Compare commits

..

9 Commits

Author SHA1 Message Date
Stuart Lynn
01eef5ee9e inital attempt at contours 2016-03-15 17:01:03 -04:00
Javier Goizueta
46c66476b5 Merge pull request #5 from CartoDB/4-pgxs-fix
Adapt Makefile of the extension for some PGXS versions
2016-02-29 16:35:04 +01:00
Javier Goizueta
e03aac4d8f Fix typo 2016-02-26 19:09:17 +01:00
Javier Goizueta
d885c16db2 Adapt Makefile of the extension for some PGXS versions
Postgresql 9.3.11 doesn't generates $DATA by default.
fixes #4
2016-02-26 19:02:18 +01:00
Rafa de la Torre
abfda1c75e Update CONTRIBUTING.md
minor change (just a space)
2016-02-23 17:23:33 +01:00
Rafa de la Torre
8f478ef22c Update README.md
Remove FIXME that should be already fixed.
2016-02-23 17:18:19 +01:00
Javier Goizueta
c7bb50be5a Fix: Make extension publicly available 2016-02-22 17:39:58 +01:00
Javier Goizueta
ef17e2fe4c Add header 2016-02-22 16:14:52 +01:00
Javier Goizueta
f3b8546063 Fix syntax 2016-02-22 16:14:28 +01:00
14 changed files with 112 additions and 146 deletions

View File

@@ -12,7 +12,7 @@ name must be created.
### Version numbers
The version of both the SQL extension and the Python package shall
follow the[Semantic Versioning 2.0](http://semver.org/) guidelines:
follow the [Semantic Versioning 2.0](http://semver.org/) guidelines:
* When backwards incompatibility is introduced the major number is incremented
* When functionally is added (in a backwards-compatible manner) the minor number

View File

@@ -7,8 +7,6 @@ CartoDB Spatial Analysis extension for PostgreSQL.
* *pg* contains the PostgreSQL extension source code
* *python* Python module
FIXME: should it be `./extension` and `./lib/python' ?
## Requirements
* pip

View File

@@ -28,3 +28,6 @@ REGRESS_OPTS = --inputdir='$(TEST_DIR)' --outputdir='$(TEST_DIR)'
PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)
# This seems to be needed at least for PG 9.3.11
all: $(DATA)

View File

@@ -1,3 +1,6 @@
--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES
-- Complain if script is sourced in psql, rather than via CREATE EXTENSION
\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit
-- Internal function.
-- Set the seeds of the RNGs (Random Number Generators)
-- used internally.
@@ -133,4 +136,13 @@ BEGIN
RETURN ST_Collect(points);
END;
$$
LANGUAGE plpgsql VOLATILE
LANGUAGE plpgsql VOLATILE;
-- Make sure by default there are no permissions for publicuser
-- NOTE: this happens at extension creation time, as part of an implicit transaction.
-- REVOKE ALL PRIVILEGES ON SCHEMA cdb_crankshaft FROM PUBLIC, publicuser CASCADE;
-- Grant permissions on the schema to publicuser (but just the schema)
GRANT USAGE ON SCHEMA cdb_crankshaft TO publicuser;
-- Revoke execute permissions on all functions in the schema by default
-- REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA cdb_crankshaft FROM PUBLIC, publicuser;

View File

@@ -0,0 +1,3 @@
--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES
-- Complain if script is sourced in psql, rather than via CREATE EXTENSION
\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit

View File

@@ -51,4 +51,4 @@ BEGIN
RETURN ST_Collect(points);
END;
$$
LANGUAGE plpgsql VOLATILE
LANGUAGE plpgsql VOLATILE;

View File

@@ -0,0 +1,12 @@
CREATE OR REPLACE FUNCTION
cdb_contours_count (
query TEXT,
levels NUMERIC[]
)
RETURNS TABLE (the_geom geometry , level Numeric)
AS $$
from crankshaft.contours import create_countours_count
return create_countours_count(query,levels)
$$ LANGUAGE plpythonu;

View File

@@ -0,0 +1,9 @@
-- Make sure by default there are no permissions for publicuser
-- NOTE: this happens at extension creation time, as part of an implicit transaction.
-- REVOKE ALL PRIVILEGES ON SCHEMA cdb_crankshaft FROM PUBLIC, publicuser CASCADE;
-- Grant permissions on the schema to publicuser (but just the schema)
GRANT USAGE ON SCHEMA cdb_crankshaft TO publicuser;
-- Revoke execute permissions on all functions in the schema by default
-- REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA cdb_crankshaft FROM PUBLIC, publicuser;

View File

@@ -1,138 +0,0 @@
-- Function to obtain an estimate of the population living inside
-- an area (polygon) from the CartoDB Data Observatory
CREATE OR REPLACE FUNCTION cdb_population(area geometry)
RETURNS NUMERIC AS $$
DECLARE
georef_column TEXT;
table_id TEXT;
tag_value TEXT;
table_name TEXT;
column_name TEXT;
population NUMERIC;
BEGIN
-- Note: comments contain pseudo-code that should be implemented
-- Register metadata tables:
-- This would require super-user privileges
/*
SELECT cdb_add_remote_table('observatory', 'bmd_column_table');
SELECT cdb_add_remote_table('observatory', 'bmd_column_2_column');
SELECT cdb_add_remote_table('observatory', 'bmd_table');
SELECT cdb_add_remote_table('observatory', 'bmd_column_table');
SELECT cdb_add_remote_table('observatory', 'bmd_column_tag');
SELECT cdb_add_remote_table('observatory', 'bmd_tag');
*/
tag_value := 'population';
-- Determine the georef column id to be used: it must have type 'geometry',
-- the maximum weight.
-- TODO: in general, multiple columns with maximal weight could be found;
-- we should use the timespan of the table to disambiguate (choose the
-- most recent). Also a rank of geometry columns should be introduced to
-- find select the greatest resolution available.
/*
WITH selected_tables AS (
-- Find tables that have population columns and cover the input area
SELECT tab.id AS id
FROM observatory.bmd_column col,
observatory.bmd_column_table coltab,
observatory.bmd_table tab,
observatory.bmd_tag tag,
observatory.bmd_column_tag coltag
WHERE coltab.column_id = col.id
AND coltab.table_id = tab.id
AND coltag.tag_id = tag.id
AND coltag.column_id = col.id
AND tag.name ILIKE tag_value
AND tab.id = table_id
AND tab.bounds && area;
)
SELECT
FROM bmd_column col
JOIN bmd_table tab ON col.table_id = tab.id
WHERE type = 'geometry'
AND tab.id IN (selected_tables)
ORDER BY weight DESC LIMIT 1;
*/
georef_column := '"us.census.tiger".block_group_2013';
-- Now we will query the metadata to find which actual tables correspond
-- to this datasource and resolution/timespan
-- and choose the 'parent' or more general of them.
/*
SELECT from_table_geoid.id data_table_id
FROM observatory.bmd_column_table from_column_table_geoid,
observatory.bmd_column_table to_column_table_geoid,
observatory.bmd_column_2_column rel,
observatory.bmd_column_table to_column_table_geom,
observatory.bmd_table from_table_geoid,
observatory.bmd_table to_table_geoid,
observatory.bmd_table to_table_geom
WHERE from_column_table_geoid.column_id = to_column_table_geoid.column_id
AND to_column_table_geoid.column_id = rel.from_id
AND rel.reltype = 'geom_ref'
AND rel.to_id = to_column_table_geom.column_id
AND to_column_table_geom.column_id = georef_column
AND from_table_geoid.id = from_column_table_geoid.table_id
AND to_table_geoid.id = to_column_table_geoid.table_id
AND to_table_geom.id = to_column_table_geom.table_id
AND from_table_geoid.bounds && area
ORDER by from_table_geoid.timespan desc
INTO table_id;
*/
table_id := '"us.census.acs".extract_2013_5yr_block_group';
-- Next will fetch the columns of that table that are tagged as population:
-- and get the more general one (not having a parent or denominator)
/*
WITH column_ids AS (
SELECT col.id AS id
FROM observatory.bmd_column col,
observatory.bmd_column_table coltab,
observatory.bmd_table tab,
observatory.bmd_tag tag,
observatory.bmd_column_tag coltag
WHERE coltab.column_id = col.id
AND coltab.table_id = tab.id
AND coltag.tag_id = tag.id
AND coltag.column_id = col.id
AND tag.name ILIKE tag_value
AND tab.id = table_id;
),
excluded_column_ids AS (
SELECT from_id AS id
FROM observatory.bmd_column_2_column
WHERE from_id in (column_ids)
AND reltype in ('parent', 'denominator')
AND to_id in (column_ids)
),
SELECT bmd_table.tablename, bmd_column_table.colname
FROM observatory.bmd_column_table,
observatory.bmd_table
WHERE bmd_column_table.table_id = bmd_table.id
AND bmd_column_table.column_id IN (column_ids)
AND NOT bmd_column_table.column_id IN (exclude_column_ids)
INTO (table_name, column_name);
*/
table_name := 'us_census_acs2013_5yr_block_group';
column_name := 'total_pop';
-- Register the foreign table
-- This would require super-user privileges
-- SELECT cdb_add_remote_table('observatory', table_name);
-- Perform the query
SELECT cdb_crankshaft.cdb_overlap_sum(
area,
table_name,
column_name,
schema_name := 'observatory')
INTO population;
RETURN population;
END;
$$
LANGUAGE plpgsql VOLATILE

View File

@@ -0,0 +1,18 @@
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Use regular user role
SET ROLE test_regular_user;
-- Add to the search path the schema
SET search_path TO public,cartodb,cdb_crankshaft;
-- Exercise public functions
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_moran_local('ppoints', 'value') m
ON ppoints.cartodb_id = m.ids
ORDER BY ppoints.code;
SELECT round(cdb_overlap_sum(
'0106000020E61000000100000001030000000100000004000000FFFFFFFFFF3604C09A0B9ECEC42E444000000000C060FBBF30C7FD70E01D44400000000040AD02C06481F1C8CD034440FFFFFFFFFF3604C09A0B9ECEC42E4440'::geometry,
'values', 'value'
), 2);

View File

@@ -1,2 +1,3 @@
import random_seeds
import clustering
import contours

View File

@@ -0,0 +1 @@
from contours import *

View File

@@ -0,0 +1,47 @@
import matplotlib.pyplot as plt
import numpy as np
import plpy
def contour_to_polygon(contour):
plpy.notice('appending contour ')
c = np.append(contour, [contour[0]], axis=0)
points =','.join( [ " ".join(str(a) for a in b) for b in c])
return "POLYGON(({points}))::geometry".format(points=points)
def create_countours_count(query,levels,mesh_size=20):
qresult = plpy.execute( "select ST_X(the_geom)::Numeric as x, ST_Y(the_geom)::Numeric as y from ({query}) a ".format(query=query))
x =[]
y =[]
for a in qresult:
if a['x'] and a['y']:
x.append(float(a['x']))
y.append(float(a['y']))
plpy.notice(np.shape(x))
plpy.notice(np.shape(y))
if None in x:
plpy.notice("NULL IN LIST X ")
if None in y:
plpy.notice("NULL IN LIST Y ")
x_min,x_max = np.min(x), np.max(x)
y_min,y_max = np.min(y), np.max(y)
plpy.notice(x_min)
plpy.notice(x_max)
plpy.notice(y_min)
plpy.notice(y_max)
plpy.notice(mesh_size)
x_grid = np.linspace(x_min,x_max, mesh_size)
y_grid = np.linspace(y_min,y_max, mesh_size)
range = [[x_min,x_max],[y_min,y_max]]
a, xedges, yedges= np.histogram2d(x,y,bins=(mesh_size,mesh_size), range=range)
a = np.swapaxes(a,0,1)
plpy.notice("here about to create the contours")
CS = plt.contour(xedges[1:],yedges[1:] ,a,4,linewidths=0.5, colors='b')
plpy.notice(levels)
return[(contour_to_polygon(CS.Cntr.trace((level))[0]), float(level)) for level in levels]

View File

@@ -10,7 +10,7 @@ from setuptools import setup, find_packages
setup(
name='crankshaft',
version='0.0.01',
version='0.0.1',
description='CartoDB Spatial Analysis Python Library',
@@ -40,9 +40,9 @@ setup(
# The choice of component versions is dictated by what's
# provisioned in the production servers.
install_requires=['pysal==1.11.0','numpy==1.6.1','scipy==0.17.0'],
install_requires=['pysal==1.11.0','numpy==1.10.1','scipy==0.17.0', 'matplotlib==1.4.3'],
requires=['pysal', 'numpy'],
requires=['pysal', 'numpy', 'matplotlib'],
test_suite='test'
)