Compare commits

...

26 Commits

Author SHA1 Message Date
abelvm
5183f5ff92 added function overload with subqueries input 2016-06-03 18:22:26 +02:00
abelvm
73d38bbbaa filling the gaps 2016-06-03 17:32:39 +02:00
Stuart Lynn
4782d39849 stubbing out gravity model 2016-06-03 10:36:21 -04:00
Andy Eschbacher
21dd956c15 Merge pull request #56 from CartoDB/add-issue-templates
adding template for code reviews
2016-06-03 08:25:21 -04:00
Andy Eschbacher
a0a026c2a1 Merge pull request #57 from CartoDB/adding-hot-and-cold-spot-function
adding hot/cold/outlier getters
2016-06-01 15:23:19 -04:00
Andy Eschbacher
c04e15ef81 rename some variables 2016-06-01 15:07:16 -04:00
Andy Eschbacher
ae1bb703a7 descriptions for all functions 2016-06-01 15:06:58 -04:00
Andy Eschbacher
0e3970f52c adds docs for areasofinterestlocal 2016-06-01 13:46:12 -04:00
Andy Eschbacher
59c520da16 renaming output value to vals 2016-06-01 13:40:32 -04:00
Andy Eschbacher
90c3e21c0d renaming output id to rowid 2016-06-01 12:43:33 -04:00
Andy Eschbacher
3013998e1b make functions more flexible to case of weight type 2016-06-01 12:19:08 -04:00
Andy Eschbacher
2b8adb744d switched signature to put more common options in the front 2016-06-01 12:09:43 -04:00
Andy Eschbacher
434cfcd1e9 Merge branch 'develop' into adding-hot-and-cold-spot-function 2016-06-01 11:38:46 -04:00
Andy Eschbacher
b5c6b42081 update names to align with CamelCase convention 2016-06-01 11:33:02 -04:00
Andy Eschbacher
1b0d1cc82c updating function names 2016-05-24 17:51:29 -04:00
Andy Eschbacher
fe22464b75 Merge pull request #22 from CartoDB/update-docs
Update docs format
2016-05-23 09:51:44 -04:00
Andy Eschbacher
ca5175f15b adding reference to subquery argument requirement 2016-05-20 16:26:43 -04:00
Andy Eschbacher
4e870e4393 adapt other test for new settings in fixtures 2016-05-20 15:15:41 -04:00
Andy Eschbacher
b05ad98ed9 adding tests for hot/cold/outlier for normal moran functions 2016-05-20 15:15:19 -04:00
Andy Eschbacher
bc8055a12b adds pset format unaligned to reduce output for tests 2016-05-20 14:55:16 -04:00
Andy Eschbacher
c3913459d9 adding tests for hotspot, coldspot, and outlier functions 2016-05-20 14:54:42 -04:00
Andy Eschbacher
f571e59a95 adding hot/cold/outlier getters 2016-05-20 14:05:59 -04:00
Andy Eschbacher
0400b1a880 adding template for code reviews 2016-05-20 13:23:56 -04:00
Javier Goizueta
cc4a35ebd9 Fix instructions to update/install the extension 2016-05-20 11:47:12 +02:00
Andy Eschbacher
00579cd838 adding template 2016-03-23 17:10:08 -04:00
Andy Eschbacher
3f20275d3d adopting new format (wip) 2016-03-23 17:09:52 -04:00
18 changed files with 975 additions and 375 deletions

7
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@@ -0,0 +1,7 @@
- [ ] All declared geometries are `geometry(Geometry, 4326)` for general geoms, or `geometry(Point, 4326)`
- [ ] Include python is activated for new functions. Include this before importing modules: `plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')`
- [ ] Docs for public-facing functions are written
- [ ] New functions follow the naming conventions: `CDB_NameOfFunction`. Where internal functions begin with an underscore `_`.
- [ ] If appropriate, new functions accepts an arbitrary query as an input (see [Crankshaft Issue #6](https://github.com/CartoDB/crankshaft/issues/6) for more information)

View File

@@ -45,8 +45,8 @@ source envs/dev/bin/activate
Update extension in a working database with:
* `ALTER EXTENSION crankshaft VERSION TO 'current';`
`ALTER EXTENSION crankshaft VERSION TO 'dev';`
* `ALTER EXTENSION crankshaft UPDATE TO 'current';`
`ALTER EXTENSION crankshaft UPDATE TO 'dev';`
Note: we keep the current development version install as 'dev' always;
we update through the 'current' alias to allow changing the extension
@@ -58,7 +58,10 @@ should be dropped manually before the update.
If the extension has not previously been installed in a database,
it can be installed directly with:
* `CREATE EXTENSION crankshaft WITH VERSION 'dev';`
* `CREATE EXTENSION IF NOT EXISTS plpythonu;`
`CREATE EXTENSION IF NOT EXISTS postgis;`
`CREATE EXTENSION IF NOT EXISTS cartodb;`
`CREATE EXTENSION crankshaft WITH VERSION 'dev';`
Note: the development extension uses the development python virtual
environment automatically.

View File

@@ -1,71 +1,185 @@
### Moran's I
## Areas of Interest Functions
#### What is Moran's I and why is it significant for CartoDB?
### CDB_AreasOfInterestLocal(subquery text, column_name text)
Moran's I is a geostatistical calculation which gives a measure of the global
clustering and presence of outliers within the geographies in a map. Here global
means over all of the geographies in a dataset. Imagine mapping the incidence
rates of cancer in neighborhoods of a city. If there were areas covering several
neighborhoods with abnormally low rates of cancer, those areas are positively
spatially correlated with one another and would be considered a cluster. If
there was a single neighborhood with a high rate but with all neighbors on
average having a low rate, it would be considered a spatial outlier.
This function classifies your data as being part of a cluster, as an outlier, or not part of a pattern based the significance of a classification. The classification happens through an autocorrelation statistic called Local Moran's I.
While Moran's I gives a global snapshot, there are local indicators for
clustering called Local Indicators of Spatial Autocorrelation. Clustering is a
process related to autocorrelation -- i.e., a process that compares a
geography's attribute to the attribute in neighbor geographies.
#### Arguments
For the example of cancer rates in neighborhoods, since these neighborhoods have
a high value for rate of cancer, and all of their neighbors do as well, they are
designated as "High High" or simply **HH**. For areas with multiple neighborhoods
with low rates of cancer, they are designated as "Low Low" or **LL**. HH and LL
naturally fit into the concept of clustering and are in the correlated
variables.
| Name | Type | Description |
|------|------|-------------|
| subquery | TEXT | SQL query that exposes the data to be analyzed (e.g., `SELECT * FROM interesting_table`). This query must have the geometry column name `the_geom` and id column name `cartodb_id` unless otherwise specified in the input arguments |
| column_name | TEXT | Name of column (e.g., should be `'interesting_value'` instead of `interesting_value` without single quotes) used for the analysis. |
| weight type (optional) | TEXT | Type of weight to use when finding neighbors. Currently available options are 'knn' (default) and 'queen'. Read more about weight types in [PySAL's weights documentation](https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/weights.html). |
| num_ngbrs (optional) | INT | Number of neighbors if using k-nearest neighbors weight type. Defaults to 5. |
| permutations (optional) | INT | Number of permutations to check against a random arrangement of the values in `column_name`. This influences the accuracy of the output field `significance`. Defaults to 99. |
| geom_col (optional) | TEXT | The column name for the geometries. Defaults to `'the_geom'` |
| id_col (optional) | TEXT | The column name for the unique ID of each geometry/value pair. Defaults to `'cartodb_id'`. |
"Anticorrelated" geogs are in **LH** and **HL** regions -- that is, regions
where a geog has a high value and it's neighbors, on average, have a low value
(or vice versa). An example of this is a "gated community" or placement of a
city housing project in a rich region. These deliberate developments have
opposite median income as compared to the neighbors around them. They have a
high (or low) value while their neighbors have a low (or high) value. They exist
typically as islands, and in rare circumstances can extend as chains dividing
**LL** or **HH**.
#### Returns
Strong policies such as rent stabilization (probably) tend to prevent the
clustering of high rent areas as they integrate middle class incomes. Luxury
apartment buildings, which are a kind of gated community, probably tend to skew
an area's median income upwards while housing projects have the opposite effect.
What are the nuggets in the analysis?
A table with the following columns.
Two functions are available to compute Moran I statistics:
| Column Name | Type | Description |
|-------------|------|-------------|
| moran | NUMERIC | Value of Moran's I (spatial autocorrelation measure) for the geometry with id of `rowid` |
| quads | TEXT | Classification of geometry. Result is one of 'HH' (a high value with neighbors high on average), 'LL' (opposite of 'HH'), 'HL' (a high value surrounded by lows on average), and 'LH' (opposite of 'HL'). Null values are returned when nulls exist in the original data. |
| significance | NUMERIC | The statistical significance (from 0 to 1) of a cluster or outlier classification. Lower numbers are more significant. |
| rowid | INT | Row id of the values which correspond to the input rows. |
| vals | NUMERIC | Values from `'column_name'`. |
* `cdb_moran_local` computes Moran I measures, quad classification and
significance values from numerial values associated to geometry entities
in an input table. The geometries should be contiguous polygons When
then `queen` `w_type` is used.
* `cdb_moran_local_rate` computes the same statistics using a ratio between
numerator and denominator columns of a table.
The parameters for `cdb_moran_local` are:
#### Example Usage
* `table` name of the table that contains the data values
* `attr` name of the column
* `signficance` significance threshold for the quads values
* `num_ngbrs` number of neighbors to consider (default: 5)
* `permutations` number of random permutations for calculation of
pseudo-p values (default: 99)
* `geom_column` number of the geometry column (default: "the_geom")
* `id_col` PK column of the table (default: "cartodb_id")
* `w_type` Weight types: can be "knn" for k-nearest neighbor weights
or "queen" for contiguity based weights.
```sql
SELECT
c.the_geom,
aoi.quads,
aoi.significance,
c.num_cyclists_per_total_population
FROM CDB_GetAreasOfInterestLocal('SELECT * FROM commute_data'
'num_cyclists_per_total_population') As aoi
JOIN commute_data As c
ON c.cartodb_id = aoi.rowid;
```
The function returns a table with the following columns:
### CDB_AreasOfInterestGlobal(subquery text, column_name text)
* `moran` Moran's value
* `quads` quad classification ('HH', 'LL', 'HL', 'LH' or 'Not significant')
* `significance` significance value
* `ids` id of the corresponding record in the input table
This function identifies the extent to which geometries cluster (the groupings of geometries with similarly high or low values relative to the mean) or form outliers (areas where geometries have values opposite of their neighbors). The output of this function gives values between -1 and 1 as well as a significance of that classification. Values close to 0 mean that there is little to no distribution of values as compared to what one would see in a randomly distributed collection of geometries and values.
Function `cdb_moran_local_rate` only differs in that the `attr` input
parameter is substituted by `numerator` and `denominator`.
#### Arguments
| Name | Type | Description |
|------|------|-------------|
| subquery | TEXT | SQL query that exposes the data to be analyzed (e.g., `SELECT * FROM interesting_table`). This query must have the geometry column name `the_geom` and id column name `cartodb_id` unless otherwise specified in the input arguments |
| column_name | TEXT | Name of column (e.g., should be `'interesting_value'` instead of `interesting_value` without single quotes) used for the analysis. |
| weight type (optional) | TEXT | Type of weight to use when finding neighbors. Currently available options are 'knn' (default) and 'queen'. Read more about weight types in [PySAL's weights documentation](https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/weights.html). |
| num_ngbrs (optional) | INT | Number of neighbors if using k-nearest neighbors weight type. Defaults to 5. |
| permutations (optional) | INT | Number of permutations to check against a random arrangement of the values in `column_name`. This influences the accuracy of the output field `significance`. Defaults to 99. |
| geom_col (optional) | TEXT | The column name for the geometries. Defaults to `'the_geom'` |
| id_col (optional) | TEXT | The column name for the unique ID of each geometry/value pair. Defaults to `'cartodb_id'`. |
#### Returns
A table with the following columns.
| Column Name | Type | Description |
|-------------|------|-------------|
| moran | NUMERIC | Value of Moran's I (spatial autocorrelation measure) for the entire dataset. Values closer to one indicate cluster, closer to -1 mean more outliers, and near zero indicates a random distribution of data. |
| significance | NUMERIC | The statistical significance of the `moran` measure. |
#### Examples
```sql
SELECT *
FROM CDB_AreasOfInterestGlobal('SELECT * FROM commute_data', 'num_cyclists_per_total_population')
```
### CDB_AreasOfInterestLocalRate(subquery text, numerator_column text, denominator_column text)
Just like `CDB_AreasOfInterestLocal`, this function classifies your data as being part of a cluster, as an outlier, or not part of a pattern based the significance of a classification. This function differs in that it calculates the classifications based on input `numerator` and `denominator` columns for finding the areas where there are clusters and outliers for the resulting rate of those two values.
#### Arguments
| Name | Type | Description |
|------|------|-------------|
| subquery | TEXT | SQL query that exposes the data to be analyzed (e.g., `SELECT * FROM interesting_table`). This query must have the geometry column name `the_geom` and id column name `cartodb_id` unless otherwise specified in the input arguments |
| numerator | TEXT | Name of the numerator for forming a rate to be used in analysis. |
| denominator | TEXT | Name of the denominator for forming a rate to be used in analysis. |
| weight type (optional) | TEXT | Type of weight to use when finding neighbors. Currently available options are 'knn' (default) and 'queen'. Read more about weight types in [PySAL's weights documentation](https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/weights.html). |
| num_ngbrs (optional) | INT | Number of neighbors if using k-nearest neighbors weight type. Defaults to 5. |
| permutations (optional) | INT | Number of permutations to check against a random arrangement of the values in `column_name`. This influences the accuracy of the output field `significance`. Defaults to 99. |
| geom_col (optional) | TEXT | The column name for the geometries. Defaults to `'the_geom'` |
| id_col (optional) | TEXT | The column name for the unique ID of each geometry/value pair. Defaults to `'cartodb_id'`. |
#### Returns
A table with the following columns.
| Column Name | Type | Description |
|-------------|------|-------------|
| moran | NUMERIC | Value of Moran's I (spatial autocorrelation measure) for the geometry with id of `rowid` |
| quads | TEXT | Classification of geometry. Result is one of 'HH' (a high value with neighbors high on average), 'LL' (opposite of 'HH'), 'HL' (a high value surrounded by lows on average), and 'LH' (opposite of 'HL'). Null values are returned when nulls exist in the original data. |
| significance | NUMERIC | The statistical significance (from 0 to 1) of a cluster or outlier classification. Lower numbers are more significant. |
| rowid | INT | Row id of the values which correspond to the input rows. |
| vals | NUMERIC | Values from `'column_name'`. |
#### Example Usage
```sql
SELECT
c.the_geom,
aoi.quads,
aoi.significance,
c.cyclists_per_total_population
FROM CDB_GetAreasOfInterestLocalRate('SELECT * FROM commute_data'
'num_cyclists',
'total_population') As aoi
JOIN commute_data As c
ON c.cartodb_id = aoi.rowid;
```
### CDB_AreasOfInterestGlobalRate(subquery text, column_name text)
This function identifies the extent to which geometries cluster (the groupings of geometries with similarly high or low values relative to the mean) or form outliers (areas where geometries have values opposite of their neighbors). The output of this function gives values between -1 and 1 as well as a significance of that classification. Values close to 0 mean that there is little to no distribution of values as compared to what one would see in a randomly distributed collection of geometries and values.
#### Arguments
| Name | Type | Description |
|------|------|-------------|
| subquery | TEXT | SQL query that exposes the data to be analyzed (e.g., `SELECT * FROM interesting_table`). This query must have the geometry column name `the_geom` and id column name `cartodb_id` unless otherwise specified in the input arguments |
| numerator | TEXT | Name of the numerator for forming a rate to be used in analysis. |
| denominator | TEXT | Name of the denominator for forming a rate to be used in analysis. |
| weight type (optional) | TEXT | Type of weight to use when finding neighbors. Currently available options are 'knn' (default) and 'queen'. Read more about weight types in [PySAL's weights documentation](https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/weights.html). |
| num_ngbrs (optional) | INT | Number of neighbors if using k-nearest neighbors weight type. Defaults to 5. |
| permutations (optional) | INT | Number of permutations to check against a random arrangement of the values in `column_name`. This influences the accuracy of the output field `significance`. Defaults to 99. |
| geom_col (optional) | TEXT | The column name for the geometries. Defaults to `'the_geom'` |
| id_col (optional) | TEXT | The column name for the unique ID of each geometry/value pair. Defaults to `'cartodb_id'`. |
#### Returns
A table with the following columns.
| Column Name | Type | Description |
|-------------|------|-------------|
| moran | NUMERIC | Value of Moran's I (spatial autocorrelation measure) for the entire dataset. Values closer to one indicate cluster, closer to -1 mean more outliers, and near zero indicates a random distribution of data. |
| significance | NUMERIC | The statistical significance of the `moran` measure. |
#### Examples
```sql
SELECT *
FROM CDB_AreasOfInterestGlobalRate('SELECT * FROM commute_data',
'num_cyclists',
'total_population')
```
## Hotspot, Coldspot, and Outlier Functions
These functions are convenience functions for extracting only information that you are interested in exposing based on the outputs of the `CDB_AreasOfInterest` functions. For instance, you can use `CDB_GetSpatialHotspots` to output only the classifications of `HH` and `HL`.
### Non-rate functions
#### CDB_GetSpatialHotspots
This function's inputs and outputs exactly mirror `CDB_AreasOfInterestLocal` except that the outputs are filtered to be only 'HH' and 'HL' (areas of high values). For more information about this function's use, see `CDB_AreasOfInterestLocal`.
#### CDB_GetSpatialColdspots
This function's inputs and outputs exactly mirror `CDB_AreasOfInterestLocal` except that the outputs are filtered to be only 'LL' and 'LH' (areas of low values). For more information about this function's use, see `CDB_AreasOfInterestLocal`.
#### CDB_GetSpatialOutliers
This function's inputs and outputs exactly mirror `CDB_AreasOfInterestLocal` except that the outputs are filtered to be only 'HL' and 'LH' (areas where highs or lows are surrounded by opposite values on average). For more information about this function's use, see `CDB_AreasOfInterestLocal`.
### Rate functions
#### CDB_GetSpatialHotspotsRate
This function's inputs and outputs exactly mirror `CDB_AreasOfInterestLocalRate` except that the outputs are filtered to be only 'HH' and 'HL' (areas of high values). For more information about this function's use, see `CDB_AreasOfInterestLocalRate`.
#### CDB_GetSpatialColdspotsRate
This function's inputs and outputs exactly mirror `CDB_AreasOfInterestLocalRate` except that the outputs are filtered to be only 'LL' and 'LH' (areas of low values). For more information about this function's use, see `CDB_AreasOfInterestLocalRate`.
#### CDB_GetSpatialOutliersRate
This function's inputs and outputs exactly mirror `CDB_AreasOfInterestLocalRate` except that the outputs are filtered to be only 'HL' and 'LH' (areas where highs or lows are surrounded by opposite values on average). For more information about this function's use, see `CDB_AreasOfInterestLocalRate`.

78
doc/07_gravity.md Normal file
View File

@@ -0,0 +1,78 @@
## Gravity Model
Gravity Models are derived from Newton's Law of Gravity and are used to predict the interaction between a group of populated areas (sources) and a specific target among a group of potential targets, in terms of an attraction factor (weight)
**CDB_Gravity** is based on the model defined in *Huff's Law of Shopper attraction (1963)*
### CDB_Gravity(t_id bigint[], t_geom geometry[], t_weight numeric[], s_id bigint[], s_geom geometry[], s_pop numeric[], target bigint, radius integer, minval numeric DEFAULT -10e307)
#### Arguments
| Name | Type | Description |
|------|------|-------------|
| t_id | bigint[] | Array of targets ID |
| t_geom | geometry[] | Array of targets' geometries |
| t_weight | numeric[] | Array of targets's weights |
| s_id | bigint[] | Array of sources ID |
| s_geom | geometry[] | Array of sources' geometries |
| s_pop | numeric[] | Array of sources's population |
| target | bigint | ID of the target under study |
| radius | integer | Radius in meters around the target under study that will be taken into account|
| minval (optional) | numeric | Lowest accepted value of weight, defaults to numeric min_value |
### CDB_Gravity( target_query text, weight_column text, source_query text, pop_column text, target bigint, radius integer, minval numeric DEFAULT -10e307)
#### Arguments
| Name | Type | Description |
|------|------|-------------|
| target_query | text | Query that defines targets |
| weight_column | text | Column name of weights |
| source_query | text | Query that defines sources |
| pop_column | text | Column name of population |
| target | bigint | cartodb_id of the target under study |
| radius | integer | Radius in meters around the target under study that will be taken into account|
| minval (optional) | numeric | Lowest accepted value of weight, defaults to numeric min_value |
### Returns
| Column Name | Type | Description |
|-------------|------|-------------|
| the_geom | geometry | Geometries of the sources within the radius |
| source_id | bigint | ID of the source |
| target_id | bigint | Target ID from input |
| dist | numeric | Distance in meters source to target (if not points, distance between centroids) |
| h | numeric | Probability of patronage |
| hpop | numeric | Patronaging population |
#### Example Usage
```sql
with t as (
SELECT
array_agg(cartodb_id::bigint) as id,
array_agg(the_geom) as g,
array_agg(coalesce(gla,0)::numeric) as w
FROM
abel.centros_comerciales_de_madrid
WHERE not no_cc
),
s as (
SELECT
array_agg(cartodb_id::bigint) as id,
array_agg(center) as g,
array_agg(coalesce(t1_1, 0)::numeric) as p
FROM
sscc_madrid
)
select
g.the_geom,
trunc(g.h,2) as h,
round(g.hpop) as hpop,
trunc(g.dist/1000,2) as dist_km
FROM t, s, CDB_Gravity1(t.id, t.g, t.w, s.id, s.g, s.p, newmall_ID, 100000, 5000) g
```

24
doc/docs_template.md Normal file
View File

@@ -0,0 +1,24 @@
## Name
## Synopsis
## Description
Availability: v...
## Examples
```SQL
-- example of the function in use
SELECT cdb_awesome_function(the_geom, 'total_pop')
FROM table_name
```
## API Usage
_asdf_
## See Also
_Other function pages_

115
src/pg/sql/07_gravity.sql Normal file
View File

@@ -0,0 +1,115 @@
CREATE OR REPLACE FUNCTION CDB_Gravity(
IN target_query text,
IN weight_column text,
IN source_query text,
IN pop_column text,
IN target bigint,
IN radius integer,
IN minval numeric DEFAULT -10e307
)
RETURNS TABLE(
the_geom geometry,
source_id bigint,
target_id bigint,
dist numeric,
h numeric,
hpop numeric) AS $$
DECLARE
t_id bigint[];
t_geom geometry[];
t_weight numeric[];
s_id bigint[];
s_geom geometry[];
s_pop numeric[];
BEGIN
EXECUTE 'WITH foo as('+target_query+') SELECT array_agg(cartodb_id), array_agg(the_geom), array_agg(' || weight_column || ') FROM foo' INTO t_id, t_geom, t_weight;
EXECUTE 'WITH foo as('+source_query+') SELECT array_agg(cartodb_id), array_agg(the_geom), array_agg(' || pop_column || ') FROM foo' INTO s_id, s_geom, s_pop;
RETURN QUERY
SELECT g.* FROM t, s, CDB_Gravity(t_id, t_geom, t_weight, s_id, s_geom, s_pop, target, radius, minval) g;
END;
$$ language plpgsql;
CREATE OR REPLACE FUNCTION CDB_Gravity(
IN t_id bigint[],
IN t_geom geometry[],
IN t_weight numeric[],
IN s_id bigint[],
IN s_geom geometry[],
IN s_pop numeric[],
IN target bigint,
IN radius integer,
IN minval numeric DEFAULT -10e307
)
RETURNS TABLE(
the_geom geometry,
source_id bigint,
target_id bigint,
dist numeric,
h numeric,
hpop numeric) AS $$
DECLARE
t_type text;
s_type text;
t_center geometry[];
s_center geometry[];
BEGIN
t_type := GeometryType(t_geom[1]);
s_type := GeometryType(s_geom[1]);
IF t_type = 'POINT' THEN
t_center := t_geom;
ELSE
WITH tmp as (SELECT unnest(t_geom) as g) SELECT array_agg(ST_Centroid(g)) INTO t_center FROM tmp;
END IF;
IF s_type = 'POINT' THEN
s_center := s_geom;
ELSE
WITH tmp as (SELECT unnest(s_geom) as g) SELECT array_agg(ST_Centroid(g)) INTO s_center FROM tmp;
END IF;
RETURN QUERY
with target0 as(
SELECT unnest(t_center) as tc, unnest(t_weight) as tw, unnest(t_id) as td
),
source0 as(
SELECT unnest(s_center) as sc, unnest(s_id) as sd, unnest (s_geom) as sg, unnest(s_pop) as sp
),
prev0 as(
SELECT
source0.sg,
source0.sd as sourc_id,
coalesce(source0.sp,0) as sp,
target.td as targ_id,
coalesce(target.tw,0) as tw,
GREATEST(1.0,ST_Distance(geography(target.tc), geography(source0.sc)))::numeric as distance
FROM source0
CROSS JOIN LATERAL
(
SELECT
*
FROM target0
WHERE tw > minval
AND ST_DWithin(geography(source0.sc), geography(tc), radius)
) AS target
),
deno as(
SELECT
sourc_id,
sum(tw/distance) as h_deno
FROM
prev0
GROUP BY sourc_id
)
SELECT
p.sg as the_geom,
p.sourc_id as source_id,
p.targ_id as target_id,
case when p.distance > 1 then p.distance else 0.0 end as dist,
100*(p.tw/p.distance)/d.h_deno as h,
p.sp*(p.tw/p.distance)/d.h_deno as hpop
FROM
prev0 p,
deno d
WHERE
p.targ_id = target AND
p.sourc_id = d.sourc_id;
END;
$$ language plpgsql;

View File

@@ -1,89 +1,233 @@
-- Moran's I (global)
-- Moran's I Global Measure (public-facing)
CREATE OR REPLACE FUNCTION
CDB_AreasOfInterest_Global (
CDB_AreasOfInterestGlobal(
subquery TEXT,
attr_name TEXT,
column_name TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5)
id_col TEXT DEFAULT 'cartodb_id')
RETURNS TABLE (moran NUMERIC, significance NUMERIC)
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran(subquery, attr, num_ngbrs, permutations, geom_col, id_col, w_type)
return moran(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
$$ LANGUAGE plpythonu;
-- Moran's I Local
-- Moran's I Local (internal function)
CREATE OR REPLACE FUNCTION
CDB_AreasOfInterest_Local(
_CDB_AreasOfInterestLocal(
subquery TEXT,
attr TEXT,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5)
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, ids INT, y NUMERIC)
column_name TEXT,
w_type TEXT,
num_ngbrs INT,
permutations INT,
geom_col TEXT,
id_col TEXT)
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran_local(subquery, attr, permutations, geom_col, id_col, w_type, num_ngbrs)
return moran_local(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
$$ LANGUAGE plpythonu;
-- Moran's I Rate (global)
-- Moran's I Local (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_AreasOfInterest_Global_Rate(
CDB_AreasOfInterestLocal(
subquery TEXT,
column_name TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col);
$$ LANGUAGE SQL;
-- Moran's I only for HH and HL (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_GetSpatialHotspots(
subquery TEXT,
column_name TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
WHERE quads IN ('HH', 'HL');
$$ LANGUAGE SQL;
-- Moran's I only for LL and LH (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_GetSpatialColdspots(
subquery TEXT,
attr TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col)
WHERE quads IN ('LL', 'LH');
$$ LANGUAGE SQL;
-- Moran's I only for LH and HL (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_GetSpatialOutliers(
subquery TEXT,
attr TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col)
WHERE quads IN ('HL', 'LH');
$$ LANGUAGE SQL;
-- Moran's I Global Rate (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_AreasOfInterestGlobalRate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5)
id_col TEXT DEFAULT 'cartodb_id')
RETURNS TABLE (moran FLOAT, significance FLOAT)
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran_rate(subquery, numerator, denominator, permutations, geom_col, id_col, w_type, num_ngbrs)
return moran_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
$$ LANGUAGE plpythonu;
-- Moran's I Local Rate
-- Moran's I Local Rate (internal function)
CREATE OR REPLACE FUNCTION
CDB_AreasOfInterest_Local_Rate(
_CDB_AreasOfInterestLocalRate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5)
w_type TEXT,
num_ngbrs INT,
permutations INT,
geom_col TEXT,
id_col TEXT)
RETURNS
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, ids INT, y NUMERIC)
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local_rate
# TODO: use named parameters or a dictionary
return moran_local_rate(subquery, numerator, denominator, permutations, geom_col, id_col, w_type, num_ngbrs)
return moran_local_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
$$ LANGUAGE plpythonu;
-- -- Moran's I Local Bivariate
-- CREATE OR REPLACE FUNCTION
-- cdb_moran_local_bv(
-- subquery TEXT,
-- attr1 TEXT,
-- attr2 TEXT,
-- permutations INT DEFAULT 99,
-- geom_col TEXT DEFAULT 'the_geom',
-- id_col TEXT DEFAULT 'cartodb_id',
-- w_type TEXT DEFAULT 'knn',
-- num_ngbrs INT DEFAULT 5)
-- RETURNS TABLE(moran FLOAT, quads TEXT, significance FLOAT, ids INT, y numeric)
-- AS $$
-- from crankshaft.clustering import moran_local_bv
-- # TODO: use named parameters or a dictionary
-- return moran_local_bv(t, attr1, attr2, permutations, geom_col, id_col, w_type, num_ngbrs)
-- $$ LANGUAGE plpythonu;
-- Moran's I Local Rate (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_AreasOfInterestLocalRate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col);
$$ LANGUAGE SQL;
-- Moran's I Local Rate only for HH and HL (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_GetSpatialHotspotsRate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
WHERE quads IN ('HH', 'HL');
$$ LANGUAGE SQL;
-- Moran's I Local Rate only for LL and LH (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_GetSpatialColdspotsRate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
WHERE quads IN ('LL', 'LH');
$$ LANGUAGE SQL;
-- Moran's I Local Rate only for LH and HL (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_GetSpatialOutliersRate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
WHERE quads IN ('HL', 'LH');
$$ LANGUAGE SQL;

View File

@@ -1,248 +1,277 @@
\pset format unaligned
\set ECHO all
\i test/fixtures/ppoints.sql
-- test table (spanish province centroids with some invented values)
CREATE TABLE ppoints (cartodb_id integer, the_geom geometry, the_geom_webmercator geometry, code text, region_code text, value float);
INSERT INTO ppoints VALUES
( 1,'0101000020E6100000A8306DC0CBC305C051D14B6CE56A4540'::geometry,ST_Transform('0101000020E6100000A8306DC0CBC305C051D14B6CE56A4540'::geometry, 3857),'01','16',0.5),
( 4,'0101000020E6100000E220A4362DC202C0FD8AFA5119994240'::geometry,ST_Transform('0101000020E6100000E220A4362DC202C0FD8AFA5119994240'::geometry, 3857),'04','01',0.1),
( 5,'0101000020E610000004377E573AC813C0CB5871BB17494440'::geometry,ST_Transform('0101000020E610000004377E573AC813C0CB5871BB17494440'::geometry, 3857),'05','07',0.3),
( 2,'0101000020E610000000F49BE19BAFFFBF639958FDA6694340'::geometry,ST_Transform('0101000020E610000000F49BE19BAFFFBF639958FDA6694340'::geometry, 3857),'02','08',0.7),
( 3,'0101000020E61000005D0B7E63C832E2BFDB63EB00443D4340'::geometry,ST_Transform('0101000020E61000005D0B7E63C832E2BFDB63EB00443D4340'::geometry, 3857),'03','10',0.2),
( 6,'0101000020E61000006F3742B7FB9018C0DD967DC4D95A4340'::geometry,ST_Transform('0101000020E61000006F3742B7FB9018C0DD967DC4D95A4340'::geometry, 3857),'06','11',0.05),
( 7,'0101000020E6100000E4BB36995F4C0740EAC0E5CA9FC94340'::geometry,ST_Transform('0101000020E6100000E4BB36995F4C0740EAC0E5CA9FC94340'::geometry, 3857),'07','04',0.4),
( 8,'0101000020E61000003D43CC6CAFBEFF3F6B52E66F91DD4440'::geometry,ST_Transform('0101000020E61000003D43CC6CAFBEFF3F6B52E66F91DD4440'::geometry, 3857),'08','09',0.7),
( 9,'0101000020E61000003CC797BD99AF0CC0495A87FA312F4540'::geometry,ST_Transform('0101000020E61000003CC797BD99AF0CC0495A87FA312F4540'::geometry, 3857),'09','07',0.5),
(13,'0101000020E61000001CAA00A9F19F0EC05DF9267B7A764340'::geometry,ST_Transform('0101000020E61000001CAA00A9F19F0EC05DF9267B7A764340'::geometry, 3857),'13','08',0.4),
(16,'0101000020E6100000D8208F3CBC9001C065638DC1B1F24340'::geometry,ST_Transform('0101000020E6100000D8208F3CBC9001C065638DC1B1F24340'::geometry, 3857),'16','08',0.4),
(17,'0101000020E6100000E9E6A94A71630540AD7A0CB062104540'::geometry,ST_Transform('0101000020E6100000E9E6A94A71630540AD7A0CB062104540'::geometry, 3857),'17','09',0.6),
(18,'0101000020E6100000719792D59E240AC098AC548E00A84240'::geometry,ST_Transform('0101000020E6100000719792D59E240AC098AC548E00A84240'::geometry, 3857),'18','01',0.3),
(19,'0101000020E6100000972C878B50FD04C0123C881D1F684440'::geometry,ST_Transform('0101000020E6100000972C878B50FD04C0123C881D1F684440'::geometry, 3857),'19','08',0.7),
(21,'0101000020E6100000F7893E9934511BC0EAA4BF03E1C94240'::geometry,ST_Transform('0101000020E6100000F7893E9934511BC0EAA4BF03E1C94240'::geometry, 3857),'21','01',0.1),
(22,'0101000020E6100000572C2123B2A8B2BF7ED7FABAFD194540'::geometry,ST_Transform('0101000020E6100000572C2123B2A8B2BF7ED7FABAFD194540'::geometry, 3857),'22','02',0.4),
(25,'0101000020E6100000461B67D688C4F03FD990EEC3A0054540'::geometry,ST_Transform('0101000020E6100000461B67D688C4F03FD990EEC3A0054540'::geometry, 3857),'25','09',0.4),
(26,'0101000020E6100000A139FB06E82204C0539D84F62E234540'::geometry,ST_Transform('0101000020E6100000A139FB06E82204C0539D84F62E234540'::geometry, 3857),'26','17',0.6),
(27,'0101000020E6100000A92E54E618C91DC00D3A947B81814540'::geometry,ST_Transform('0101000020E6100000A92E54E618C91DC00D3A947B81814540'::geometry, 3857),'27','12',0.3),
(28,'0101000020E6100000971DC8B682BC0DC016D0E8055F3F4440'::geometry,ST_Transform('0101000020E6100000971DC8B682BC0DC016D0E8055F3F4440'::geometry, 3857),'28','13',0.8),
(30,'0101000020E6100000A2DC1964A8C5F7BF19299C994D004340'::geometry,ST_Transform('0101000020E6100000A2DC1964A8C5F7BF19299C994D004340'::geometry, 3857),'30','14',0.1),
(31,'0101000020E6100000DCA1FCC87B56FABF9B88E9D866554540'::geometry,ST_Transform('0101000020E6100000DCA1FCC87B56FABF9B88E9D866554540'::geometry, 3857),'31','15',0.9),
(32,'0101000020E6100000E1517AFCD15E1EC0A18D8D4825194540'::geometry,ST_Transform('0101000020E6100000E1517AFCD15E1EC0A18D8D4825194540'::geometry, 3857),'32','12',0.3),
(33,'0101000020E6100000A7FF33825AF917C0FABE7DFB6BA54540'::geometry,ST_Transform('0101000020E6100000A7FF33825AF917C0FABE7DFB6BA54540'::geometry, 3857),'33','03',0.4),
(34,'0101000020E6100000FB4E4EBEB72412C0898E7240982F4540'::geometry,ST_Transform('0101000020E6100000FB4E4EBEB72412C0898E7240982F4540'::geometry, 3857),'34','07',0.3),
(35,'0101000020E6100000224682B01B1A2DC011091656CC5C3C40'::geometry,ST_Transform('0101000020E6100000224682B01B1A2DC011091656CC5C3C40'::geometry, 3857),'35','05',0.3),
(36,'0101000020E6100000F7C9447110EC20C04C5D4823C7374540'::geometry,ST_Transform('0101000020E6100000F7C9447110EC20C04C5D4823C7374540'::geometry, 3857),'36','12',0.2),
(37,'0101000020E610000053D6A26DFB4218C09D58FAE209674440'::geometry,ST_Transform('0101000020E610000053D6A26DFB4218C09D58FAE209674440'::geometry, 3857),'37','07',0.5),
(38,'0101000020E6100000B1D1B5FC910431C03C0C89BA03503C40'::geometry,ST_Transform('0101000020E6100000B1D1B5FC910431C03C0C89BA03503C40'::geometry, 3857),'38','05',0.4),
(39,'0101000020E610000086E6FEE1BD1E10C00417096748994540'::geometry,ST_Transform('0101000020E610000086E6FEE1BD1E10C00417096748994540'::geometry, 3857),'39','06',0.6),
(40,'0101000020E6100000FB51C33F733710C038D01729E4954440'::geometry,ST_Transform('0101000020E6100000FB51C33F733710C038D01729E4954440'::geometry, 3857),'40','07',0.5),
(41,'0101000020E6100000912D6FDA28BB16C031321F08C4B74240'::geometry,ST_Transform('0101000020E6100000912D6FDA28BB16C031321F08C4B74240'::geometry, 3857),'41','01',0.4),
(42,'0101000020E6100000554432EABEB504C069ECD78775CF4440'::geometry,ST_Transform('0101000020E6100000554432EABEB504C069ECD78775CF4440'::geometry, 3857),'42','07',0.2),
(43,'0101000020E6100000157F117C1A2EEA3F027CD1F2368B4440'::geometry,ST_Transform('0101000020E6100000157F117C1A2EEA3F027CD1F2368B4440'::geometry, 3857),'43','09',0.3),
(44,'0101000020E610000051AA5B1BD718EABFEE67613BA4544440'::geometry,ST_Transform('0101000020E610000051AA5B1BD718EABFEE67613BA4544440'::geometry, 3857),'44','02',0.2),
(45,'0101000020E610000022C5C01BB69710C08563BC1499E54340'::geometry,ST_Transform('0101000020E610000022C5C01BB69710C08563BC1499E54340'::geometry, 3857),'45','08',0.3),
(46,'0101000020E6100000D5FCF78A11A0E9BFDEA46F8E64AF4340'::geometry,ST_Transform('0101000020E6100000D5FCF78A11A0E9BFDEA46F8E64AF4340'::geometry, 3857),'46','10',0.2),
(47,'0101000020E61000003AE63525866313C02100050B2BD14440'::geometry,ST_Transform('0101000020E61000003AE63525866313C02100050B2BD14440'::geometry, 3857),'47','07',0.3),
(48,'0101000020E610000030F187FD1FD206C0C767E1496C9E4540'::geometry,ST_Transform('0101000020E610000030F187FD1FD206C0C767E1496C9E4540'::geometry, 3857),'48','16',0.5),
(49,'0101000020E61000009C22867B12EC17C006C5F40C14DD4440'::geometry,ST_Transform('0101000020E61000009C22867B12EC17C006C5F40C14DD4440'::geometry, 3857),'49','07',0.2),
(50,'0101000020E6100000F7D5EFC62D08F1BF69D1231D68CF4440'::geometry,ST_Transform('0101000020E6100000F7D5EFC62D08F1BF69D1231D68CF4440'::geometry, 3857),'50','02',0.6),
(51,'0101000020E61000005B0E1F8DAA5F15C0530BFE285BF24140'::geometry,ST_Transform('0101000020E61000005B0E1F8DAA5F15C0530BFE285BF24140'::geometry, 3857),'51','18',0.01),
(10,'0101000020E61000000FD65D82AEA418C06192D1351FDB4340'::geometry,ST_Transform('0101000020E61000000FD65D82AEA418C06192D1351FDB4340'::geometry, 3857),'10','11',0.04),
(11,'0101000020E6100000B305531DAB0A17C0DEAFCD4EE5464240'::geometry,ST_Transform('0101000020E6100000B305531DAB0A17C0DEAFCD4EE5464240'::geometry, 3857),'11','01',0.08),
(12,'0101000020E610000059721A7297C9C2BF9EBE383BE51E4440'::geometry,ST_Transform('0101000020E610000059721A7297C9C2BF9EBE383BE51E4440'::geometry, 3857),'12','10',0.2),
(14,'0101000020E610000000C86313AF3C13C0E530879C10FF4240'::geometry,ST_Transform('0101000020E610000000C86313AF3C13C0E530879C10FF4240'::geometry, 3857),'14','01',0.2),
(15,'0101000020E61000002A475497B6ED20C06643D4131A904540'::geometry,ST_Transform('0101000020E61000002A475497B6ED20C06643D4131A904540'::geometry, 3857),'15','12',0.3),
(20,'0101000020E6100000F975566FAD8D01C0E840C33F67924540'::geometry,ST_Transform('0101000020E6100000F975566FAD8D01C0E840C33F67924540'::geometry, 3857),'20','16',0.8),
(23,'0101000020E610000025FA13E595880BC022BB07131D024340'::geometry,ST_Transform('0101000020E610000025FA13E595880BC022BB07131D024340'::geometry, 3857),'23','01',0.1),
(24,'0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry,ST_Transform('0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry, 3857),'24','07',0.3),
(29,'0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry,ST_Transform('0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry, 3857),'29','01',0.3),
(52,'0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry,ST_Transform('0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry, 3857),'52','19',0.01)
\i test/fixtures/ppoints2.sql
-- test table (spanish province centroids with some invented values)
CREATE TABLE ppoints2 (cartodb_id integer, the_geom geometry, code text, region_code text, numerator float, denominator float);
INSERT INTO ppoints2 VALUES
( 1,'0101000020E6100000A8306DC0CBC305C051D14B6CE56A4540'::geometry,'01','16',0.5, 1.0),
( 4,'0101000020E6100000E220A4362DC202C0FD8AFA5119994240'::geometry,'04','01',0.1, 1.0),
( 5,'0101000020E610000004377E573AC813C0CB5871BB17494440'::geometry,'05','07',0.3, 1.0),
( 2,'0101000020E610000000F49BE19BAFFFBF639958FDA6694340'::geometry,'02','08',0.7, 1.0),
( 3,'0101000020E61000005D0B7E63C832E2BFDB63EB00443D4340'::geometry,'03','10',0.2, 1.0),
( 6,'0101000020E61000006F3742B7FB9018C0DD967DC4D95A4340'::geometry,'06','11',0.05, 1.0),
( 7,'0101000020E6100000E4BB36995F4C0740EAC0E5CA9FC94340'::geometry,'07','04',0.4, 1.0),
( 8,'0101000020E61000003D43CC6CAFBEFF3F6B52E66F91DD4440'::geometry,'08','09',0.7, 1.0),
( 9,'0101000020E61000003CC797BD99AF0CC0495A87FA312F4540'::geometry,'09','07',0.5, 1.0),
(13,'0101000020E61000001CAA00A9F19F0EC05DF9267B7A764340'::geometry,'13','08',0.4, 1.0),
(16,'0101000020E6100000D8208F3CBC9001C065638DC1B1F24340'::geometry,'16','08',0.4, 1.0),
(17,'0101000020E6100000E9E6A94A71630540AD7A0CB062104540'::geometry,'17','09',0.6, 1.0),
(18,'0101000020E6100000719792D59E240AC098AC548E00A84240'::geometry,'18','01',0.3, 1.0),
(19,'0101000020E6100000972C878B50FD04C0123C881D1F684440'::geometry,'19','08',0.7, 1.0),
(21,'0101000020E6100000F7893E9934511BC0EAA4BF03E1C94240'::geometry,'21','01',0.1, 1.0),
(22,'0101000020E6100000572C2123B2A8B2BF7ED7FABAFD194540'::geometry,'22','02',0.4, 1.0),
(25,'0101000020E6100000461B67D688C4F03FD990EEC3A0054540'::geometry,'25','09',0.4, 1.0),
(26,'0101000020E6100000A139FB06E82204C0539D84F62E234540'::geometry,'26','17',0.6, 1.0),
(27,'0101000020E6100000A92E54E618C91DC00D3A947B81814540'::geometry,'27','12',0.3, 1.0),
(28,'0101000020E6100000971DC8B682BC0DC016D0E8055F3F4440'::geometry,'28','13',0.8, 1.0),
(30,'0101000020E6100000A2DC1964A8C5F7BF19299C994D004340'::geometry,'30','14',0.1, 1.0),
(31,'0101000020E6100000DCA1FCC87B56FABF9B88E9D866554540'::geometry,'31','15',0.9, 1.0),
(32,'0101000020E6100000E1517AFCD15E1EC0A18D8D4825194540'::geometry,'32','12',0.3, 1.0),
(33,'0101000020E6100000A7FF33825AF917C0FABE7DFB6BA54540'::geometry,'33','03',0.4, 1.0),
(34,'0101000020E6100000FB4E4EBEB72412C0898E7240982F4540'::geometry,'34','07',0.3, 1.0),
(35,'0101000020E6100000224682B01B1A2DC011091656CC5C3C40'::geometry,'35','05',0.3, 1.0),
(36,'0101000020E6100000F7C9447110EC20C04C5D4823C7374540'::geometry,'36','12',0.2, 1.0),
(37,'0101000020E610000053D6A26DFB4218C09D58FAE209674440'::geometry,'37','07',0.5, 1.0),
(38,'0101000020E6100000B1D1B5FC910431C03C0C89BA03503C40'::geometry,'38','05',0.4, 1.0),
(39,'0101000020E610000086E6FEE1BD1E10C00417096748994540'::geometry,'39','06',0.6, 1.0),
(40,'0101000020E6100000FB51C33F733710C038D01729E4954440'::geometry,'40','07',0.5, 1.0),
(41,'0101000020E6100000912D6FDA28BB16C031321F08C4B74240'::geometry,'41','01',0.4, 1.0),
(42,'0101000020E6100000554432EABEB504C069ECD78775CF4440'::geometry,'42','07',0.2, 1.0),
(43,'0101000020E6100000157F117C1A2EEA3F027CD1F2368B4440'::geometry,'43','09',0.3, 1.0),
(44,'0101000020E610000051AA5B1BD718EABFEE67613BA4544440'::geometry,'44','02',0.2, 1.0),
(45,'0101000020E610000022C5C01BB69710C08563BC1499E54340'::geometry,'45','08',0.3, 1.0),
(46,'0101000020E6100000D5FCF78A11A0E9BFDEA46F8E64AF4340'::geometry,'46','10',0.2, 1.0),
(47,'0101000020E61000003AE63525866313C02100050B2BD14440'::geometry,'47','07',0.3, 1.0),
(48,'0101000020E610000030F187FD1FD206C0C767E1496C9E4540'::geometry,'48','16',0.5, 1.0),
(49,'0101000020E61000009C22867B12EC17C006C5F40C14DD4440'::geometry,'49','07',0.2, 1.0),
(50,'0101000020E6100000F7D5EFC62D08F1BF69D1231D68CF4440'::geometry,'50','02',0.6, 1.0),
(51,'0101000020E61000005B0E1F8DAA5F15C0530BFE285BF24140'::geometry,'51','18',0.01, 1.0),
(10,'0101000020E61000000FD65D82AEA418C06192D1351FDB4340'::geometry,'10','11',0.04, 1.0),
(11,'0101000020E6100000B305531DAB0A17C0DEAFCD4EE5464240'::geometry,'11','01',0.08, 1.0),
(12,'0101000020E610000059721A7297C9C2BF9EBE383BE51E4440'::geometry,'12','10',0.2, 1.0),
(14,'0101000020E610000000C86313AF3C13C0E530879C10FF4240'::geometry,'14','01',0.2, 1.0),
(15,'0101000020E61000002A475497B6ED20C06643D4131A904540'::geometry,'15','12',0.3, 1.0),
(20,'0101000020E6100000F975566FAD8D01C0E840C33F67924540'::geometry,'20','16',0.8, 1.0),
(23,'0101000020E610000025FA13E595880BC022BB07131D024340'::geometry,'23','01',0.1, 1.0),
(24,'0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry,'24','07',0.3, 1.0),
(29,'0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry,'29','01',0.3, 1.0),
(52,'0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry,'52','19',0.0, 1.01)
-- Areas of Interest functions perform some nondeterministic computations
-- (to estimate the significance); we will set the seeds for the RNGs
-- that affect those results to have repeateble results
SELECT cdb_crankshaft._cdb_random_seeds(1234);
_cdb_random_seeds
-------------------
(1 row)
SET client_min_messages TO WARNING;
\set ECHO none
_cdb_random_seeds
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_crankshaft.CDB_AreasOfInterest_Local('SELECT * FROM ppoints', 'value') m
ON ppoints.cartodb_id = m.ids
ORDER BY ppoints.code;
code | quads
------+-------
01 | HH
02 | HL
03 | LL
04 | LL
05 | LH
06 | LL
07 | HH
08 | HH
09 | HH
10 | LL
11 | LL
12 | LL
13 | HL
14 | LL
15 | LL
16 | HH
17 | HH
18 | LL
19 | HH
20 | HH
21 | LL
22 | HH
23 | LL
24 | LL
25 | HH
26 | HH
27 | LL
28 | HH
29 | LL
30 | LL
31 | HH
32 | LL
33 | HL
34 | LH
35 | LL
36 | LL
37 | HL
38 | HL
39 | HH
40 | HH
41 | HL
42 | LH
43 | LH
44 | LL
45 | LH
46 | LL
47 | LL
48 | HH
49 | LH
50 | HH
51 | LL
52 | LL
(1 row)
code|quads
01|HH
02|HL
03|LL
04|LL
05|LH
06|LL
07|HH
08|HH
09|HH
10|LL
11|LL
12|LL
13|HL
14|LL
15|LL
16|HH
17|HH
18|LL
19|HH
20|HH
21|LL
22|HH
23|LL
24|LL
25|HH
26|HH
27|LL
28|HH
29|LL
30|LL
31|HH
32|LL
33|HL
34|LH
35|LL
36|LL
37|HL
38|HL
39|HH
40|HH
41|HL
42|LH
43|LH
44|LL
45|LH
46|LL
47|LL
48|HH
49|LH
50|HH
51|LL
52|LL
(52 rows)
_cdb_random_seeds
SELECT cdb_crankshaft._cdb_random_seeds(1234);
_cdb_random_seeds
-------------------
(1 row)
code|quads
01|HH
02|HL
07|HH
08|HH
09|HH
13|HL
16|HH
17|HH
19|HH
20|HH
22|HH
25|HH
26|HH
28|HH
31|HH
33|HL
37|HL
38|HL
39|HH
40|HH
41|HL
48|HH
50|HH
(23 rows)
_cdb_random_seeds
SELECT ppoints2.code, m.quads
FROM ppoints2
JOIN cdb_crankshaft.CDB_AreasOfInterest_Local_Rate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.ids
ORDER BY ppoints2.code;
code | quads
------+-------
01 | LL
02 | LH
03 | HH
04 | HH
05 | LL
06 | HH
07 | LL
08 | LL
09 | LL
10 | HH
11 | HH
12 | HL
13 | LL
14 | HH
15 | LL
16 | LL
17 | LL
18 | LH
19 | LL
20 | LL
21 | HH
22 | LL
23 | HL
24 | LL
25 | LL
26 | LL
27 | LL
28 | LL
29 | LH
30 | HH
31 | LL
32 | LL
33 | LL
34 | LL
35 | LH
36 | HL
37 | LH
38 | LH
39 | LL
40 | LL
41 | LH
42 | HL
43 | LL
44 | HL
45 | LL
46 | HL
47 | LL
48 | LL
49 | HL
50 | LL
51 | HH
(1 row)
code|quads
03|LL
04|LL
05|LH
06|LL
10|LL
11|LL
12|LL
14|LL
15|LL
18|LL
21|LL
23|LL
24|LL
27|LL
29|LL
30|LL
32|LL
34|LH
35|LL
36|LL
42|LH
43|LH
44|LL
45|LH
46|LL
47|LL
49|LH
51|LL
52|LL
(29 rows)
_cdb_random_seeds
(1 row)
code|quads
02|HL
05|LH
13|HL
33|HL
34|LH
37|HL
38|HL
41|HL
42|LH
43|LH
45|LH
49|LH
(12 rows)
_cdb_random_seeds
(1 row)
code|quads
01|LL
02|LH
03|HH
04|HH
05|LL
06|HH
07|LL
08|LL
09|LL
10|HH
11|HH
12|HL
13|LL
14|HH
15|LL
16|LL
17|LL
18|LH
19|LL
20|LL
21|HH
22|LL
23|HL
24|LL
25|LL
26|LL
27|LL
28|LL
29|LH
30|HH
31|LL
32|LL
33|LL
34|LL
35|LH
36|HL
37|LH
38|LH
39|LL
40|LL
41|LH
42|HL
43|LL
44|HL
45|LL
46|HL
47|LL
48|LL
49|HL
50|LL
51|HH
(51 rows)
_cdb_random_seeds
(1 row)
code|quads
03|HH
04|HH
06|HH
10|HH
11|HH
12|HL
14|HH
21|HH
23|HL
30|HH
36|HL
42|HL
44|HL
46|HL
49|HL
51|HH
(16 rows)
_cdb_random_seeds
(1 row)
code|quads
01|LL
02|LH
05|LL
07|LL
08|LL
09|LL
13|LL
15|LL
16|LL
17|LL
18|LH
19|LL
20|LL
22|LL
24|LL
25|LL
26|LL
27|LL
28|LL
29|LH
31|LL
32|LL
33|LL
34|LL
35|LH
37|LH
38|LH
39|LL
40|LL
41|LH
43|LL
45|LL
47|LL
48|LL
50|LL
(35 rows)
_cdb_random_seeds
(1 row)
code|quads
02|LH
12|HL
18|LH
23|HL
29|LH
35|LH
36|HL
37|LH
38|LH
41|LH
42|HL
44|HL
46|HL
49|HL
(14 rows)

View File

@@ -1,21 +1,11 @@
\i test/fixtures/polyg_values.sql
CREATE TABLE values (cartodb_id integer, value float, the_geom geometry);
INSERT INTO values(cartodb_id, value, the_geom) VALUES
(1,10,'0106000020E61000000100000001030000000100000005000000E5AF3500C03608C08068629111374440C7BC0A00C00F02C0AC0551523B414440C7BC0A00C0A700C0CAF23B6E74FB4340A7267FFFFF5206C0FBB7E41B7EE74340E5AF3500C03608C08068629111374440'::geometry),
(2,20,'0106000020E610000001000000010300000001000000050000002439EC00804AF7BF07D6CCB5C3064440C7BC0A00C0A700C0CAF23B6E74FB4340C7BC0A00C00F02C0AC0551523B414440E20CD5FFFF30FABFBE4F76AFEA4B44402439EC00804AF7BF07D6CCB5C3064440'::geometry)
SELECT round(cdb_crankshaft.cdb_overlap_sum(
'0106000020E61000000100000001030000000100000004000000FFFFFFFFFF3604C09A0B9ECEC42E444000000000C060FBBF30C7FD70E01D44400000000040AD02C06481F1C8CD034440FFFFFFFFFF3604C09A0B9ECEC42E4440'::geometry,
'values', 'value'
), 2);
SET client_min_messages TO WARNING;
\set ECHO none
round
-------
4.42
(1 row)
SELECT round(cdb_crankshaft.cdb_overlap_sum(
'0106000020E61000000100000001030000000100000004000000FFFFFFFFFF3604C09A0B9ECEC42E444000000000C060FBBF30C7FD70E01D44400000000040AD02C06481F1C8CD034440FFFFFFFFFF3604C09A0B9ECEC42E4440'::geometry,
'values', 'value', schema_name := 'public'
), 2);
round
-------
4.42

View File

@@ -0,0 +1,11 @@
the_geom | h | hpop | dist
--------------------------------------------+-------------------------+--------------------------+----------------
01010000001361C3D32B650140DD24068195B34440 | 1.51078258369747945249 | 12.08626066957983561994 | 4964.714459152
01010000002497FF907EFB0040713D0AD7A3B04440 | 98.29730954183620807430 | 688.08116679285345652007 | 99.955141922
0101000000A167B3EA733501401D5A643BDFAF4440 | 63.70532894711274639196 | 382.23197368267647835174 | 2488.330566505
010100000062A1D634EF380140BE9F1A2FDDB44440 | 35.35415870080995954879 | 176.77079350404979774397 | 4359.370460594
010100000052B81E85EB510140355EBA490CB24440 | 33.12290506987740864904 | 132.49162027950963459615 | 3703.664449828
0101000000C286A757CA320140736891ED7CAF4440 | 65.45251754279248087849 | 196.35755262837744263547 | 2512.092358644
01010000007DD0B359F5390140C976BE9F1AAF4440 | 62.83927792471345639225 | 125.67855584942691278449 | 2926.25725244
0101000000D237691A140D01407E6FD39FFDB44440 | 53.54905726651871279586 | 53.54905726651871279586 | 3744.515577777
(8 rows)

View File

@@ -1,3 +1,5 @@
SET client_min_messages TO WARNING;
\set ECHO none
CREATE TABLE values (cartodb_id integer, value float, the_geom geometry);
INSERT INTO values(cartodb_id, value, the_geom) VALUES
(1,10,'0106000020E61000000100000001030000000100000005000000E5AF3500C03608C08068629111374440C7BC0A00C00F02C0AC0551523B414440C7BC0A00C0A700C0CAF23B6E74FB4340A7267FFFFF5206C0FBB7E41B7EE74340E5AF3500C03608C08068629111374440'::geometry),

View File

@@ -1,3 +1,5 @@
SET client_min_messages TO WARNING;
\set ECHO none
-- test table (spanish province centroids with some invented values)
CREATE TABLE ppoints (cartodb_id integer, the_geom geometry, the_geom_webmercator geometry, code text, region_code text, value float);
INSERT INTO ppoints VALUES

View File

@@ -1,3 +1,5 @@
SET client_min_messages TO WARNING;
\set ECHO none
-- test table (spanish province centroids with some invented values)
CREATE TABLE ppoints2 (cartodb_id integer, the_geom geometry, code text, region_code text, numerator float, denominator float);
INSERT INTO ppoints2 VALUES

View File

@@ -1,3 +1,5 @@
\pset format unaligned
\set ECHO all
\i test/fixtures/ppoints.sql
\i test/fixtures/ppoints2.sql
@@ -8,14 +10,70 @@ SELECT cdb_crankshaft._cdb_random_seeds(1234);
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_crankshaft.CDB_AreasOfInterest_Local('SELECT * FROM ppoints', 'value') m
ON ppoints.cartodb_id = m.ids
JOIN cdb_crankshaft.CDB_AreasOfInterestLocal('SELECT * FROM ppoints', 'value') m
ON ppoints.cartodb_id = m.rowid
ORDER BY ppoints.code;
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Spatial Hotspots
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_crankshaft.CDB_GetSpatialHotspots('SELECT * FROM ppoints', 'value') m
ON ppoints.cartodb_id = m.rowid
ORDER BY ppoints.code;
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Spatial Coldspots
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_crankshaft.CDB_GetSpatialColdspots('SELECT * FROM ppoints', 'value') m
ON ppoints.cartodb_id = m.rowid
ORDER BY ppoints.code;
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Spatial Outliers
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_crankshaft.CDB_GetSpatialOutliers('SELECT * FROM ppoints', 'value') m
ON ppoints.cartodb_id = m.rowid
ORDER BY ppoints.code;
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Areas of Interest (rate)
SELECT ppoints2.code, m.quads
FROM ppoints2
JOIN cdb_crankshaft.CDB_AreasOfInterest_Local_Rate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.ids
JOIN cdb_crankshaft.CDB_AreasOfInterestLocalRate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.rowid
ORDER BY ppoints2.code;
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Spatial Hotspots (rate)
SELECT ppoints2.code, m.quads
FROM ppoints2
JOIN cdb_crankshaft.CDB_GetSpatialHotspotsRate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.rowid
ORDER BY ppoints2.code;
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Spatial Coldspots (rate)
SELECT ppoints2.code, m.quads
FROM ppoints2
JOIN cdb_crankshaft.CDB_GetSpatialColdspotsRate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.rowid
ORDER BY ppoints2.code;
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Spatial Outliers (rate)
SELECT ppoints2.code, m.quads
FROM ppoints2
JOIN cdb_crankshaft.CDB_GetSpatialOutliersRate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.rowid
ORDER BY ppoints2.code;

View File

@@ -0,0 +1,21 @@
WITH t AS (
SELECT
ARRAY[1,2,3] AS id,
ARRAY[7.0,8.0,3.0] AS w,
ARRAY[ST_GeomFromText('POINT(2.1744 41.4036)'),ST_GeomFromText('POINT(2.1228 41.3809)'),ST_GeomFromText('POINT(2.1511 41.3742)')] AS g
),
s AS (
SELECT
ARRAY[10,20,30,40,50,60,70,80] AS id,
ARRAY[800, 700, 600, 500, 400, 300, 200, 100] AS p,
ARRAY[ST_GeomFromText('POINT(2.1744 41.403)'),ST_GeomFromText('POINT(2.1228 41.380)'),ST_GeomFromText('POINT(2.1511 41.374)'),ST_GeomFromText('POINT(2.1528 41.413)'),ST_GeomFromText('POINT(2.165 41.391)'),ST_GeomFromText('POINT(2.1498 41.371)'),ST_GeomFromText('POINT(2.1533 41.368)'),ST_GeomFromText('POINT(2.131386 41.41399)')] AS g
)
SELECT
g.the_geom,
g.h,
g.hpop,
g.dist
FROM
t,
s,
CDB_Gravity(t.id, t.g, t.w, s.id, s.g, s.p, 2, 100000, 3) g;

View File

@@ -14,7 +14,7 @@ import crankshaft.pysal_utils as pu
# High level interface ---------------------------------------
def moran(subquery, attr_name,
permutations, geom_col, id_col, w_type, num_ngbrs):
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I (global)
Implementation building neighbors with a PostGIS database and Moran's I
@@ -56,7 +56,7 @@ def moran(subquery, attr_name,
return zip([moran_global.I], [moran_global.EI])
def moran_local(subquery, attr,
permutations, geom_col, id_col, w_type, num_ngbrs):
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I implementation for PL/Python
Andy Eschbacher
@@ -96,7 +96,7 @@ def moran_local(subquery, attr,
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
def moran_rate(subquery, numerator, denominator,
permutations, geom_col, id_col, w_type, num_ngbrs):
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I Rate (global)
Andy Eschbacher
@@ -137,7 +137,7 @@ def moran_rate(subquery, numerator, denominator,
return zip([lisa_rate.I], [lisa_rate.EI])
def moran_local_rate(subquery, numerator, denominator,
permutations, geom_col, id_col, w_type, num_ngbrs):
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I Local Rate
Andy Eschbacher

View File

@@ -11,7 +11,7 @@ def construct_neighbor_query(w_type, query_vals):
@param query_vals dict: values used to construct the query
"""
if w_type == 'knn':
if w_type.lower() == 'knn':
return knn(query_vals)
else:
return queen(query_vals)
@@ -22,7 +22,7 @@ def get_weight(query_res, w_type='knn', num_ngbrs=5):
Construct PySAL weight from return value of query
@param query_res: query results with attributes and neighbors
"""
if w_type == 'knn':
if w_type.lower() == 'knn':
row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
weights = {x['id']: row_normed_weights for x in query_res}
else:

View File

@@ -52,7 +52,7 @@ class MoranTest(unittest.TestCase):
data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local('subquery', 'value', 99, 'the_geom', 'cartodb_id', 'knn', 5)
result = cc.moran_local('subquery', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id')
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
@@ -64,7 +64,7 @@ class MoranTest(unittest.TestCase):
data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local_rate('subquery', 'numerator', 'denominator', 99, 'the_geom', 'cartodb_id', 'knn', 5)
result = cc.moran_local_rate('subquery', 'numerator', 'denominator', 'knn', 5, 99, 'the_geom', 'cartodb_id')
print 'result == None? ', result == None
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
@@ -76,7 +76,7 @@ class MoranTest(unittest.TestCase):
data = [{ 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1235)
result = cc.moran('table', 'value', 99, 'the_geom', 'cartodb_id', 'knn', 5)
result = cc.moran('table', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id')
print 'result == None?', result == None
result_moran = result[0][0]
expected_moran = np.array([row[0] for row in self.moran_data]).mean()