9256C0000000204F714340000000C05C9456C000000040DD714340000000E0A39556C0000000A065704340000000400B9756C000000040A26A434000000040CC9956C0000000A0AA694340FFFFFFFFBA9B56C000000060646A4340000000A0EF9C56C0FFFFFF1FCB694340000000605F9F56C0000000202B614340000000402CA256C000000000995C4340000000C00CA356C00000006094584340000000A08CA656C0000000E04C57434000000000F0A856C000000020B5584340000000A086AB56C0FFFFFF5FCD5643400000004012AC56C0000000004C544340FFFFFF9F36AF56C0000000E037514340 2.46389099999999983
|
||||
37 0106000020E6100000010000000103000000010000002A0000000000006054AF56C0000000C0573B4340FFFFFF9F36AF56C0000000E0375143400000004012AC56C0000000004C544340000000A086AB56C0FFFFFF5FCD56434000000000F0A856C000000020B5584340000000A08CA656C0000000E04C574340000000C00CA356C00000006094584340000000402CA256C000000000995C4340000000605F9F56C0000000202B614340000000A0EF9C56C0FFFFFF1FCB694340FFFFFFFFBA9B56C000000060646A434000000040CC9956C0000000A0AA694340000000400B9756C000000040A26A4340000000E0A39556C0000000A065704340000000C05C9456C000000040DD714340FFFFFFFF6D9256C0000000204F71434000000080AB9056C0000000608F6D434000000020CB8C56C0000000409A69434000000060A28856C0000000A04C69434000000060CA8756C00000002077664340000000E0F48A56C000000020B1644340000000004D8C56C0000000C05E61434000000020578F56C0000000A0725D434000000020609356C000000020CC55434000000000419456C0000000A03D4A434000000000B89056C0000000C031444340000000A0029156C00000006064424340FFFFFF5F519356C0000000A0B336434000000020BC9556C00000004007324340000000406F9656C00000008005364340FFFFFF1FAA9556C0000000A07439434000000040129A56C0000000C07E3A4340FFFFFF1FE19A56C000000040623D4340FFFFFF3F2B9A56C000000000263E4340000000E0379A56C00000002001404340FFFFFFFFF5A556C0000000801A404340000000C049A756C0000000A07B3C4340000000801EAA56C000000020A63D4340FFFFFFDFD4AA56C000000060A538434000000060CFAB56C000000040BE384340000000202CAC56C000000040A33B43400000006054AF56C0000000C0573B4340 7.37797400000000003
|
||||
39 0106000020E61000000100000001030000000100000008000000000000A04E4956C0000000E03140434000000040454956C000000040E25E4340000000202B4956C000000080AC69434000000040F72C56C000000000486A434000000000EE2C56C000000060424E434000000080062D56C0FFFFFF7FAE3C4340000000803D4956C0FFFFFF9FB63C4340000000A04E4956C0000000E031404340 3.19004699999999985
|
||||
60 0106000020E6100000010000000103000000010000000A0000000000006098A956C0000000C019DE42400000006010C756C000000020A7DE4240000000A08DC656C000000000241A43400000002017B256C0000000209F1A434000000080FEAB56C0000000C0710E434000000080D3AB56C0FFFFFF5F2F0C434000000080FFA956C000000080EA0C43400000006018AA56C0000000E0FF0A434000000060E4A856C000000080440A43400000006098A956C0000000C019DE4240 3.26394699999999993
|
||||
41 0106000020E6100000010000000103000000010000001700000000000040454956C000000040E25E4340000000A04E4956C0000000E031404340000000A0FB5056C0000000001A414340000000E00D5356C0000000004C404340000000A0DA5656C000000040A4414340000000A07D5956C0000000A0833E4340000000608F5B56C0000000C0273F4340000000E0405D56C0000000803A3E4340000000E0CB5E56C000000040AD3B4340000000E08A6156C0000000A0793D434000000060B56256C0000000A09A3C4340000000A0A06456C0000000A0963D434000000020996756C000000060AB3B4340000000E0156856C0000000A085394340FFFFFF3F536956C0000000C06A384340FFFFFF5F876A56C0000000809638434000000080DD6A56C000000020BB364340000000806B6D56C0000000E09E35434000000060BA6D56C0000000603154434000000000AD6656C00000004080544340FFFFFF1FC26656C0FFFFFFBFE25E434000000060D25056C000000060FA5E434000000040454956C000000040E25E4340 2.44759700000000002
|
||||
42 0106000020E610000001000000010300000001000000210000000000000014FD56C000000000744C4340000000C0D70157C000000020CE464340000000E0CC0057C0000000A0ED404340FFFFFF1F3C0257C0000000A0CE3C434000000060C80457C0000000E02D3C4340000000A0020757C000000000763A4340000000602E0957C000000060EF3B434000000020B90A57C000000060DE3B434000000060340A57C0000000402D38434000000060310857C00000004012354340000000E0F50757C0000000E095324340000000E0D40857C000000080DD304340000000E0690B57C0FFFFFF3F3B30434000000000520C57C000000060732E4340000000208D0C57C000000000AB2A434000000060D80E57C000000080CC2A4340000000C05C1057C0000000209229434000000040131257C000000040C52A4340000000C0281A57C000000080262B4340000000E0D81957C000000000F6354340FFFFFF9FB91F57C0FFFFFFDF7D364340000000A0491957C0FFFFFF9F355E4340000000005F1657C0FFFFFF5FD95B4340FFFFFF3FC11657C0000000406056434000000020B21257C0FFFFFFDF4855434000000060091157C0000000E053534340FFFFFF5F100E57C000000000B8514340000000E0B10C57C000000020054D434000000000EA0A57C0000000407C4A4340000000E0880657C0FFFFFFDFF147434000000040220257C0000000405C484340000000E005FF56C000000020904B43400000000014FD56C000000000744C4340 1.29495800000000005
|
||||
44 0106000020E6100000010000000103000000010000001700000000000060850C57C000000080EC244340000000208D0C57C000000000AB2A434000000000520C57C000000060732E4340000000E0690B57C0FFFFFF3F3B304340000000E0D40857C000000080DD304340000000E0F50757C0000000E09532434000000060310857C0000000401235434000000060340A57C0000000402D38434000000020B90A57C000000060DE3B4340000000602E0957C000000060EF3B4340000000A0020757C000000000763A434000000060C80457C0000000E02D3C4340FFFFFF1F3C0257C0000000A0CE3C4340000000E0CC0057C0000000A0ED404340000000C0D70157C000000020CE4643400000000014FD56C000000000744C434000000060C1F656C0000000E0725643400000008054F356C0FFFFFFDFFB564340FFFFFFFFACF056C00000004097584340FFFFFF7F6BEF56C0000000A0605A434000000000D4E956C0000000C00D5A4340FFFFFF9FB0E956C0FFFFFF1F1425434000000060850C57C000000080EC244340 4.13399699999999992
|
||||
45 0106000020E610000001000000010300000001000000190000000000002017B256C0000000209F1A4340000000A08DC656C000000000241A43400000000009D656C0FFFFFFDF1C1A4340FFFFFF5F2CD856C0000000E0381A43400000004025D856C000000020FA1A4340000000E0A7D756C0000000E0553543400000004001D856C00000006079594340000000E067D556C000000080E6594340000000E0F7D256C0000000801D58434000000020DDCF56C0000000A015544340000000806BCE56C00000006001504340FFFFFF3F1ECD56C0000000204D4E4340000000201BC956C0000000E0D74C434000000060B0C556C000000000094E434000000040E0C356C0000000C0AC4D4340000000C0E0C056C00000004010484340FFFFFF5FFEBD56C0000000C0ED454340000000005FBA56C0000000603345434000000060A8B456C0000000C07D4A43400000008057B356C000000020CF4A4340000000602AB256C0FFFFFFDFE7494340FFFFFF9F36AF56C0000000E0375143400000006054AF56C0000000C0573B43400000006067AF56C000000040593243400000002017B256C0000000209F1A4340 4.29831099999999999
|
||||
46 0106000020E6100000010000000103000000010000001200000000000060DE7956C0000000E08D1C4340000000C0897B56C0000000806323434000000060177B56C0000000807E244340000000204D7A56C0000000A0CD234340FFFFFF7FB97A56C0000000409227434000000000028256C0000000E0EB27434000000020048256C0000000002F2A4340000000A04E8956C00000002053344340000000C05A8956C000000020A5364340000000A0029156C0000000606442434000000000B89056C0000000C031444340000000A06B8F56C0000000000A484340000000E0C18B56C0000000601D4E4340000000C0BF8B56C0000000A05254434000000060BA6D56C00000006031544340000000806B6D56C0000000E09E35434000000080B86D56C0FFFFFFFF081C434000000060DE7956C0000000E08D1C4340 27.4838270000000016
|
||||
48 0106000020E6100000010000000103000000010000000E000000FFFFFF9FD60956C00000000035214340000000808A0956C000000080C1494340000000605FFD55C000000020A549434000000060C8FC55C0FFFFFF5FDF444340000000C0AAFD55C0000000808E3F434000000080F9FC55C000000060DA394340000000E068FD55C000000060D537434000000000E6FC55C0000000C05E364340000000E0A8FE55C0000000C056334340FFFFFFFFA6FE55C00000004061304340000000E0ACFD55C0000000E0D02C4340000000407CFD55C000000040D92543400000006042FF55C00000004040214340FFFFFF9FD60956C00000000035214340 0
|
||||
49 0106000020E6100000010000000103000000010000001600000000000060DE7956C0000000E08D1C434000000020918256C0000000809A1C4340000000207D8256C0000000008611434000000020488D56C000000040610B434000000080429056C000000040A30F434000000060899256C0000000405A154340000000C08C9556C0000000C02718434000000060589756C000000080FD1D434000000060A39756C0000000606A294340FFFFFFBFF49656C0FFFFFF1FC32E434000000020BC9556C00000004007324340FFFFFF5F519356C0000000A0B3364340000000A0029156C00000006064424340000000C05A8956C000000020A5364340000000A04E8956C0000000205334434000000020048256C0000000002F2A434000000000028256C0000000E0EB274340FFFFFF7FB97A56C00000004092274340000000204D7A56C0000000A0CD23434000000060177B56C0000000807E244340000000C0897B56C0000000806323434000000060DE7956C0000000E08D1C4340 2.93446600000000002
|
||||
50 0106000020E6100000010000000103000000010000001600000000000020396656C0000000A0C31B434000000080B86D56C0FFFFFFFF081C4340000000806B6D56C0000000E09E35434000000080DD6A56C000000020BB364340FFFFFF5F876A56C00000008096384340FFFFFF3F536956C0000000C06A384340000000E0156856C0000000A08539434000000020996756C000000060AB3B4340000000A0A06456C0000000A0963D434000000060B56256C0000000A09A3C4340000000E08A6156C0000000A0793D4340000000E0CB5E56C000000040AD3B4340000000E0405D56C0000000803A3E4340000000608F5B56C0000000C0273F4340000000A07D5956C0000000A0833E4340000000A0DA5656C000000040A4414340000000E00D5356C0000000004C404340000000A0FB5056C0000000001A414340000000A04E4956C0000000E031404340000000803D4956C0FFFFFF9FB63C434000000080A84956C0000000A05B1B434000000020396656C0000000A0C31B4340 4.45642699999999969
|
||||
51 0106000020E6100000010000000103000000010000002400000000000060E4A856C000000080440A43400000006018AA56C0000000E0FF0A434000000080FFA956C000000080EA0C434000000080D3AB56C0FFFFFF5F2F0C434000000080FEAB56C0000000C0710E43400000002017B256C0000000209F1A43400000006067AF56C000000040593243400000006054AF56C0000000C0573B4340000000202CAC56C000000040A33B434000000060CFAB56C000000040BE384340FFFFFFDFD4AA56C000000060A5384340000000801EAA56C000000020A63D4340000000C049A756C0000000A07B3C4340FFFFFFFFF5A556C0000000801A404340000000E0379A56C00000002001404340FFFFFF3F2B9A56C000000000263E4340FFFFFF1FE19A56C000000040623D434000000040129A56C0000000C07E3A4340FFFFFF1FAA9556C0000000A074394340000000406F9656C0000000800536434000000020BC9556C00000004007324340FFFFFFBFF49656C0FFFFFF1FC32E434000000060A39756C0000000606A29434000000060589756C000000080FD1D4340000000C08C9556C0000000C02718434000000060899256C0000000405A15434000000080429056C000000040A30F434000000060029356C000000020C60B4340FFFFFFDF129556C000000060CA0C4340000000E0919A56C0000000E0CE054340FFFFFF7F92A656C0FFFFFFBF5400434000000060F6A756C0000000E03B014340FFFFFF9F39A756C0000000E0A3024340000000E08CA756C0000000A00E064340000000A003A756C0000000C05F09434000000060E4A856C000000080440A4340 4.62926400000000005
|
||||
53 0106000020E6100000010000000103000000010000001F00000000000040E21957C0000000A0A6024340000000E0092157C0000000E02C03434000000000242157C0000000608104434000000060892357C0000000405C064340FFFFFF7FC12357C0000000A0EA074340000000A0D82457C00000000027084340FFFFFF7FDB2457C0000000E0450C434000000080C22557C0000000A0750C434000000020B82557C000000040160E434000000020652657C0000000402B0E434000000020632657C0000000A05C114340FFFFFF9F102757C00000006080114340000000A0F62657C0FFFFFFDF91154340000000C0FE2857C0FFFFFF3FEE154340000000A0342957C000000080811A4340FFFFFFDFD72C57C0000000A03B1C4340000000C0662C57C000000040292C434000000060CC2857C0FFFFFFBF582C4340000000800C2857C0FFFFFFBF01374340FFFFFF9FB91F57C0FFFFFFDF7D364340000000E0D81957C000000000F6354340000000C0281A57C000000080262B434000000040131257C000000040C52A4340000000C05C1057C0000000209229434000000060D80E57C000000080CC2A4340000000208D0C57C000000000AB2A434000000060850C57C000000080EC244340000000A0C10C57C00000008020154340000000E0AA0B57C00000004000154340FFFFFF1F090C57C0000000202E02434000000040E21957C0000000A0A6024340 3.99004100000000017
|
||||
55 0106000020E6100000010000000103000000010000002200000000000000181856C000000020FEF4424000000020F21756C000000040DA204340FFFFFF9FD60956C000000000352143400000006042FF55C00000004040214340FFFFFF9FB8FE55C0000000E0DB1E4340000000C01AFF55C0000000600E1E43400000006096FE55C0FFFFFFFFB0194340000000A0AAFB55C0000000A0E7154340FFFFFFBFA5FB55C0000000E02914434000000020D6FC55C00000006086114340000000E04DFE55C000000080DD104340000000E02F0156C000000000390D434000000000CA0056C000000000D20B434000000060C0FD55C000000040620C4340000000406BFE55C0000000206209434000000000390256C000000040EC06434000000000C20256C000000080C605434000000080A70256C000000020E704434000000080630156C0000000C04A044340000000A0DE0156C0000000E00D014340000000A0630156C0FFFFFF9FCEFC424000000080B80256C0000000E066FA4240FFFFFF5FAC0256C0000000A09DF74240FFFFFFBF220456C00000002003F74240000000600D0556C000000000D5F8424000000040600556C0000000803AF64240000000C0F20156C0000000A073F54240000000A0B30156C0000000E0EFF34240FFFFFF1FDF0256C000000040B0F24240FFFFFFBF670656C0FFFFFF5FFDF34240000000407E0656C00000006099F24240000000A0390956C0000000E0E8F54240000000E0CA0956C0000000201CF5424000000000181856C000000020FEF44240 3.04025299999999987
|
||||
56 0106000020E6100000010000000103000000010000000600000000000000181856C000000020FEF4424000000020572D56C0FFFFFF7F74F44240000000E0562D56C0000000208910434000000060492D56C0000000603E21434000000020F21756C000000040DA20434000000000181856C000000020FEF44240 3.90541099999999997
|
||||
57 0106000020E6100000010000000103000000010000001700000000000020488D56C000000040610B4340000000207D8256C0000000008611434000000020918256C0000000809A1C434000000060DE7956C0000000E08D1C434000000080B86D56C0FFFFFFFF081C434000000020396656C0000000A0C31B434000000000936656C0000000601DFA424000000040B46A56C0000000607CEB424000000060E56B56C0FFFFFFFF16EA4240000000403A6C56C00000008003E74240000000E09E6E56C0000000A0A5EB424000000080827656C000000020D9F34240FFFFFF5F1B7756C000000000E7F34240FFFFFFDF797756C00000000029F24240FFFFFF9FA27956C0000000A01DF0424000000020067C56C0000000C063F0424000000080A67E56C0000000A0B8F44240000000A0537D56C00000006058FB424000000020B18056C0000000A012FC4240000000E0AE8256C0FFFFFF5F21FF424000000040A38756C00000008021044340000000209F8856C0000000E0E706434000000020488D56C000000040610B4340 4.33283899999999988
|
||||
58 0106000020E6100000010000000103000000010000000B00000000000020864856C00000000054104340000000C0FA4856C0FFFFFF3FC70D434000000000E64756C000000060EA0B4340FFFFFFFFF54856C0000000E00F06434000000080504956C0000000C0DEFE4240000000E0744B56C0000000A07CF9424000000000936656C0000000601DFA424000000020396656C0000000A0C31B434000000080A84956C0000000A05B1B4340FFFFFF9FB84956C0000000409110434000000020864856C00000000054104340 3.8941110000000001
|
||||
61 0106000020E61000000100000001030000000100000013000000000000A0F60157C0000000C081014340000000405FFE56C0000000E06B014340000000605AFD56C0000000E05905434000000060BBFB56C0000000809A044340000000C01EFB56C00000002014064340FFFFFFDFD2F956C000000040E2064340FFFFFF3FF2E856C0000000A0A3064340000000A0D7E856C0FFFFFF1F1B14434000000060BCE256C0000000C023144340FFFFFFFF04E256C0FFFFFFBFD01343400000008044E256C0000000E0BEE44240000000803CF456C000000040BEE4424000000080DBF356C0FFFFFF9F97DF42400000004063F456C0FFFFFFBF64DB4240000000007EF456C000000000A6CC4240000000A0000257C00000002054CD424000000080730157C0000000C094E3424000000080EA0157C0000000409BE44240000000A0F60157C0000000C081014340 3.28216300000000016
|
||||
62 0106000020E6100000010000000103000000010000000C00000000000020572D56C0FFFFFF7F74F4424000000020682D56C0FFFFFF7F00EF4240000000C0E94956C000000080CDEE4240000000E0EC4956C0000000607AF94240000000E0744B56C0000000A07CF9424000000080504956C0000000C0DEFE4240FFFFFFFFF54856C0000000E00F06434000000000E64756C000000060EA0B4340000000C0FA4856C0FFFFFF3FC70D434000000020864856C00000000054104340000000E0562D56C0000000208910434000000020572D56C0FFFFFF7F74F44240 3.29576199999999986
|
||||
63 0106000020E61000000100000001030000000100000013000000000000E0718756C00000000011D64240FFFFFF5F418A56C0FFFFFF3F72DA4240FFFFFFDFFD8C56C00000004087D64240000000E0A59D56C0FFFFFF5FA4F0424000000000CE9456C0000000603BFE4240000000E0919A56C0000000E0CE054340FFFFFFDF129556C000000060CA0C434000000060029356C000000020C60B434000000080429056C000000040A30F434000000020488D56C000000040610B4340000000209F8856C0000000E0E706434000000040A38756C00000008021044340000000E0AE8256C0FFFFFF5F21FF424000000020B18056C0000000A012FC4240000000A0537D56C00000006058FB424000000080A67E56C0000000A0B8F4424000000020067C56C0000000C063F04240000000E0798056C0000000E0DEE84240000000E0718756C00000000011D64240 7.24967900000000043
|
||||
64 0106000020E6100000010000000103000000010000001100000000000060BC8956C00000004054D24240FFFFFF7F82A256C00000008046D2424000000040D6A956C0000000C024D242400000006098A956C0000000C019DE424000000060E4A856C000000080440A4340000000A003A756C0000000C05F094340000000E08CA756C0000000A00E064340FFFFFF9F39A756C0000000E0A302434000000060F6A756C0000000E03B014340FFFFFF7F92A656C0FFFFFFBF54004340000000E0919A56C0000000E0CE05434000000000CE9456C0000000603BFE4240000000E0A59D56C0FFFFFF5FA4F04240FFFFFFDFFD8C56C00000004087D64240FFFFFF5F418A56C0FFFFFF3F72DA4240000000E0718756C00000000011D6424000000060BC8956C00000004054D24240 3.04184600000000005
|
||||
65 0106000020E6100000010000000103000000010000000B000000000000E0F40F57C0000000C0B5CD4240FFFFFF9FF10F57C0000000000DD34240000000403A1A57C0000000E038DB4240000000001E1A57C00000002044EE424000000040E21957C0000000A0A6024340FFFFFF1F090C57C0000000202E024340000000A0F60157C0000000C08101434000000080EA0157C0000000409BE4424000000080730157C0000000C094E34240000000A0000257C00000002054CD4240000000E0F40F57C0000000C0B5CD4240 1.61801799999999996
|
||||
66 0106000020E6100000010000000103000000010000001400000000000000CE4956C00000004053CD4240000000C0655D56C0000000A09ECD4240FFFFFF7F825D56C0FFFFFF1FA9CA4240FFFFFF7F835E56C000000080FAC8424000000020996156C0000000E035C9424000000000DB6056C0FFFFFFBFD6CE4240000000403A6156C0000000803FD3424000000020DB6056C00000000005D74240000000A0606156C000000020EFD84240FFFFFF3F366556C0000000A061DA424000000040A76A56C0000000006BDF424000000040416B56C00000002059E44240000000403A6C56C00000008003E7424000000060E56B56C0FFFFFFFF16EA424000000040B46A56C0000000607CEB424000000000936656C0000000601DFA4240000000E0744B56C0000000A07CF94240000000E0EC4956C0000000607AF94240000000C0E94956C000000080CDEE424000000000CE4956C00000004053CD4240 4.91080100000000019
|
||||
67 0106000020E6100000010000000103000000010000002000000000000060BC8956C00000004054D24240000000E0718756C00000000011D64240000000E0798056C0000000E0DEE8424000000020067C56C0000000C063F04240FFFFFF9FA27956C0000000A01DF04240FFFFFFDF797756C00000000029F24240FFFFFF5F1B7756C000000000E7F3424000000080827656C000000020D9F34240000000E09E6E56C0000000A0A5EB4240000000403A6C56C00000008003E7424000000040416B56C00000002059E4424000000040A76A56C0000000006BDF4240FFFFFF3F366556C0000000A061DA4240000000A0606156C000000020EFD8424000000020DB6056C00000000005D74240000000403A6156C0000000803FD3424000000000DB6056C0FFFFFFBFD6CE424000000020996156C0000000E035C94240000000A0D56556C0FFFFFF3F7FC9424000000020FD6656C00000006065CC4240000000A08C6856C000000080A3CB424000000020126956C000000000DBCC424000000060DB6B56C0000000801BCB4240000000E03A6C56C00000008035CC424000000020756D56C000000020BACC4240000000A0296E56C000000080E9CB4240000000C0F16E56C0000000E0A9CC4240000000E0817156C0FFFFFF3F6FCB4240000000A0D07356C000000080EECC424000000060627756C000000060F8CC424000000000908956C0000000E0B3CC424000000060BC8956C00000004054D24240 1.99145700000000003
|
||||
69 0106000020E6100000010000000103000000010000001100000000000060E6E956C000000040FFB54240000000C0B1F056C00000006063B6424000000060EAF056C0000000E033CC4240000000007EF456C000000000A6CC42400000004063F456C0FFFFFFBF64DB424000000080DBF356C0FFFFFF9F97DF4240000000803CF456C000000040BEE442400000008044E256C0000000E0BEE442400000000065D456C00000004041E44240000000C086D456C000000040CED94240000000C080CA56C0000000001BD942400000008089CA56C00000008095CB4240000000408AD456C000000000C3CB4240000000A067D456C000000060BDC042400000008032CE56C00000006039C04240000000C049CE56C0000000E0D8B4424000000060E6E956C000000040FFB54240 7.26665000000000028
|
||||
70 0106000020E61000000100000001030000000100000014000000FFFFFF7F82A256C00000008046D24240FFFFFF1FC4A256C00000000069CC4240000000E078A356C00000002057CC4240000000408CA356C0000000C0F4A74240FFFFFF7FD8A356C0000000A004A34240000000808AAF56C0000000E0CBA24240FFFFFF3F5BB056C000000020F4A24240000000800DB056C00000002043AF424000000040D5B156C00000004066AF424000000080CAB156C0000000600DCD4240FFFFFF7F5EC056C0000000805BCD4240000000C00AC756C00000000081CB42400000008089CA56C00000008095CB4240000000C080CA56C0000000001BD9424000000060FBC956C0000000A01ED94240FFFFFF9FF7C956C0FFFFFF7F75DE42400000006010C756C000000020A7DE42400000006098A956C0000000C019DE424000000040D6A956C0000000C024D24240FFFFFF7F82A256C00000008046D24240 3.11090400000000011
|
||||
71 0106000020E6100000010000000103000000010000000900000000000060378E56C0000000A0EBA74240000000408CA356C0000000C0F4A74240000000E078A356C00000002057CC4240FFFFFF1FC4A256C00000000069CC4240FFFFFF7F82A256C00000008046D2424000000060BC8956C00000004054D2424000000000908956C0000000E0B3CC424000000040968956C000000040EAA7424000000060378E56C0000000A0EBA74240 2.98027100000000011
|
||||
72 0106000020E6100000010000000103000000010000000D00000000000080CD0557C0000000407487424000000000A11057C000000060E7874240000000A0F00F57C000000080AAA04240FFFFFF7F761057C0000000A0EEA0424000000000221057C0000000C028BD4240000000E0F40F57C0000000C0B5CD4240000000A0000257C00000002054CD4240000000007EF456C000000000A6CC424000000060EAF056C0000000E033CC4240000000C0B1F056C00000006063B6424000000060E6E956C000000040FFB5424000000000B0EA56C0000000004286424000000080CD0557C00000004074874240 3.86676699999999984
|
||||
73 0106000020E6100000010000000103000000010000000E000000000000E0FF5D56C0000000C071AB424000000020E35B56C00000002088AD4240000000605D5B56C0000000409CB4424000000020085D56C00000000002BA424000000080AA5F56C0000000E0F0BE424000000020996156C0000000E035C94240FFFFFF7F835E56C000000080FAC84240FFFFFF7F825D56C0FFFFFF1FA9CA4240000000C0655D56C0000000A09ECD424000000000CE4956C00000004053CD4240000000E0F64256C0FFFFFFDF38CD4240000000002E4356C0FFFFFFFF29AB4240000000C0BC4F56C0000000C03CAB4240000000E0FF5D56C0000000C071AB4240 1.86840800000000007
|
||||
74 0106000020E61000000100000001030000000100000024000000000000808AAF56C0000000E0CBA24240000000A093AF56C0000000E0549542400000006089B056C00000002032954240000000E0B1B056C0FFFFFFFF0E924240000000202CB256C00000002007924240000000C071B256C000000060B4864240FFFFFFBF2FBE56C0000000A04E874240000000802ABE56C000000080B48C4240FFFFFF7F90C156C0FFFFFF9FCB8C424000000080BAC156C0000000C003924240000000E09DC256C0000000A01B92424000000020C3C256C0000000807895424000000020D4C456C00000008020954240000000C0EAC456C0FFFFFF7F84964240000000E019C656C0000000409A964240000000E035C656C000000080E899424000000000C3C856C000000000D7994240000000A0D9C856C0000000C0899E42400000006055C856C0FFFFFF1FAB9E42400000000047C856C0000000804BA04240000000005BCA56C0000000A0D1A04240000000805DCA56C0000000204EA84240000000E096CB56C0000000E080A8424000000080B0CB56C000000040A1B44240000000C049CE56C0000000E0D8B442400000008032CE56C00000006039C04240000000A067D456C000000060BDC04240000000408AD456C000000000C3CB42400000008089CA56C00000008095CB4240000000C00AC756C00000000081CB4240FFFFFF7F5EC056C0000000805BCD424000000080CAB156C0000000600DCD424000000040D5B156C00000004066AF4240000000800DB056C00000002043AF4240FFFFFF3F5BB056C000000020F4A24240000000808AAF56C0000000E0CBA24240 12.5770339999999994
|
||||
75 0106000020E6100000010000000103000000010000000D000000000000A0A47756C0000000C0DA904240000000E07A7D56C000000060D090424000000060B67D56C00000000057884240000000E0BD7F56C00000008017884240000000C0D87F56C0000000805986424000000040568756C00000000039864240000000605B8756C0000000E0188B4240000000E02F8E56C0000000A0058B424000000060378E56C0000000A0EBA7424000000040968956C000000040EAA7424000000000908956C0000000E0B3CC424000000060627756C000000060F8CC4240000000A0A47756C0000000C0DA904240 7.80359900000000017
|
||||
76 0106000020E6100000010000000103000000010000002800000000000060627756C000000060F8CC4240000000A0D07356C000000080EECC4240000000E0817156C0FFFFFF3F6FCB4240000000C0F16E56C0000000E0A9CC4240000000A0296E56C000000080E9CB424000000020756D56C000000020BACC4240000000E03A6C56C00000008035CC424000000060DB6B56C0000000801BCB424000000020126956C000000000DBCC4240000000A08C6856C000000080A3CB424000000020FD6656C00000006065CC4240000000A0D56556C0FFFFFF3F7FC9424000000020996156C0000000E035C9424000000080AA5F56C0000000E0F0BE424000000020085D56C00000000002BA4240000000605D5B56C0000000409CB4424000000020E35B56C00000002088AD4240000000E0FF5D56C0000000C071AB424000000080096056C0FFFFFF1F2BAA424000000080E36056C00000000009A7424000000080E36056C0FFFFFF1F61A3424000000080555F56C0000000A0C4A0424000000060D06056C000000000079F4240000000C0F46556C000000000279E424000000000FE6556C0000000A01B9D424000000040236856C000000020EE9C4240FFFFFF7F196856C000000000C59B424000000000CD6956C0000000E06A9B424000000060CC6956C00000008027994240000000A0336C56C00000000008994240FFFFFFFF326C56C0FFFFFF9F2C974240FFFFFF7F876D56C0FFFFFF5FD296424000000020906D56C0000000208094424000000020866E56C0000000806194424000000080986E56C0000000E0FC924240000000A0A07056C000000080BF924240000000A0B27056C000000060B790424000000060BB7156C000000060A7904240000000A0A47756C0000000C0DA90424000000060627756C000000060F8CC4240 3.47149000000000019
|
||||
77 0106000020E6100000010000000103000000010000001800000000000000B0EA56C0000000004286424000000060E6E956C000000040FFB54240000000C049CE56C0000000E0D8B4424000000080B0CB56C000000040A1B44240000000E096CB56C0000000E080A84240000000805DCA56C0000000204EA84240000000005BCA56C0000000A0D1A042400000000047C856C0000000804BA042400000006055C856C0FFFFFF1FAB9E4240000000A0D9C856C0000000C0899E424000000000C3C856C000000000D7994240000000E035C656C000000080E8994240000000E019C656C0000000409A964240000000C0EAC456C0FFFFFF7F8496424000000020D4C456C0000000802095424000000020C3C256C00000008078954240000000E09DC256C0000000A01B92424000000080BAC156C0000000C003924240FFFFFF7F90C156C0FFFFFF9FCB8C4240000000E031C756C000000080E88A4240000000806ECE56C0000000E0E18A424000000040AFCE56C000000020DF704240000000C0B7EA56C0000000C06A71424000000000B0EA56C00000000042864240 4.33482199999999995
|
||||
78 0106000020E6100000010000000103000000010000001F000000000000E08FAB56C0000000807A76424000000040ABAC56C000000080A176424000000020BFAC56C0000000A0BC7B4240FFFFFFDFF6AD56C000000000E37B424000000000FEAD56C0000000604F7F42400000004052AF56C000000000847F42400000000061AF56C0FFFFFFBF6B864240000000C071B256C000000060B4864240000000202CB256C00000002007924240000000E0B1B056C0FFFFFFFF0E9242400000006089B056C00000002032954240000000A093AF56C0000000E054954240000000808AAF56C0000000E0CBA24240FFFFFF7FD8A356C0000000A004A34240000000408CA356C0000000C0F4A7424000000060378E56C0000000A0EBA74240000000E02F8E56C0000000A0058B4240000000605B8756C0000000E0188B424000000040568756C0000000003986424000000060BC8956C0000000604186424000000060E68956C0000000809C81424000000060D28A56C0000000207C81424000000000F58A56C000000060D07E424000000000108C56C0000000A0A07E424000000060338C56C000000040987C4240FFFFFFFF318D56C000000080777C424000000040438D56C0000000A0217B4240000000607A8E56C000000080E27A424000000000938E56C000000080EC77424000000040D09056C00000004054764240000000E08FAB56C0000000807A764240 8.45153700000000008
|
||||
\.
|
||||
|
||||
|
||||
CREATE INDEX getis_data_gix ON getis_data USING GIST(the_geom);
|
||||
@@ -1,12 +0,0 @@
|
||||
WITH g AS (
|
||||
SELECT ST_Buffer(ST_SetSRID(ST_MakePoint(0,0),4326)::geometry, 1000)::geometry AS g
|
||||
),
|
||||
points AS(
|
||||
SELECT (
|
||||
ST_Dump(
|
||||
cdb_crankshaft.cdb_dot_density(g.g, 100)
|
||||
)
|
||||
).geom AS p FROM g
|
||||
)
|
||||
|
||||
SELECT count(*), sum(CASE WHEN ST_Contains(g,p) THEN 1 ELSE 0 END) FROM points, g
|
||||
|
||||
15
src/pg/test/sql/16_getis_test.sql
Normal file
15
src/pg/test/sql/16_getis_test.sql
Normal file
@@ -0,0 +1,15 @@
|
||||
\pset format unaligned
|
||||
\set ECHO all
|
||||
\i test/fixtures/getis_data.sql
|
||||
|
||||
-- set random seed
|
||||
SELECT cdb_crankshaft._cdb_random_seeds(1234);
|
||||
|
||||
-- test against PySAL example dataset 'stl_hom'
|
||||
SELECT rowid, round(z_score, 4) As z_score, round(p_value, 4) As p_value
|
||||
FROM cdb_crankshaft.CDB_GetisOrdsG(
|
||||
'select * from getis_data',
|
||||
'hr8893', 'queen', NULL, 999,
|
||||
'the_geom', 'cartodb_id') As t(z_score, p_value, p_z_sim, rowid)
|
||||
WHERE round(p_value, 4) <= 0.05
|
||||
ORDER BY rowid ASC;
|
||||
85
src/pg/test/sql/18_outliers_test.sql
Normal file
85
src/pg/test/sql/18_outliers_test.sql
Normal file
@@ -0,0 +1,85 @@
|
||||
SET client_min_messages TO WARNING;
|
||||
\set ECHO none
|
||||
\pset format unaligned
|
||||
|
||||
--
|
||||
-- postgres=# select round(avg(i), 3) as avg,
|
||||
-- round(stddev(i), 3) as stddev,
|
||||
-- round(avg(i) + stddev(i), 3) as one_stddev,
|
||||
-- round(avg(i) + 2 * stddev(i), 3) As two_stddev
|
||||
-- from unnest(ARRAY[1,3,2,3,5,1,2,32,12,3,57,2,1,4,2,100]) As x(i);
|
||||
-- avg | stddev | one_stddev | two_stddev
|
||||
-- --------+--------+------------+------------
|
||||
-- 14.375 | 27.322 | 41.697 | 69.020
|
||||
|
||||
|
||||
-- With an threshold of 1.0 standard deviation, ids 11, 16, and 17 are outliers
|
||||
WITH a AS (
|
||||
SELECT
|
||||
ARRAY[1,3,2,3,5,1,2,32,12, 3,57, 2, 1, 4, 2,100,-100]::numeric[] As vals, ARRAY[1,2,3,4,5,6,7, 8, 9,10,11,12,13,14,15, 16, 17]::int[] As ids
|
||||
), b As (
|
||||
SELECT
|
||||
(cdb_crankshaft.cdb_StdDevOutlier(vals, 1.0, ids)).*
|
||||
FROM a
|
||||
ORDER BY ids)
|
||||
SELECT *
|
||||
FROM b
|
||||
WHERE is_outlier IS TRUE;
|
||||
|
||||
-- With a threshold of 2.0 standard deviations, id 16 is the only outlier
|
||||
WITH a AS (
|
||||
SELECT
|
||||
ARRAY[1,3,2,3,5,1,2,32,12, 3,57, 2, 1, 4, 2,100,-100]::numeric[] As vals,
|
||||
ARRAY[1,2,3,4,5,6,7, 8, 9,10,11,12,13,14,15, 16, 17]::int[] As ids
|
||||
), b As (
|
||||
SELECT
|
||||
(cdb_crankshaft.CDB_StdDevOutlier(vals, 2.0, ids)).*
|
||||
FROM a
|
||||
ORDER BY ids)
|
||||
SELECT *
|
||||
FROM b
|
||||
WHERE is_outlier IS TRUE;
|
||||
|
||||
-- With a Stddev of zero, should throw back error
|
||||
-- With a threshold of 2.0 standard deviations, id 16 is the only outlier
|
||||
WITH a AS (
|
||||
SELECT
|
||||
ARRAY[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]::numeric[] As vals,
|
||||
ARRAY[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]::int[] As ids
|
||||
), b As (
|
||||
SELECT
|
||||
(cdb_crankshaft.CDB_StdDevOutlier(vals, 1.0, ids)).*
|
||||
FROM a
|
||||
ORDER BY ids)
|
||||
SELECT *
|
||||
FROM b
|
||||
WHERE is_outlier IS TRUE;
|
||||
|
||||
-- With a ratio threshold of 2.0 threshold (100% above or below the mean)
|
||||
-- which is greater than ~21, which are values
|
||||
WITH a AS (
|
||||
SELECT
|
||||
ARRAY[1,3,2,3,5,1,2,32,12, 3,57, 2, 1, 4, 2,100,-100]::numeric[] As vals,
|
||||
ARRAY[1,2,3,4,5,6,7, 8, 9,10,11,12,13,14,15, 16, 17]::int[] As ids
|
||||
), b As (
|
||||
SELECT
|
||||
(cdb_crankshaft.CDB_PercentOutlier(vals, 2.0, ids)).*
|
||||
FROM a
|
||||
ORDER BY ids)
|
||||
SELECT *
|
||||
FROM b
|
||||
WHERE is_outlier IS TRUE;
|
||||
|
||||
-- With a static threshold of 11, what are the outliers
|
||||
WITH a AS (
|
||||
SELECT
|
||||
ARRAY[1,3,2,3,5,1,2,32,12, 3,57, 2, 1, 4, 2,100,-100]::numeric[] As vals,
|
||||
ARRAY[1,2,3,4,5,6,7, 8, 9,10,11,12,13,14,15, 16, 17]::int[] As ids
|
||||
), b As (
|
||||
SELECT unnest(vals) As v, unnest(ids) as i
|
||||
FROM a
|
||||
)
|
||||
SELECT cdb_crankshaft.CDB_StaticOutlier(v, 11.0) As is_outlier, i As rowid
|
||||
FROM b
|
||||
WHERE cdb_crankshaft.CDB_StaticOutlier(v, 11.0) is True
|
||||
ORDER BY i;
|
||||
@@ -1,3 +1,4 @@
|
||||
"""Import all functions from for clustering"""
|
||||
from moran import *
|
||||
from kmeans import *
|
||||
from getis import *
|
||||
|
||||
52
src/py/crankshaft/crankshaft/clustering/getis.py
Normal file
52
src/py/crankshaft/crankshaft/clustering/getis.py
Normal file
@@ -0,0 +1,52 @@
|
||||
"""
|
||||
Getis-Ord's G geostatistics (hotspot/coldspot analysis)
|
||||
"""
|
||||
|
||||
import pysal as ps
|
||||
import plpy
|
||||
from collections import OrderedDict
|
||||
|
||||
# crankshaft module
|
||||
import crankshaft.pysal_utils as pu
|
||||
|
||||
# High level interface ---------------------------------------
|
||||
|
||||
|
||||
def getis_ord(subquery, attr,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Getis-Ord's G*
|
||||
Implementation building neighbors with a PostGIS database and PySAL's
|
||||
Getis-Ord's G* hotspot/coldspot module.
|
||||
Andy Eschbacher
|
||||
"""
|
||||
|
||||
# geometries with attributes that are null are ignored
|
||||
# resulting in a collection of not as near neighbors if kNN is chosen
|
||||
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(4)
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Query failed: %s' % err)
|
||||
|
||||
attr_vals = pu.get_attributes(result)
|
||||
|
||||
# build PySAL weight object
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate Getis-Ord's G* z- and p-values
|
||||
getis = ps.esda.getisord.G_Local(attr_vals, weight,
|
||||
star=True, permutations=permutations)
|
||||
|
||||
return zip(getis.z_sim, getis.p_sim, getis.p_z_sim, weight.id_order)
|
||||
@@ -45,8 +45,16 @@ def get_weight(query_res, w_type='knn', num_ngbrs=5):
|
||||
def query_attr_select(params):
|
||||
"""
|
||||
Create portion of SELECT statement for attributes inolved in query.
|
||||
Defaults to order in the params
|
||||
@param params: dict of information used in query (column names,
|
||||
table name, etc.)
|
||||
Example:
|
||||
OrderedDict([('numerator', 'price'),
|
||||
('denominator', 'sq_meters'),
|
||||
('subquery', 'SELECT * FROM interesting_data')])
|
||||
Output:
|
||||
"i.\"price\"::numeric As attr1, " \
|
||||
"i.\"sq_meters\"::numeric As attr2, "
|
||||
"""
|
||||
|
||||
attr_string = ""
|
||||
@@ -64,7 +72,7 @@ def query_attr_select(params):
|
||||
if k not in ('id_col', 'geom_col', 'subquery',
|
||||
'num_ngbrs', 'subquery')]
|
||||
|
||||
for idx, val in enumerate(sorted(attrs)):
|
||||
for idx, val in enumerate(attrs):
|
||||
attr_string += template % {"col": params[val],
|
||||
"alias_num": idx + 1}
|
||||
|
||||
@@ -80,8 +88,8 @@ def query_attr_where(params):
|
||||
'numerator': 'data1',
|
||||
'denominator': 'data2',
|
||||
'': ...}
|
||||
Output: 'idx_replace."data1" IS NOT NULL AND idx_replace."data2"
|
||||
IS NOT NULL'
|
||||
Output:
|
||||
'idx_replace."data1" IS NOT NULL AND idx_replace."data2" IS NOT NULL'
|
||||
Input:
|
||||
{'subquery': ...,
|
||||
'time_cols': ['time1', 'time2', 'time3'],
|
||||
@@ -102,15 +110,17 @@ def query_attr_where(params):
|
||||
# moran where clauses
|
||||
|
||||
# get keys
|
||||
attrs = sorted([k for k in params
|
||||
if k not in ('id_col', 'geom_col', 'subquery',
|
||||
'num_ngbrs', 'subquery')])
|
||||
attrs = [k for k in params
|
||||
if k not in ('id_col', 'geom_col', 'subquery',
|
||||
'num_ngbrs', 'subquery')]
|
||||
|
||||
# add values to template
|
||||
for attr in attrs:
|
||||
attr_string.append(template % params[attr])
|
||||
|
||||
if len(attrs) == 2:
|
||||
attr_string.append("idx_replace.\"%s\" <> 0" % params[attrs[1]])
|
||||
if 'denominator' in attrs:
|
||||
attr_string.append(
|
||||
"idx_replace.\"%s\" <> 0" % params['denominator'])
|
||||
|
||||
out = " AND ".join(attr_string)
|
||||
|
||||
|
||||
@@ -8,12 +8,14 @@ import pysal as ps
|
||||
import plpy
|
||||
import crankshaft.pysal_utils as pu
|
||||
|
||||
|
||||
def spatial_markov_trend(subquery, time_cols, num_classes=7,
|
||||
w_type='knn', num_ngbrs=5, permutations=0,
|
||||
geom_col='the_geom', id_col='cartodb_id'):
|
||||
"""
|
||||
Predict the trends of a unit based on:
|
||||
1. history of its transitions to different classes (e.g., 1st quantile -> 2nd quantile)
|
||||
1. history of its transitions to different classes (e.g., 1st quantile
|
||||
-> 2nd quantile)
|
||||
2. average class of its neighbors
|
||||
|
||||
Inputs:
|
||||
@@ -56,16 +58,15 @@ def spatial_markov_trend(subquery, time_cols, num_classes=7,
|
||||
)
|
||||
if len(query_result) == 0:
|
||||
return zip([None], [None], [None], [None], [None])
|
||||
except plpy.SPIError, e:
|
||||
plpy.debug('Query failed with exception %s: %s' % (err, pu.construct_neighbor_query(w_type, qvals)))
|
||||
plpy.error('Analysis failed: %s' % e)
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
return zip([None], [None], [None], [None], [None])
|
||||
|
||||
## build weight
|
||||
# build weight
|
||||
weights = pu.get_weight(query_result, w_type)
|
||||
weights.transform = 'r'
|
||||
|
||||
## prep time data
|
||||
# prep time data
|
||||
t_data = get_time_data(query_result, time_cols)
|
||||
|
||||
plpy.debug('shape of t_data %d, %d' % t_data.shape)
|
||||
@@ -78,23 +79,26 @@ def spatial_markov_trend(subquery, time_cols, num_classes=7,
|
||||
fixed=False,
|
||||
permutations=permutations)
|
||||
|
||||
## get lag classes
|
||||
# get lag classes
|
||||
lag_classes = ps.Quantiles(
|
||||
ps.lag_spatial(weights, t_data[:, -1]),
|
||||
k=num_classes).yb
|
||||
|
||||
## look up probablity distribution for each unit according to class and lag class
|
||||
# look up probablity distribution for each unit according to class and lag
|
||||
# class
|
||||
prob_dist = get_prob_dist(sp_markov_result.P,
|
||||
lag_classes,
|
||||
sp_markov_result.classes[:, -1])
|
||||
|
||||
## find the ups and down and overall distribution of each cell
|
||||
trend_up, trend_down, trend, volatility = get_prob_stats(prob_dist,
|
||||
sp_markov_result.classes[:, -1])
|
||||
# find the ups and down and overall distribution of each cell
|
||||
trend_up, trend_down, trend, volatility = get_prob_stats(
|
||||
prob_dist,
|
||||
sp_markov_result.classes[:, -1])
|
||||
|
||||
## output the results
|
||||
# output the results
|
||||
return zip(trend, trend_up, trend_down, volatility, weights.id_order)
|
||||
|
||||
|
||||
def get_time_data(markov_data, time_cols):
|
||||
"""
|
||||
Extract the time columns and bin appropriately
|
||||
@@ -103,7 +107,8 @@ def get_time_data(markov_data, time_cols):
|
||||
return np.array([[x['attr' + str(i)] for x in markov_data]
|
||||
for i in range(1, num_attrs+1)], dtype=float).transpose()
|
||||
|
||||
## not currently used
|
||||
|
||||
# not currently used
|
||||
def rebin_data(time_data, num_time_per_bin):
|
||||
"""
|
||||
Convert an n x l matrix into an (n/m) x l matrix where the values are
|
||||
@@ -131,14 +136,16 @@ def rebin_data(time_data, num_time_per_bin):
|
||||
"""
|
||||
|
||||
if time_data.shape[1] % num_time_per_bin == 0:
|
||||
## if fit is perfect, then use it
|
||||
# if fit is perfect, then use it
|
||||
n_max = time_data.shape[1] / num_time_per_bin
|
||||
else:
|
||||
## fit remainders into an additional column
|
||||
# fit remainders into an additional column
|
||||
n_max = time_data.shape[1] / num_time_per_bin + 1
|
||||
|
||||
return np.array([time_data[:, num_time_per_bin * i:num_time_per_bin * (i+1)].mean(axis=1)
|
||||
for i in range(n_max)]).T
|
||||
return np.array(
|
||||
[time_data[:, num_time_per_bin * i:num_time_per_bin * (i+1)].mean(axis=1)
|
||||
for i in range(n_max)]).T
|
||||
|
||||
|
||||
def get_prob_dist(transition_matrix, lag_indices, unit_indices):
|
||||
"""
|
||||
@@ -157,6 +164,7 @@ def get_prob_dist(transition_matrix, lag_indices, unit_indices):
|
||||
return np.array([transition_matrix[(lag_indices[i], unit_indices[i])]
|
||||
for i in range(len(lag_indices))])
|
||||
|
||||
|
||||
def get_prob_stats(prob_dist, unit_indices):
|
||||
"""
|
||||
get the statistics of the probability distributions
|
||||
@@ -179,11 +187,12 @@ def get_prob_stats(prob_dist, unit_indices):
|
||||
trend_up[i] = prob_dist[i, (unit_indices[i]+1):].sum()
|
||||
trend_down[i] = prob_dist[i, :unit_indices[i]].sum()
|
||||
if prob_dist[i, unit_indices[i]] > 0.0:
|
||||
trend[i] = (trend_up[i] - trend_down[i]) / prob_dist[i, unit_indices[i]]
|
||||
trend[i] = ((trend_up[i] - trend_down[i]) /
|
||||
(prob_dist[i, unit_indices[i]]))
|
||||
else:
|
||||
trend[i] = None
|
||||
|
||||
## calculate volatility of distribution
|
||||
# calculate volatility of distribution
|
||||
volatility = prob_dist.std(axis=1)
|
||||
|
||||
return trend_up, trend_down, trend, volatility
|
||||
|
||||
5
src/py/crankshaft/requirements.txt
Normal file
5
src/py/crankshaft/requirements.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
joblib==0.8.3
|
||||
numpy==1.6.1
|
||||
scipy==0.14.0
|
||||
pysal==1.11.2
|
||||
scikit-learn==0.14.1
|
||||
1
src/py/crankshaft/test/fixtures/getis.json
vendored
Normal file
1
src/py/crankshaft/test/fixtures/getis.json
vendored
Normal file
@@ -0,0 +1 @@
|
||||
[[0.004793783909323601, 0.17999999999999999, 0.49808756424021061], [-1.0701189472090842, 0.079000000000000001, 0.14228288580832316], [-0.67867750971877305, 0.42099999999999999, 0.24867110969448558], [-0.67407386707620487, 0.246, 0.25013217644612995], [-0.79495689068870035, 0.33200000000000002, 0.21331928959090596], [-0.49279481022182703, 0.058999999999999997, 0.31107878905057329], [-0.38075627530057132, 0.28399999999999997, 0.35169205342069643], [-0.86710921611314895, 0.23699999999999999, 0.19294108571294855], [-0.78618647240956485, 0.050000000000000003, 0.2158791250244505], [-0.76108527223116984, 0.064000000000000001, 0.22330306830813684], [-0.13340753531942209, 0.247, 0.44693554317763651], [-0.57584545722033043, 0.48999999999999999, 0.28235982246156488], [-0.78882694661192831, 0.433, 0.2151065788731219], [-0.38769767950046219, 0.375, 0.34911988661484239], [-0.56057819488052207, 0.41399999999999998, 0.28754255985169652], [-0.41354017495644935, 0.45500000000000002, 0.339605447117173], [-0.23993577722243081, 0.49099999999999999, 0.40519002230969337], [-0.1389080156677496, 0.40400000000000003, 0.44476141839645233], [-0.25485737510500855, 0.376, 0.39941662953554224], [-0.71218610582902353, 0.17399999999999999, 0.23817476979886087], [-0.54533105995872144, 0.13700000000000001, 0.2927629228714812], [-0.39547917847510977, 0.033000000000000002, 0.34624464252424236], [-0.43052658996257548, 0.35399999999999998, 0.33340631435564982], [-0.37296719193774736, 0.40300000000000002, 0.35458643102865428], [-0.66482612169465694, 0.31900000000000001, 0.25308085650392698], [-0.13772133540823422, 0.34699999999999998, 0.44523032843016275], [-0.6765304487868502, 0.20999999999999999, 0.24935196033890672], [-0.64518763494323472, 0.32200000000000001, 0.25940279912025543], [-0.5078622084312413, 0.41099999999999998, 0.30577498972600159], [-0.12652006733772059, 0.42899999999999999, 0.44966013262301163], [-0.32691133022814595, 0.498, 0.37186747562269029], [0.25533848511500978, 0.42399999999999999, 0.39923083899077472], [2.7045138116476508, 0.0050000000000000001, 0.0034202212972238577], [-0.1551614486076057, 0.44400000000000001, 0.43834701985429037], [1.9524487722567723, 0.012999999999999999, 0.025442473674991528], [-1.2055816465306763, 0.017000000000000001, 0.11398941970467646], [3.478472976017831, 0.002, 0.00025213964072468009], [-1.4621715757903719, 0.002, 0.071847099325659136], [-0.84010307600180256, 0.085000000000000006, 0.20042529779230778], [5.7097646237318243, 0.0030000000000000001, 5.6566262784940591e-09], [1.5082367956567375, 0.065000000000000002, 0.065746966514827365], [-0.58337270103430816, 0.44, 0.27982121546450034], [-0.083271860457022437, 0.45100000000000001, 0.46681768733385554], [-0.46872337815000953, 0.34599999999999997, 0.31963368715684204], [0.18490279849545319, 0.23799999999999999, 0.42665263797981101], [3.470424529947997, 0.012, 0.00025981817437825683], [-0.99942612137154796, 0.032000000000000001, 0.15879415560388499], [-1.3650387953594485, 0.034000000000000002, 0.08612042845912049], [1.8617160516432014, 0.081000000000000003, 0.03132156240215267], [1.1321188945775384, 0.11600000000000001, 0.12879222611766061], [0.064116686050580601, 0.27300000000000002, 0.4744386578180424], [-0.42032194540259099, 0.29999999999999999, 0.33712514016213468], [-0.79581215423980922, 0.123, 0.21307061309098785], [-0.42792753720906046, 0.45600000000000002, 0.33435193892883741], [-1.0629378527428395, 0.051999999999999998, 0.14390506780140866], [-0.54164761752225477, 0.33700000000000002, 0.29403064095211839], [1.0934778886820793, 0.13700000000000001, 0.13709201601893539], [-0.094068785378413719, 0.38200000000000001, 0.46252725802998929], [0.13482026574801856, 0.36799999999999999, 0.44637699118865737], [-0.13976995315653129, 0.34699999999999998, 0.44442087706276601], [-0.051047663924746682, 0.32000000000000001, 0.47964376985626245], [-0.21468297736730158, 0.41699999999999998, 0.41500724761906527], [-0.20873154637330626, 0.38800000000000001, 0.41732890604390893], [-0.32427876152583485, 0.49199999999999999, 0.37286349875557478], [-0.65254842943280977, 0.374, 0.25702372075306734], [-0.48611858196118796, 0.23300000000000001, 0.31344154643990074], [-0.14482354344529477, 0.32600000000000001, 0.44242509660469886], [-0.51052030974200002, 0.439, 0.30484349480873729], [0.56814382285283538, 0.14999999999999999, 0.28496865660103166], [0.58680919931668207, 0.161, 0.27866592887231878], [0.013390357044409013, 0.25800000000000001, 0.49465818005865647], [-0.19050728887961568, 0.41399999999999998, 0.4244558160399462], [-0.60531777422216049, 0.35199999999999998, 0.2724839368239631], [1.0899331115425805, 0.127, 0.13787130480311838], [0.17015055382651084, 0.36899999999999999, 0.43244586845546418], [-0.21738337124409801, 0.40600000000000003, 0.41395479459421991], [1.0329303331079593, 0.079000000000000001, 0.15081825117169467], [1.0218317101096221, 0.104, 0.15343027913308094]]
|
||||
1
src/py/crankshaft/test/fixtures/neighbors_getis.json
vendored
Normal file
1
src/py/crankshaft/test/fixtures/neighbors_getis.json
vendored
Normal file
File diff suppressed because one or more lines are too long
74
src/py/crankshaft/test/test_clustering_getis.py
Normal file
74
src/py/crankshaft/test/test_clustering_getis.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
|
||||
# from mock_plpy import MockPlPy
|
||||
# plpy = MockPlPy()
|
||||
#
|
||||
# import sys
|
||||
# sys.modules['plpy'] = plpy
|
||||
from helper import plpy, fixture_file
|
||||
|
||||
import crankshaft.clustering as cc
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
|
||||
# Fixture files produced as follows
|
||||
#
|
||||
# import pysal as ps
|
||||
# import numpy as np
|
||||
# import random
|
||||
#
|
||||
# # setup variables
|
||||
# f = ps.open(ps.examples.get_path("stl_hom.dbf"))
|
||||
# y = np.array(f.by_col['HR8893'])
|
||||
# w_queen = ps.queen_from_shapefile(ps.examples.get_path("stl_hom.shp"))
|
||||
#
|
||||
# out_queen = [{"id": index + 1,
|
||||
# "neighbors": [x+1 for x in w_queen.neighbors[index]],
|
||||
# "value": val} for index, val in enumerate(y)]
|
||||
#
|
||||
# with open('neighbors_queen_getis.json', 'w') as f:
|
||||
# f.write(str(out_queen))
|
||||
#
|
||||
# random.seed(1234)
|
||||
# np.random.seed(1234)
|
||||
# lgstar_queen = ps.esda.getisord.G_Local(y, w_queen, star=True,
|
||||
# permutations=999)
|
||||
#
|
||||
# with open('getis_queen.json', 'w') as f:
|
||||
# f.write(str(zip(lgstar_queen.z_sim,
|
||||
# lgstar_queen.p_sim, lgstar_queen.p_z_sim)))
|
||||
|
||||
|
||||
class GetisTest(unittest.TestCase):
|
||||
"""Testing class for Getis-Ord's G* funtion
|
||||
This test replicates the work done in PySAL documentation:
|
||||
https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/autocorrelation.html#local-g-and-g
|
||||
"""
|
||||
|
||||
def setUp(self):
|
||||
plpy._reset()
|
||||
|
||||
# load raw data for analysis
|
||||
self.neighbors_data = json.loads(
|
||||
open(fixture_file('neighbors_getis.json')).read())
|
||||
|
||||
# load pre-computed/known values
|
||||
self.getis_data = json.loads(
|
||||
open(fixture_file('getis.json')).read())
|
||||
|
||||
def test_getis_ord(self):
|
||||
"""Test Getis-Ord's G*"""
|
||||
data = [{'id': d['id'],
|
||||
'attr1': d['value'],
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
plpy._define_result('select', data)
|
||||
random_seeds.set_random_seeds(1234)
|
||||
result = cc.getis_ord('subquery', 'value',
|
||||
'queen', None, 999, 'the_geom', 'cartodb_id')
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
expected = np.array(self.getis_data)[:, 0:2]
|
||||
for ([res_z, res_p], [exp_z, exp_p]) in zip(result, expected):
|
||||
self.assertAlmostEqual(res_z, exp_z, delta=1e-2)
|
||||
@@ -2,18 +2,33 @@ import unittest
|
||||
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class PysalUtilsTest(unittest.TestCase):
|
||||
"""Testing class for utility functions related to PySAL integrations"""
|
||||
|
||||
def setUp(self):
|
||||
self.params = {"id_col": "cartodb_id",
|
||||
"attr1": "andy",
|
||||
"attr2": "jay_z",
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
self.params1 = OrderedDict([("id_col", "cartodb_id"),
|
||||
("attr1", "andy"),
|
||||
("attr2", "jay_z"),
|
||||
("subquery", "SELECT * FROM a_list"),
|
||||
("geom_col", "the_geom"),
|
||||
("num_ngbrs", 321)])
|
||||
|
||||
self.params2 = OrderedDict([("id_col", "cartodb_id"),
|
||||
("numerator", "price"),
|
||||
("denominator", "sq_meters"),
|
||||
("subquery", "SELECT * FROM pecan"),
|
||||
("geom_col", "the_geom"),
|
||||
("num_ngbrs", 321)])
|
||||
|
||||
self.params3 = OrderedDict([("id_col", "cartodb_id"),
|
||||
("numerator", "sq_meters"),
|
||||
("denominator", "price"),
|
||||
("subquery", "SELECT * FROM pecan"),
|
||||
("geom_col", "the_geom"),
|
||||
("num_ngbrs", 321)])
|
||||
|
||||
self.params_array = {"id_col": "cartodb_id",
|
||||
"time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"],
|
||||
@@ -24,34 +39,41 @@ class PysalUtilsTest(unittest.TestCase):
|
||||
def test_query_attr_select(self):
|
||||
"""Test query_attr_select"""
|
||||
|
||||
ans = "i.\"andy\"::numeric As attr1, " \
|
||||
"i.\"jay_z\"::numeric As attr2, "
|
||||
ans1 = ("i.\"andy\"::numeric As attr1, "
|
||||
"i.\"jay_z\"::numeric As attr2, ")
|
||||
|
||||
ans_array = "i.\"_2013_dec\"::numeric As attr1, " \
|
||||
"i.\"_2014_jan\"::numeric As attr2, " \
|
||||
"i.\"_2014_feb\"::numeric As attr3, "
|
||||
ans2 = ("i.\"price\"::numeric As attr1, "
|
||||
"i.\"sq_meters\"::numeric As attr2, ")
|
||||
|
||||
self.assertEqual(pu.query_attr_select(self.params), ans)
|
||||
ans3 = ("i.\"sq_meters\"::numeric As attr1, "
|
||||
"i.\"price\"::numeric As attr2, ")
|
||||
|
||||
ans_array = ("i.\"_2013_dec\"::numeric As attr1, "
|
||||
"i.\"_2014_jan\"::numeric As attr2, "
|
||||
"i.\"_2014_feb\"::numeric As attr3, ")
|
||||
|
||||
self.assertEqual(pu.query_attr_select(self.params1), ans1)
|
||||
self.assertEqual(pu.query_attr_select(self.params2), ans2)
|
||||
self.assertEqual(pu.query_attr_select(self.params3), ans3)
|
||||
self.assertEqual(pu.query_attr_select(self.params_array), ans_array)
|
||||
|
||||
def test_query_attr_where(self):
|
||||
"""Test pu.query_attr_where"""
|
||||
|
||||
ans = "idx_replace.\"andy\" IS NOT NULL AND " \
|
||||
"idx_replace.\"jay_z\" IS NOT NULL AND " \
|
||||
"idx_replace.\"jay_z\" <> 0"
|
||||
ans1 = ("idx_replace.\"andy\" IS NOT NULL AND "
|
||||
"idx_replace.\"jay_z\" IS NOT NULL")
|
||||
|
||||
ans_array = "idx_replace.\"_2013_dec\" IS NOT NULL AND " \
|
||||
"idx_replace.\"_2014_jan\" IS NOT NULL AND " \
|
||||
"idx_replace.\"_2014_feb\" IS NOT NULL"
|
||||
ans_array = ("idx_replace.\"_2013_dec\" IS NOT NULL AND "
|
||||
"idx_replace.\"_2014_jan\" IS NOT NULL AND "
|
||||
"idx_replace.\"_2014_feb\" IS NOT NULL")
|
||||
|
||||
self.assertEqual(pu.query_attr_where(self.params), ans)
|
||||
self.assertEqual(pu.query_attr_where(self.params1), ans1)
|
||||
self.assertEqual(pu.query_attr_where(self.params_array), ans_array)
|
||||
|
||||
def test_knn(self):
|
||||
"""Test knn neighbors constructor"""
|
||||
|
||||
ans = "SELECT i.\"cartodb_id\" As id, " \
|
||||
ans1 = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"andy\"::numeric As attr1, " \
|
||||
"i.\"jay_z\"::numeric As attr2, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
@@ -59,17 +81,15 @@ class PysalUtilsTest(unittest.TestCase):
|
||||
"WHERE " \
|
||||
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
|
||||
"j.\"andy\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" <> 0 " \
|
||||
"j.\"jay_z\" IS NOT NULL " \
|
||||
"ORDER BY " \
|
||||
"j.\"the_geom\" <-> i.\"the_geom\" ASC " \
|
||||
"LIMIT 321)) As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"andy\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" <> 0 " \
|
||||
"i.\"jay_z\" IS NOT NULL " \
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
|
||||
ans_array = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"_2013_dec\"::numeric As attr1, " \
|
||||
"i.\"_2014_jan\"::numeric As attr2, " \
|
||||
@@ -88,13 +108,13 @@ class PysalUtilsTest(unittest.TestCase):
|
||||
"i.\"_2014_feb\" IS NOT NULL "\
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
self.assertEqual(pu.knn(self.params), ans)
|
||||
self.assertEqual(pu.knn(self.params1), ans1)
|
||||
self.assertEqual(pu.knn(self.params_array), ans_array)
|
||||
|
||||
def test_queen(self):
|
||||
"""Test queen neighbors constructor"""
|
||||
|
||||
ans = "SELECT i.\"cartodb_id\" As id, " \
|
||||
ans1 = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"andy\"::numeric As attr1, " \
|
||||
"i.\"jay_z\"::numeric As attr2, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
@@ -104,23 +124,21 @@ class PysalUtilsTest(unittest.TestCase):
|
||||
"ST_Touches(i.\"the_geom\", " \
|
||||
"j.\"the_geom\") AND " \
|
||||
"j.\"andy\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" <> 0)" \
|
||||
"j.\"jay_z\" IS NOT NULL)" \
|
||||
") As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"andy\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" <> 0 " \
|
||||
"i.\"jay_z\" IS NOT NULL " \
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
self.assertEqual(pu.queen(self.params), ans)
|
||||
self.assertEqual(pu.queen(self.params1), ans1)
|
||||
|
||||
def test_construct_neighbor_query(self):
|
||||
"""Test construct_neighbor_query"""
|
||||
|
||||
# Compare to raw knn query
|
||||
self.assertEqual(pu.construct_neighbor_query('knn', self.params),
|
||||
pu.knn(self.params))
|
||||
self.assertEqual(pu.construct_neighbor_query('knn', self.params1),
|
||||
pu.knn(self.params1))
|
||||
|
||||
def test_get_attributes(self):
|
||||
"""Test get_attributes"""
|
||||
|
||||
Reference in New Issue
Block a user