Compare commits
10 Commits
population
...
bayesian_b
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0e24d542b3 | ||
|
|
79bd319366 | ||
|
|
46c66476b5 | ||
|
|
e03aac4d8f | ||
|
|
d885c16db2 | ||
|
|
abfda1c75e | ||
|
|
8f478ef22c | ||
|
|
c7bb50be5a | ||
|
|
ef17e2fe4c | ||
|
|
f3b8546063 |
@@ -12,7 +12,7 @@ name must be created.
|
||||
### Version numbers
|
||||
|
||||
The version of both the SQL extension and the Python package shall
|
||||
follow the[Semantic Versioning 2.0](http://semver.org/) guidelines:
|
||||
follow the [Semantic Versioning 2.0](http://semver.org/) guidelines:
|
||||
|
||||
* When backwards incompatibility is introduced the major number is incremented
|
||||
* When functionally is added (in a backwards-compatible manner) the minor number
|
||||
|
||||
@@ -7,8 +7,6 @@ CartoDB Spatial Analysis extension for PostgreSQL.
|
||||
* *pg* contains the PostgreSQL extension source code
|
||||
* *python* Python module
|
||||
|
||||
FIXME: should it be `./extension` and `./lib/python' ?
|
||||
|
||||
## Requirements
|
||||
|
||||
* pip
|
||||
|
||||
@@ -28,3 +28,6 @@ REGRESS_OPTS = --inputdir='$(TEST_DIR)' --outputdir='$(TEST_DIR)'
|
||||
PG_CONFIG = pg_config
|
||||
PGXS := $(shell $(PG_CONFIG) --pgxs)
|
||||
include $(PGXS)
|
||||
|
||||
# This seems to be needed at least for PG 9.3.11
|
||||
all: $(DATA)
|
||||
|
||||
@@ -1,3 +1,6 @@
|
||||
--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES
|
||||
-- Complain if script is sourced in psql, rather than via CREATE EXTENSION
|
||||
\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit
|
||||
-- Internal function.
|
||||
-- Set the seeds of the RNGs (Random Number Generators)
|
||||
-- used internally.
|
||||
@@ -133,4 +136,60 @@ BEGIN
|
||||
RETURN ST_Collect(points);
|
||||
END;
|
||||
$$
|
||||
LANGUAGE plpgsql VOLATILE
|
||||
LANGUAGE plpgsql VOLATILE;
|
||||
CREATE OR REPLACE FUNCTION
|
||||
cdb_create_segment (
|
||||
segment_name TEXT,
|
||||
table_name TEXT,
|
||||
column_name TEXT,
|
||||
geoid_column TEXT DEFAULT 'geoid',
|
||||
census_table TEXT DEFAULT 'block_groups'
|
||||
)
|
||||
RETURNS NUMERIC
|
||||
AS $$
|
||||
from crankshaft.segmentation import create_segemnt
|
||||
# TODO: use named parameters or a dictionary
|
||||
return create_segment('table')
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
CREATE OR REPLACE FUNCTION
|
||||
cdb_predict_segment (
|
||||
segment_name TEXT,
|
||||
geoid_column TEXT DEFAULT 'geoid',
|
||||
census_table TEXT DEFAULT 'block_groups'
|
||||
)
|
||||
RETURNS TABLE(geoid TEXT, prediction NUMERIC)
|
||||
AS $$
|
||||
from crankshaft.segmentation import create_segemnt
|
||||
# TODO: use named parameters or a dictionary
|
||||
return create_segment('table')
|
||||
$$ LANGUAGE plpythonu;
|
||||
CREATE OR REPLACE FUNCTION
|
||||
cdb_adaptive_histogram (
|
||||
table_name TEXT,
|
||||
column_name TEXT
|
||||
)
|
||||
RETURNS TABLE (bin_start numeric,bin_end numeric,value numeric)
|
||||
|
||||
AS $$
|
||||
from crankshaft.bayesian_blocks import adaptive_histogram
|
||||
return adaptive_histogram(table_name,column_name)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
CREATE OR REPLACE FUNCTION
|
||||
cdb_simple_test (
|
||||
)
|
||||
RETURNS NUMERIC
|
||||
|
||||
AS $$
|
||||
return 5
|
||||
$$ LANGUAGE plpythonu;
|
||||
-- Make sure by default there are no permissions for publicuser
|
||||
-- NOTE: this happens at extension creation time, as part of an implicit transaction.
|
||||
-- REVOKE ALL PRIVILEGES ON SCHEMA cdb_crankshaft FROM PUBLIC, publicuser CASCADE;
|
||||
|
||||
-- Grant permissions on the schema to publicuser (but just the schema)
|
||||
GRANT USAGE ON SCHEMA cdb_crankshaft TO publicuser;
|
||||
|
||||
-- Revoke execute permissions on all functions in the schema by default
|
||||
-- REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA cdb_crankshaft FROM PUBLIC, publicuser;
|
||||
|
||||
3
pg/sql/0.0.1/00_header.sql
Normal file
3
pg/sql/0.0.1/00_header.sql
Normal file
@@ -0,0 +1,3 @@
|
||||
--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES
|
||||
-- Complain if script is sourced in psql, rather than via CREATE EXTENSION
|
||||
\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit
|
||||
@@ -51,4 +51,4 @@ BEGIN
|
||||
RETURN ST_Collect(points);
|
||||
END;
|
||||
$$
|
||||
LANGUAGE plpgsql VOLATILE
|
||||
LANGUAGE plpgsql VOLATILE;
|
||||
|
||||
11
pg/sql/0.0.1/06_bayesian_blocks.sql
Normal file
11
pg/sql/0.0.1/06_bayesian_blocks.sql
Normal file
@@ -0,0 +1,11 @@
|
||||
CREATE OR REPLACE FUNCTION
|
||||
cdb_adaptive_histogram (
|
||||
table_name TEXT,
|
||||
column_name TEXT
|
||||
)
|
||||
RETURNS TABLE (bin_start numeric,bin_end numeric,value numeric)
|
||||
|
||||
AS $$
|
||||
from crankshaft.bayesian_blocks import adaptive_histogram
|
||||
return adaptive_histogram(table_name,column_name)
|
||||
$$ LANGUAGE plpythonu;
|
||||
9
pg/sql/0.0.1/90_permissions.sql
Normal file
9
pg/sql/0.0.1/90_permissions.sql
Normal file
@@ -0,0 +1,9 @@
|
||||
-- Make sure by default there are no permissions for publicuser
|
||||
-- NOTE: this happens at extension creation time, as part of an implicit transaction.
|
||||
-- REVOKE ALL PRIVILEGES ON SCHEMA cdb_crankshaft FROM PUBLIC, publicuser CASCADE;
|
||||
|
||||
-- Grant permissions on the schema to publicuser (but just the schema)
|
||||
GRANT USAGE ON SCHEMA cdb_crankshaft TO publicuser;
|
||||
|
||||
-- Revoke execute permissions on all functions in the schema by default
|
||||
-- REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA cdb_crankshaft FROM PUBLIC, publicuser;
|
||||
@@ -1,138 +0,0 @@
|
||||
-- Function to obtain an estimate of the population living inside
|
||||
-- an area (polygon) from the CartoDB Data Observatory
|
||||
CREATE OR REPLACE FUNCTION cdb_population(area geometry)
|
||||
RETURNS NUMERIC AS $$
|
||||
DECLARE
|
||||
georef_column TEXT;
|
||||
table_id TEXT;
|
||||
tag_value TEXT;
|
||||
table_name TEXT;
|
||||
column_name TEXT;
|
||||
population NUMERIC;
|
||||
BEGIN
|
||||
|
||||
-- Note: comments contain pseudo-code that should be implemented
|
||||
|
||||
-- Register metadata tables:
|
||||
-- This would require super-user privileges
|
||||
/*
|
||||
SELECT cdb_add_remote_table('observatory', 'bmd_column_table');
|
||||
SELECT cdb_add_remote_table('observatory', 'bmd_column_2_column');
|
||||
SELECT cdb_add_remote_table('observatory', 'bmd_table');
|
||||
SELECT cdb_add_remote_table('observatory', 'bmd_column_table');
|
||||
SELECT cdb_add_remote_table('observatory', 'bmd_column_tag');
|
||||
SELECT cdb_add_remote_table('observatory', 'bmd_tag');
|
||||
*/
|
||||
|
||||
tag_value := 'population';
|
||||
|
||||
|
||||
-- Determine the georef column id to be used: it must have type 'geometry',
|
||||
-- the maximum weight.
|
||||
-- TODO: in general, multiple columns with maximal weight could be found;
|
||||
-- we should use the timespan of the table to disambiguate (choose the
|
||||
-- most recent). Also a rank of geometry columns should be introduced to
|
||||
-- find select the greatest resolution available.
|
||||
/*
|
||||
WITH selected_tables AS (
|
||||
-- Find tables that have population columns and cover the input area
|
||||
SELECT tab.id AS id
|
||||
FROM observatory.bmd_column col,
|
||||
observatory.bmd_column_table coltab,
|
||||
observatory.bmd_table tab,
|
||||
observatory.bmd_tag tag,
|
||||
observatory.bmd_column_tag coltag
|
||||
WHERE coltab.column_id = col.id
|
||||
AND coltab.table_id = tab.id
|
||||
AND coltag.tag_id = tag.id
|
||||
AND coltag.column_id = col.id
|
||||
AND tag.name ILIKE tag_value
|
||||
AND tab.id = table_id
|
||||
AND tab.bounds && area;
|
||||
)
|
||||
SELECT
|
||||
FROM bmd_column col
|
||||
JOIN bmd_table tab ON col.table_id = tab.id
|
||||
WHERE type = 'geometry'
|
||||
AND tab.id IN (selected_tables)
|
||||
ORDER BY weight DESC LIMIT 1;
|
||||
*/
|
||||
georef_column := '"us.census.tiger".block_group_2013';
|
||||
|
||||
-- Now we will query the metadata to find which actual tables correspond
|
||||
-- to this datasource and resolution/timespan
|
||||
-- and choose the 'parent' or more general of them.
|
||||
/*
|
||||
SELECT from_table_geoid.id data_table_id
|
||||
FROM observatory.bmd_column_table from_column_table_geoid,
|
||||
observatory.bmd_column_table to_column_table_geoid,
|
||||
observatory.bmd_column_2_column rel,
|
||||
observatory.bmd_column_table to_column_table_geom,
|
||||
observatory.bmd_table from_table_geoid,
|
||||
observatory.bmd_table to_table_geoid,
|
||||
observatory.bmd_table to_table_geom
|
||||
WHERE from_column_table_geoid.column_id = to_column_table_geoid.column_id
|
||||
AND to_column_table_geoid.column_id = rel.from_id
|
||||
AND rel.reltype = 'geom_ref'
|
||||
AND rel.to_id = to_column_table_geom.column_id
|
||||
AND to_column_table_geom.column_id = georef_column
|
||||
AND from_table_geoid.id = from_column_table_geoid.table_id
|
||||
AND to_table_geoid.id = to_column_table_geoid.table_id
|
||||
AND to_table_geom.id = to_column_table_geom.table_id
|
||||
AND from_table_geoid.bounds && area
|
||||
ORDER by from_table_geoid.timespan desc
|
||||
INTO table_id;
|
||||
*/
|
||||
table_id := '"us.census.acs".extract_2013_5yr_block_group';
|
||||
|
||||
-- Next will fetch the columns of that table that are tagged as population:
|
||||
-- and get the more general one (not having a parent or denominator)
|
||||
/*
|
||||
WITH column_ids AS (
|
||||
SELECT col.id AS id
|
||||
FROM observatory.bmd_column col,
|
||||
observatory.bmd_column_table coltab,
|
||||
observatory.bmd_table tab,
|
||||
observatory.bmd_tag tag,
|
||||
observatory.bmd_column_tag coltag
|
||||
WHERE coltab.column_id = col.id
|
||||
AND coltab.table_id = tab.id
|
||||
AND coltag.tag_id = tag.id
|
||||
AND coltag.column_id = col.id
|
||||
AND tag.name ILIKE tag_value
|
||||
AND tab.id = table_id;
|
||||
),
|
||||
excluded_column_ids AS (
|
||||
SELECT from_id AS id
|
||||
FROM observatory.bmd_column_2_column
|
||||
WHERE from_id in (column_ids)
|
||||
AND reltype in ('parent', 'denominator')
|
||||
AND to_id in (column_ids)
|
||||
),
|
||||
SELECT bmd_table.tablename, bmd_column_table.colname
|
||||
FROM observatory.bmd_column_table,
|
||||
observatory.bmd_table
|
||||
WHERE bmd_column_table.table_id = bmd_table.id
|
||||
AND bmd_column_table.column_id IN (column_ids)
|
||||
AND NOT bmd_column_table.column_id IN (exclude_column_ids)
|
||||
INTO (table_name, column_name);
|
||||
*/
|
||||
table_name := 'us_census_acs2013_5yr_block_group';
|
||||
column_name := 'total_pop';
|
||||
|
||||
-- Register the foreign table
|
||||
-- This would require super-user privileges
|
||||
-- SELECT cdb_add_remote_table('observatory', table_name);
|
||||
|
||||
-- Perform the query
|
||||
SELECT cdb_crankshaft.cdb_overlap_sum(
|
||||
area,
|
||||
table_name,
|
||||
column_name,
|
||||
schema_name := 'observatory')
|
||||
INTO population;
|
||||
|
||||
RETURN population;
|
||||
END;
|
||||
$$
|
||||
LANGUAGE plpgsql VOLATILE
|
||||
18
pg/test/0.0.1/sql/90_permissions.sql
Normal file
18
pg/test/0.0.1/sql/90_permissions.sql
Normal file
@@ -0,0 +1,18 @@
|
||||
SELECT cdb_crankshaft._cdb_random_seeds(1234);
|
||||
|
||||
-- Use regular user role
|
||||
SET ROLE test_regular_user;
|
||||
|
||||
-- Add to the search path the schema
|
||||
SET search_path TO public,cartodb,cdb_crankshaft;
|
||||
|
||||
-- Exercise public functions
|
||||
SELECT ppoints.code, m.quads
|
||||
FROM ppoints
|
||||
JOIN cdb_moran_local('ppoints', 'value') m
|
||||
ON ppoints.cartodb_id = m.ids
|
||||
ORDER BY ppoints.code;
|
||||
SELECT round(cdb_overlap_sum(
|
||||
'0106000020E61000000100000001030000000100000004000000FFFFFFFFFF3604C09A0B9ECEC42E444000000000C060FBBF30C7FD70E01D44400000000040AD02C06481F1C8CD034440FFFFFFFFFF3604C09A0B9ECEC42E4440'::geometry,
|
||||
'values', 'value'
|
||||
), 2);
|
||||
@@ -1,2 +1,3 @@
|
||||
import random_seeds
|
||||
import clustering
|
||||
import bayesian_blocks
|
||||
|
||||
1
python/crankshaft/crankshaft/bayesian_blocks/__init__.py
Normal file
1
python/crankshaft/crankshaft/bayesian_blocks/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from bayesian_blocks import *
|
||||
@@ -0,0 +1,84 @@
|
||||
import plpy
|
||||
import numpy as np
|
||||
|
||||
|
||||
def adaptive_histogram(table_name,column_name):
|
||||
data = plpy.execute("select {column_name} from {table_name}".format(**locals()))
|
||||
|
||||
data = [float(d['count']) for d in data]
|
||||
plpy.notice(data)
|
||||
vals, bins = np.histogram( data, bins=_bayesian_blocks(data))
|
||||
return zip(vals,bins, bins[1:])
|
||||
|
||||
|
||||
def _bayesian_blocks(t):
|
||||
"""Bayesian Blocks Implementation
|
||||
|
||||
By Jake Vanderplas. License: BSD
|
||||
Based on algorithm outlined in http://adsabs.harvard.edu/abs/2012arXiv1207.5578S
|
||||
|
||||
Parameters
|
||||
----------
|
||||
t : ndarray, length N
|
||||
data to be histogrammed
|
||||
|
||||
Returns
|
||||
-------
|
||||
bins : ndarray
|
||||
array containing the (N+1) bin edges
|
||||
|
||||
Notes
|
||||
-----
|
||||
This is an incomplete implementation: it may fail for some
|
||||
datasets. Alternate fitness functions and prior forms can
|
||||
be found in the paper listed above.
|
||||
"""
|
||||
# copy and sort the array
|
||||
t = np.sort(t)
|
||||
N = t.size
|
||||
|
||||
# create length-(N + 1) array of cell edges
|
||||
edges = np.concatenate([t[:1],
|
||||
0.5 * (t[1:] + t[:-1]),
|
||||
t[-1:]])
|
||||
block_length = t[-1] - edges
|
||||
|
||||
# arrays needed for the iteration
|
||||
nn_vec = np.ones(N)
|
||||
best = np.zeros(N, dtype=float)
|
||||
last = np.zeros(N, dtype=int)
|
||||
|
||||
#-----------------------------------------------------------------
|
||||
# Start with first data cell; add one cell at each iteration
|
||||
#-----------------------------------------------------------------
|
||||
for K in range(N):
|
||||
# Compute the width and count of the final bin for all possible
|
||||
# locations of the K^th changepoint
|
||||
width = block_length[:K + 1] - block_length[K + 1]
|
||||
count_vec = np.cumsum(nn_vec[:K + 1][::-1])[::-1]
|
||||
|
||||
# evaluate fitness function for these possibilities
|
||||
fit_vec = count_vec * (np.log(count_vec) - np.log(width))
|
||||
fit_vec -= 4 # 4 comes from the prior on the number of changepoints
|
||||
fit_vec[1:] += best[:K]
|
||||
|
||||
# find the max of the fitness: this is the K^th changepoint
|
||||
i_max = np.argmax(fit_vec)
|
||||
last[K] = i_max
|
||||
best[K] = fit_vec[i_max]
|
||||
|
||||
#-----------------------------------------------------------------
|
||||
# Recover changepoints by iteratively peeling off the last block
|
||||
#-----------------------------------------------------------------
|
||||
change_points = np.zeros(N, dtype=int)
|
||||
i_cp = N
|
||||
ind = N
|
||||
while True:
|
||||
i_cp -= 1
|
||||
change_points[i_cp] = ind
|
||||
if ind == 0:
|
||||
break
|
||||
ind = last[ind - 1]
|
||||
change_points = change_points[i_cp:]
|
||||
|
||||
return edges[change_points]
|
||||
@@ -10,7 +10,7 @@ from setuptools import setup, find_packages
|
||||
setup(
|
||||
name='crankshaft',
|
||||
|
||||
version='0.0.01',
|
||||
version='0.0.1',
|
||||
|
||||
description='CartoDB Spatial Analysis Python Library',
|
||||
|
||||
@@ -40,7 +40,7 @@ setup(
|
||||
|
||||
# The choice of component versions is dictated by what's
|
||||
# provisioned in the production servers.
|
||||
install_requires=['pysal==1.11.0','numpy==1.6.1','scipy==0.17.0'],
|
||||
install_requires=['pysal==1.11.0','numpy==1.10.1','scipy==0.17.0'],
|
||||
|
||||
requires=['pysal', 'numpy'],
|
||||
|
||||
|
||||
Reference in New Issue
Block a user