Compare commits

...

70 Commits

Author SHA1 Message Date
abelvm
5183f5ff92 added function overload with subqueries input 2016-06-03 18:22:26 +02:00
abelvm
73d38bbbaa filling the gaps 2016-06-03 17:32:39 +02:00
Stuart Lynn
4782d39849 stubbing out gravity model 2016-06-03 10:36:21 -04:00
Andy Eschbacher
21dd956c15 Merge pull request #56 from CartoDB/add-issue-templates
adding template for code reviews
2016-06-03 08:25:21 -04:00
Andy Eschbacher
a0a026c2a1 Merge pull request #57 from CartoDB/adding-hot-and-cold-spot-function
adding hot/cold/outlier getters
2016-06-01 15:23:19 -04:00
Andy Eschbacher
c04e15ef81 rename some variables 2016-06-01 15:07:16 -04:00
Andy Eschbacher
ae1bb703a7 descriptions for all functions 2016-06-01 15:06:58 -04:00
Andy Eschbacher
0e3970f52c adds docs for areasofinterestlocal 2016-06-01 13:46:12 -04:00
Andy Eschbacher
59c520da16 renaming output value to vals 2016-06-01 13:40:32 -04:00
Andy Eschbacher
90c3e21c0d renaming output id to rowid 2016-06-01 12:43:33 -04:00
Andy Eschbacher
3013998e1b make functions more flexible to case of weight type 2016-06-01 12:19:08 -04:00
Andy Eschbacher
2b8adb744d switched signature to put more common options in the front 2016-06-01 12:09:43 -04:00
Andy Eschbacher
434cfcd1e9 Merge branch 'develop' into adding-hot-and-cold-spot-function 2016-06-01 11:38:46 -04:00
Andy Eschbacher
b5c6b42081 update names to align with CamelCase convention 2016-06-01 11:33:02 -04:00
Andy Eschbacher
1b0d1cc82c updating function names 2016-05-24 17:51:29 -04:00
Andy Eschbacher
fe22464b75 Merge pull request #22 from CartoDB/update-docs
Update docs format
2016-05-23 09:51:44 -04:00
Andy Eschbacher
ca5175f15b adding reference to subquery argument requirement 2016-05-20 16:26:43 -04:00
Andy Eschbacher
4e870e4393 adapt other test for new settings in fixtures 2016-05-20 15:15:41 -04:00
Andy Eschbacher
b05ad98ed9 adding tests for hot/cold/outlier for normal moran functions 2016-05-20 15:15:19 -04:00
Andy Eschbacher
bc8055a12b adds pset format unaligned to reduce output for tests 2016-05-20 14:55:16 -04:00
Andy Eschbacher
c3913459d9 adding tests for hotspot, coldspot, and outlier functions 2016-05-20 14:54:42 -04:00
Andy Eschbacher
f571e59a95 adding hot/cold/outlier getters 2016-05-20 14:05:59 -04:00
Andy Eschbacher
0400b1a880 adding template for code reviews 2016-05-20 13:23:56 -04:00
Javier Goizueta
cc4a35ebd9 Fix instructions to update/install the extension 2016-05-20 11:47:12 +02:00
Andy Eschbacher
633b63bccc Merge pull request #25 from CartoDB/improve-moran-queries-revisited
adding condition to avoid self-comparison in neighbor queries
2016-03-30 15:40:29 -04:00
Andy Eschbacher
ea02f36235 adding condition to avoid self-comparison in neighbor queries 2016-03-30 15:37:51 -04:00
Andy Eschbacher
22b6aed7c1 Merge pull request #16 from CartoDB/proof-read-and-gitignore-update
Proof read and gitignore update
2016-03-30 12:37:29 -04:00
Andy Eschbacher
f6e8524669 Merge pull request #19 from CartoDB/restructure-moran-redux
Restructure moran redux
2016-03-30 12:10:36 -04:00
Andy Eschbacher
02b74813ac add test for global moran 2016-03-30 12:09:49 -04:00
Andy Eschbacher
4c243bf1d3 correct func signatures 2016-03-30 11:44:44 -04:00
Andy Eschbacher
b0150d4fec adding tests for pysal_utils 2016-03-30 08:27:14 -04:00
Andy Eschbacher
6bb4f36df5 extracting util code to new submodule 2016-03-30 08:10:35 -04:00
Andy Eschbacher
5a46f65e59 update tests to remove plpy notices 2016-03-30 08:09:48 -04:00
Andy Eschbacher
e56519f599 removed unneded comments, make outputs more consistent 2016-03-29 23:39:29 -07:00
Andy Eschbacher
8dd8ab37a5 refactored from pylint 2016-03-29 22:49:31 -07:00
Andy Eschbacher
06f5cf9951 standarizing error reporting 2016-03-29 12:34:23 -07:00
Andy Eschbacher
bc67ae8f69 changed name of functions for observatory 2016-03-29 12:18:52 -07:00
Andy Eschbacher
00579cd838 adding template 2016-03-23 17:10:08 -04:00
Andy Eschbacher
3f20275d3d adopting new format (wip) 2016-03-23 17:09:52 -04:00
Andy Eschbacher
eecbe39547 updating tests 2016-03-22 10:42:44 -04:00
Andy Eschbacher
1578b17eb8 updated function flow without significance 2016-03-22 10:42:06 -04:00
Andy Eschbacher
3eda8ecd16 new signatures for moran (w/o significance) 2016-03-22 10:34:22 -04:00
Andy Eschbacher
0aa4d0a50e typo fixes, linking, etc. 2016-03-21 08:51:10 -04:00
Andy Eschbacher
3b31da783a adding mac ds_store ignore 2016-03-21 08:40:37 -04:00
Javier Goizueta
8762f6ca1c Merge pull request #12 from CartoDB/feat-moran-free-queries
Allow to pass free queries as `select * from table limit 100` in moran
2016-03-16 19:43:15 +01:00
Raul Ochoa
58c141d217 Allow to pass free queries as select * from table limit 100 in moran 2016-03-16 19:40:06 +01:00
Javier Goizueta
5a7d3178dd Release 0.0.2
This version is the first with the new versioning approach
which uses separate per-version Pyhton virtual enironments.
2016-03-16 19:22:21 +01:00
Javier Goizueta
4903af6cdc Add existing release 0.0.1
The existing 0.0.1 files are placed into their location in release/
2016-03-16 18:41:49 +01:00
Javier Goizueta
692014d694 Merge pull request #11 from CartoDB/new-versioning-package-varenv
New versioning process (with multiple virtual environments)
2016-03-16 18:21:52 +01:00
Javier Goizueta
47e0253652 Fixes to the documentation 2016-03-16 18:18:59 +01:00
Javier Goizueta
9f03a9b075 Reorganize the documentation into separate files
Keep a "Quickstart Guide" in the README, add separate
detailed sections for development (CONTRIBUTING) and
release/deployment (RELEASE).
2016-03-16 17:42:28 +01:00
Javier Goizueta
b5281d0681 Documentation clarifications and corrections. 2016-03-16 17:19:21 +01:00
Javier Goizueta
689ec8a925 Change version function from IMMUTABLE to STABLE
These functions' results will change when the extension
is updated.
2016-03-16 17:09:50 +01:00
Javier Goizueta
a7e42e93cc Rename cdb_crankshaft_internal_version as internal function 2016-03-16 16:41:54 +01:00
Javier Goizueta
bad09ffd7b Remove abandoned alternatives from the documentation 2016-03-16 16:30:03 +01:00
Javier Goizueta
4706442a1d Add documentation about useful make targets 2016-03-16 15:56:19 +01:00
Javier Goizueta
935c7f9963 Add missing Makefile comment 2016-03-16 15:54:39 +01:00
Javier Goizueta
ef3bcaeee8 Restore commented-out make target 2016-03-16 15:52:47 +01:00
Javier Goizueta
4ffb2c9664 Review and fix the documentation 2016-03-16 15:45:13 +01:00
Javier Goizueta
dea6e2f1a7 Refactor the Makefile
Separate concerns properly for each subdirectory's Makefile
2016-03-16 15:40:40 +01:00
Javier Goizueta
d13f167d47 Add RELEASE_VERSION option to make deploy
Now make deploy installs by default the current version,
but can be made to install any prior specific version using
a environmnt varialbe RELEASE_VERSION
2016-03-16 14:38:18 +01:00
Javier Goizueta
a518034e65 Fix .pyc files need not only be ignored inside src/py 2016-03-16 11:13:26 +01:00
Javier Goizueta
24e4037995 Fix version number of released extension script 2016-03-16 11:11:16 +01:00
Javier Goizueta
82a738fe40 Fix make clean tasks 2016-03-16 10:18:07 +01:00
Javier Goizueta
e801c9cb60 Release tasks using release-specific virtual environments
Refine the development process and define the procedure for
releasing new versions.
2016-03-15 18:48:46 +01:00
Javier Goizueta
0206cc6c44 Update documentation 2016-03-10 19:13:46 +01:00
Rafa de la Torre
b754ffe42a Add info about python dependencies 2016-03-10 18:06:21 +01:00
Javier Goizueta
0056f411b5 Set the path to virtualenvs in the Makefile
Also, version the virtualenv
2016-03-09 19:04:21 +01:00
Javier Goizueta
1810f02242 Use SciPy from system package python-scipy 2016-03-09 15:03:17 +01:00
Javier Goizueta
8e972128eb Modify sql code to user the python virtualenv 2016-03-09 15:00:50 +01:00
69 changed files with 3720 additions and 885 deletions

7
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@@ -0,0 +1,7 @@
- [ ] All declared geometries are `geometry(Geometry, 4326)` for general geoms, or `geometry(Point, 4326)`
- [ ] Include python is activated for new functions. Include this before importing modules: `plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')`
- [ ] Docs for public-facing functions are written
- [ ] New functions follow the naming conventions: `CDB_NameOfFunction`. Where internal functions begin with an underscore `_`.
- [ ] If appropriate, new functions accepts an arbitrary query as an input (see [Crankshaft Issue #6](https://github.com/CartoDB/crankshaft/issues/6) for more information)

3
.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
envs/
*.pyc
.DS_Store

View File

@@ -1,84 +1,94 @@
# Contributing guide
# Development process
## How to add new functions
Please read the Working Process/Quickstart Guide in [README.md](https://github.com/CartoDB/crankshaft/blob/master/README.md) first.
Try to put as little logic in the SQL extension as possible and
just use it as a wrapper to the Python module functionality.
For any modification of crankshaft, such as adding new features,
refactoring or bug-fixing, topic branch must be created out of the `develop`
branch and be used for the development process.
Once a function is defined it should never change its signature in subsequent
versions. To change a function's signature a new function with a different
name must be created.
Modifications are done inside `src/pg/sql` and `src/py/crankshaft`.
### Version numbers
Take into account:
The version of both the SQL extension and the Python package shall
follow the [Semantic Versioning 2.0](http://semver.org/) guidelines:
* Tests must be added for any new functionality
(inside `src/pg/test`, `src/py/crankshaft/test`) as well as to
detect any bugs that are being fixed.
* Add or modify the corresponding documentation files in the `doc` folder.
Since we expect to have highly technical functions here, an extense
background explanation would be of great help to users of this extension.
* Convention: snake case(i.e. `snake_case` and not `CamelCase`)
shall be used for all function names.
Prefix function names intended for public use with `cdb_`
and private functions (to be used only internally inside
the extension) with `_cdb_`.
* When backwards incompatibility is introduced the major number is incremented
* When functionally is added (in a backwards-compatible manner) the minor number
is incremented
* When only fixes are introduced (backwards-compatible) the patch number is
incremented
Once the code is ready to be tested, update the local development installation
with `sudo make install`.
This will update the 'dev' version of the extension in `src/pg/` and
make it available to PostgreSQL.
It will also install the python package (crankshaft) in a virtual
environment `env/dev`.
### Python Package
The version number of the Python package, defined in
`src/pg/crankshaft/setup.py` will be overridden when
the package is released and always match the extension version number,
but for development it shall be kept as '0.0.0'.
...
Run the tests with `make test`.
### SQL Extension
* Generate a **new subfolder version** for `sql` and `test` folders to define
the new functions and tests
- Use symlinks to avoid file duplication between versions that don't update them
- Add new files or modify copies of the old files to add new functions or
modify existing functions (remember to rename a function if the signature
changes)
- Add or modify the corresponding documentation files in the `doc` folder.
Since we expect to have highly technical functions here, an extense
background explanation would be of great help to users of this extension.
- Create tests for the new functions/behaviour
* Generate the **upgrade and downgrade files** for the extension
* Update the control file and the Makefile to generate the complete SQL
file for the new created version. After running `make` a new
file `crankshaft--X.Y.Z.sql` will be created for the current version.
Additional files for migrating to/from the previous version A.B.Z should be
created:
- `crankshaft--X.Y.Z--A.B.C.sql`
- `crankshaft--A.B.C--X.Y.Z.sql`
All these new files must be added to git and pushed.
* Update the public docs! ;-)
## Conventions
# SQL
Use snake case (i.e. `snake_case` and not `CamelCase`) for all
functions. Prefix functions intended for public use with `cdb_`
and private functions (to be used only internally inside
the extension) with `_cdb_`.
# Python
...
## Testing
Running just the Python tests:
To use the python extension for custom tests, activate the virtual
environment with:
```
(cd python && make test)
source envs/dev/bin/activate
```
Installing the Extension and running just the PostgreSQL tests:
Update extension in a working database with:
* `ALTER EXTENSION crankshaft UPDATE TO 'current';`
`ALTER EXTENSION crankshaft UPDATE TO 'dev';`
Note: we keep the current development version install as 'dev' always;
we update through the 'current' alias to allow changing the extension
contents but not the version identifier. This will fail if the
changes involve incompatible function changes such as a different
return type; in that case the offending function (or the whole extension)
should be dropped manually before the update.
If the extension has not previously been installed in a database,
it can be installed directly with:
* `CREATE EXTENSION IF NOT EXISTS plpythonu;`
`CREATE EXTENSION IF NOT EXISTS postgis;`
`CREATE EXTENSION IF NOT EXISTS cartodb;`
`CREATE EXTENSION crankshaft WITH VERSION 'dev';`
Note: the development extension uses the development python virtual
environment automatically.
Before proceeding to the release process peer code reviewing of the code is
a must.
Once the feature or bugfix is completed and all the tests are passing
a Pull-Request shall be created on the topic branch, reviewed by a peer
and then merged back into the `develop` branch when all CI tests pass.
When the changes in the `develop` branch are to be released in a new
version of the extension, a PR must be created on the `develop` branch.
The release manage will take hold of the PR at this moment to proceed
to the release process for a new revision of the extension.
## Relevant development tasks available in the Makefile
```
(cd pg && sudo make install && PGUSER=postgres make installcheck)
```
* `make help` show a short description of the available targets
Installing and testing everything:
* `sudo make install` will generate the extension scripts for the development
version ('dev'/'current') and install the python package into the
development virtual environment `envs/dev`.
Intended for use by developers.
```
sudo make install && PGUSER=postgres make testinstalled
* `make test` will run the tests for the installed development extension.
Intended for use by developers.
```

View File

@@ -1,43 +0,0 @@
# Workflow
... (branching/merging flow)
# Deployment
...
Deployment to db servers: the next command will install both the Python
package and the extension.
```
sudo make install
```
Installing only the Python package:
```
sudo pip install python/crankshaft --upgrade
```
Caveat: note that `pip install ./crankshaft` will install
from local files, but `pip install crankshaft` will not.
CI: Install and run the tests on the installed extension and package:
```
(sudo make install && PGUSER=postgres make testinstalled)
```
Installing the extension in user databases:
Once installed in a server, the extension can be added
to a database with the next SQL command:
```
CREATE EXTENSION crankshaft;
```
To upgrade the extension to an specific version X.Y.Z:
```
ALTER EXTENSION crankshaft UPGRADE TO 'X.Y.Z';
```

View File

@@ -1,13 +1,70 @@
include ./Makefile.global
EXT_DIR = src/pg
PYP_DIR = src/py
.PHONY: install
.PHONY: run_tests
.PHONY: release
.PHONY: deploy
install:
# Generate and install developmet versions of the extension
# and python package.
# The extension is named 'dev' with a 'current' alias for easily upgrading.
# The Python package is installed in a virtual environment envs/dev/
# Requires sudo.
install: ## Generate and install development version of the extension; requires sudo.
$(MAKE) -C $(PYP_DIR) install
$(MAKE) -C $(EXT_DIR) install
testinstalled:
$(MAKE) -C $(PYP_DIR) testinstalled
$(MAKE) -C $(EXT_DIR) installcheck
# Run the tests for the installed development extension and
# python package
test: ## Run the tests for the development version of the extension
$(MAKE) -C $(PYP_DIR) test
$(MAKE) -C $(EXT_DIR) test
# Generate a new release into release
release: ## Generate a new release of the extension. Only for telease manager
$(MAKE) -C $(EXT_DIR) release
$(MAKE) -C $(PYP_DIR) release
# Install the current release.
# The Python package is installed in a virtual environment envs/X.Y.Z/
# Requires sudo.
# Use the RELEASE_VERSION environment variable to deploy a specific version:
# sudo make deploy RELEASE_VERSION=1.0.0
deploy: ## Deploy a released extension. Only for release manager. Requires sudo.
$(MAKE) -C $(EXT_DIR) deploy
$(MAKE) -C $(PYP_DIR) deploy
# Cleanup development extension script files
clean-dev: ## clean up development extension script files
rm -f src/pg/$(EXTENSION)--*.sql
# Cleanup all releases
clean-releases: ## clean up all releases
rm -rf release/python/*
rm -f release/$(EXTENSION)--*.sql
rm -f release/$(EXTENSION).control
# Cleanup current/specific version
clean-release: ## clean up current release
rm -rf release/python/$(RELEASE_VERSION)
rm -f release/$(RELEASE_VERSION)--*.sql
# Cleanup all virtual environments
clean-environments: ## clean up all virtual environments
rm -rf envs/*
clean-all: clean-dev clean-release clean-environments
help:
@IFS=$$'\n' ; \
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//'`); \
for help_line in $${help_lines[@]}; do \
IFS=$$'#' ; \
help_split=($$help_line) ; \
help_command=`echo $${help_split[0]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
help_info=`echo $${help_split[2]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
printf "%-30s %s\n" $$help_command $$help_info ; \
done

6
Makefile.global Normal file
View File

@@ -0,0 +1,6 @@
SELF_DIR := $(dir $(lastword $(MAKEFILE_LIST)))
EXTENSION = crankshaft
PACKAGE = crankshaft
EXTVERSION = $(shell grep default_version $(SELF_DIR)/src/pg/$(EXTENSION).control | sed -e "s/default_version[[:space:]]*=[[:space:]]*'\([^']*\)'/\1/")
RELEASE_VERSION ?= $(EXTVERSION)
SED = sed

7
NEWS.md Normal file
View File

@@ -0,0 +1,7 @@
0.0.2 (2016-03-16)
------------------
* New versioning approach using per-version Python virtual environments
0.0.1 (2016-02-22)
------------------
* Preliminar release

101
README.md
View File

@@ -8,83 +8,64 @@ CartoDB Spatial Analysis extension for PostgreSQL.
* *src* source code
* - *src/pg* contains the PostgreSQL extension source code
* - *src/py* Python module source code
* *release* reselesed versions
* *release* reseleased versions
* *env* base directory for Python virtual environments
## Requirements
* pip, virtualenv, PostgreSQL
* python-scipy system package (see [src/py/README.md](https://github.com/CartoDB/crankshaft/blob/master/src/py/README.md))
# Working Process
# Working Process -- Quickstart Guide
## Development
We distinguish two roles regarding the development cycle of crankshaft:
Work in `src/pg/sql`, `src/py/crankshaft`;
use topic branch.
* *developers* will implement new functionality and bugfixes into
the codebase and will request for new releases of the extension.
* A *release manager* will attend these requests and will handle
the release process. The release process is sequential:
no concurrent releases will ever be in the works.
Update local installation with `sudo make install`
(this will update the 'dev' version of the extension in 'src/pg/')
We use the default `develop` branch as the basis for development.
The `master` branch is used to merge and tag releases to be
deployed in production.
Run the tests with `PGUSER=postgres make test`
Developers shall create a new topic branch from `develop` for any new feature
or bugfix and commit their changes to it and eventually merge back into
the `develop` branch. When a new release is required a Pull Request
will be open against the `develop` branch.
Update extension in working database with
The `develop` pull requests will be handled by the release manage,
who will merge into master where new releases are prepared and tagged.
The `master` branch is the sole responsibility of the release masters
and developers must not commit or merge into it.
* `ALTER EXTENSION crankshaft VERSION TO 'current';`
`ALTER EXTENSION crankshaft VERSION TO 'dev';`
## Development Guidelines
Note: we keep the current development version install as 'dev' always;
we update through the 'current' alias to allow changing the extension
contents but not the version identifier. This will fail if the
changes involve incompatible function changes such as a different
return type; in that case the offending function (or the whole extension)
should be dropped manually before the update.
For a detailed description of the development process please see
the [CONTRIBUTING.md](https://github.com/CartoDB/crankshaft/blob/master/CONTRIBUTING.md) guide.
If the extension has not previously been installed in a database
we can:
Any modification to the source code (`src/pg/sql` for the SQL extension,
`src/py/crankshaft` for the Python package) shall always be done
in a topic branch created from the `develop` branch.
Add tests...
Tests, documentation and peer code reviewing are required for all
modifications.
* `CREATE EXTENSION crankshaft WITH VERSION 'dev';`
The tests (both for SQL and Python) are executed by running,
from the top directory:
Test
```
sudo make install
make test
```
Commit, push, create PR, wait for CI tests, CR, ...
To request a new release, which will be handled by them
release manager, a Pull Request must be created in the `develop`
branch.
## Release
To release current development version
(working directory should be clean in dev branch)
(process to be gradually automated)
For backwards compatible changes (no return value, num of arguments, etc. changes...)
new version number increasing either patch level (no new functionality)
or minor level (new functionality) => 'X.Y.Z'.
Update version in src/pg/crankshaft.control
Copy release/crankshaft--current.sql to release/crankshaft--X.Y.Z.sql
Prepare incremental downgrade, upgrade scripts....
Python: ...
Install the new release
`make install-release`
Test the new release
`make test-release`
Push the release
Wait for CI tests
Merge into master
Deploy: install extension and python to production hosts,
update extension in databases (limited to team users, data observatory, ...)
Release manager role: ...
.sql release scripts
commit
tests: staging....
merge, tag, deploy...
The release and deployment process is described in the
[RELEASE.md](https://github.com/CartoDB/crankshaft/blob/master/RELEASE.md) guide and it is the responsibility of the designated
release manager.

93
RELEASE.md Normal file
View File

@@ -0,0 +1,93 @@
# Release & Deployment Process
Please read the Working Process/Quickstart Guide in README.md
and the Development guidelines in CONTRIBUTING.md.
The release process of a new version of the extension
shall be performed by the designated *Release Manager*.
Note that we expect to gradually automate more of this process.
Having checked PR to be released it shall be
merged back into the `master` branch to prepare the new release.
The version number in `pg/cranckshaft.control` must first be updated.
To do so [Semantic Versioning 2.0](http://semver.org/) is in order.
Thew `NEWS.md` will be updated.
We now will explain the process for the case of backwards-compatible
releases (updating the minor or patch version numbers).
TODO: document the complex case of major releases.
The next command must be executed to produce the main installation
script for the new release, `release/cranckshaft--X.Y.Z.sql` and
also to copy the python package to `release/python/X.Y.Z/crankshaft`.
```
make release
```
Then, the release manager shall produce upgrade and downgrade scripts
to migrate to/from the previous release. In the case of minor/patch
releases this simply consist in extracting the functions that have changed
and placing them in the proper `release/cranckshaft--X.Y.Z--A.B.C.sql`
file.
The new release can be deployed for staging/smoke tests with this command:
```
sudo make deploy
```
This will copy the current 'X.Y.Z' released version of the extension to
PostgreSQL. The corresponding Python extension will be installed in a
virtual environment in `envs/X.Y.Z`.
It can be activated with:
```
source envs/X.Y.Z/bin/activate
```
But note that this is needed only for using the package directly;
the 'X.Y.Z' version of the extension will automatically use the
python package from this virtual environment.
The `sudo make deploy` operation can be also used for installing
the new version after it has been released.
To install a specific version 'X.Y.Z' different from the current one
(which must be present in `releases/`) you can:
```
sudo make deploy RELEASE_VERSION=X.Y.Z
```
TODO: testing procedure for the new release.
TODO: procedure for staging deployment.
TODO: procedure for merging to master, tagging and deploying
in production.
## Relevant release & deployment tasks available in the Makefile
```
* `make help` show a short description of the available targets
* `make release` will generate a new release (version number defined in
`src/pg/crankshaft.control`) into `release/`.
Intended for use by the release manager.
* `sudo make deploy` will install the current release X.Y.Z from the
`release/` files into PostgreSQL and a Python virtual environment
`envs/X.Y.Z`.
Intended for use by the release manager and deployment jobs.
* `sudo make deploy RELEASE_VERSION=X.Y.Z` will install specified version
previously generated in `release/`
into PostgreSQL and a Python virtual environment `envs/X.Y.Z`.
Intended for use by the release manager and deployment jobs.
```

View File

@@ -1,9 +0,0 @@
* [x] Support versioning
* [x] Test use of `plpy` from python Package
* [x] Add `pysal` etc. dependencies
* [x] Define documentation practices (general, per extension/package?)
* [x] Add initial function set (WIP)
* Unify style of function comments
* [x] Add integration tests
* Make target to open a new version development (create symlinks, etc.)
* [x] Should add cartodb ext. as a dependency?

View File

@@ -1,71 +1,185 @@
### Moran's I
## Areas of Interest Functions
#### What is Moran's I and why is it significant for CartoDB?
### CDB_AreasOfInterestLocal(subquery text, column_name text)
Moran's I is a geostatistical calculation which gives a measure of the global
clustering and presence of outliers within the geographies in a map. Here global
means over all of the geographies in a dataset. Imagine mapping the incidence
rates of cancer in neighborhoods of a city. If there were areas covering several
neighborhoods with abnormally low rates of cancer, those areas are positively
spatially correlated with one another and would be considered a cluster. If
there was a single neighborhood with a high rate but with all neighbors on
average having a low rate, it would be considered a spatial outlier.
This function classifies your data as being part of a cluster, as an outlier, or not part of a pattern based the significance of a classification. The classification happens through an autocorrelation statistic called Local Moran's I.
While Moran's I gives a global snapshot, there are local indicators for
clustering called Local Indicators of Spatial Autocorrelation. Clustering is a
process related to autocorrelation -- i.e., a process that compares a
geography's attribute to the attribute in neighbor geographies.
#### Arguments
For the example of cancer rates in neighborhoods, since these neighborhoods have
a high value for rate of cancer, and all of their neighbors do as well, they are
designated as "High High" or simply **HH**. For areas with multiple neighborhoods
with low rates of cancer, they are designated as "Low Low" or **LL**. HH and LL
naturally fit into the concept of clustering and are in the correlated
variables.
| Name | Type | Description |
|------|------|-------------|
| subquery | TEXT | SQL query that exposes the data to be analyzed (e.g., `SELECT * FROM interesting_table`). This query must have the geometry column name `the_geom` and id column name `cartodb_id` unless otherwise specified in the input arguments |
| column_name | TEXT | Name of column (e.g., should be `'interesting_value'` instead of `interesting_value` without single quotes) used for the analysis. |
| weight type (optional) | TEXT | Type of weight to use when finding neighbors. Currently available options are 'knn' (default) and 'queen'. Read more about weight types in [PySAL's weights documentation](https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/weights.html). |
| num_ngbrs (optional) | INT | Number of neighbors if using k-nearest neighbors weight type. Defaults to 5. |
| permutations (optional) | INT | Number of permutations to check against a random arrangement of the values in `column_name`. This influences the accuracy of the output field `significance`. Defaults to 99. |
| geom_col (optional) | TEXT | The column name for the geometries. Defaults to `'the_geom'` |
| id_col (optional) | TEXT | The column name for the unique ID of each geometry/value pair. Defaults to `'cartodb_id'`. |
"Anticorrelated" geogs are in **LH** and **HL** regions -- that is, regions
where a geog has a high value and it's neighbors, on average, have a low value
(or vice versa). An example of this is a "gated community" or placement of a
city housing project in a rich region. These deliberate developments have
opposite median income as compared to the neighbors around them. They have a
high (or low) value while their neighbors have a low (or high) value. They exist
typically as islands, and in rare circumstances can extend as chains dividing
**LL** or **HH**.
#### Returns
Strong policies such as rent stabilization (probably) tend to prevent the
clustering of high rent areas as they integrate middle class incomes. Luxury
apartment buildings, which are a kind of gated community, probably tend to skew
an area's median income upwards while housing projects have the opposite effect.
What are the nuggets in the analysis?
A table with the following columns.
Two functions are available to compute Moran I statistics:
| Column Name | Type | Description |
|-------------|------|-------------|
| moran | NUMERIC | Value of Moran's I (spatial autocorrelation measure) for the geometry with id of `rowid` |
| quads | TEXT | Classification of geometry. Result is one of 'HH' (a high value with neighbors high on average), 'LL' (opposite of 'HH'), 'HL' (a high value surrounded by lows on average), and 'LH' (opposite of 'HL'). Null values are returned when nulls exist in the original data. |
| significance | NUMERIC | The statistical significance (from 0 to 1) of a cluster or outlier classification. Lower numbers are more significant. |
| rowid | INT | Row id of the values which correspond to the input rows. |
| vals | NUMERIC | Values from `'column_name'`. |
* `cdb_moran_local` computes Moran I measures, quad classification and
significance values from numerial values associated to geometry entities
in an input table. The geometries should be contiguous polygons When
then `queen` `w_type` is used.
* `cdb_moran_local_rate` computes the same statistics using a ratio between
numerator and denominator columns of a table.
The parameters for `cdb_moran_local` are:
#### Example Usage
* `table` name of the table that contains the data values
* `attr` name of the column
* `signficance` significance threshold for the quads values
* `num_ngbrs` number of neighbors to consider (default: 5)
* `permutations` number of random permutations for calculation of
pseudo-p values (default: 99)
* `geom_column` number of the geometry column (default: "the_geom")
* `id_col` PK column of the table (default: "cartodb_id")
* `w_type` Weight types: can be "knn" for k-nearest neighbor weights
or "queen" for contiguity based weights.
```sql
SELECT
c.the_geom,
aoi.quads,
aoi.significance,
c.num_cyclists_per_total_population
FROM CDB_GetAreasOfInterestLocal('SELECT * FROM commute_data'
'num_cyclists_per_total_population') As aoi
JOIN commute_data As c
ON c.cartodb_id = aoi.rowid;
```
The function returns a table with the following columns:
### CDB_AreasOfInterestGlobal(subquery text, column_name text)
* `moran` Moran's value
* `quads` quad classification ('HH', 'LL', 'HL', 'LH' or 'Not significant')
* `significance` significance value
* `ids` id of the corresponding record in the input table
This function identifies the extent to which geometries cluster (the groupings of geometries with similarly high or low values relative to the mean) or form outliers (areas where geometries have values opposite of their neighbors). The output of this function gives values between -1 and 1 as well as a significance of that classification. Values close to 0 mean that there is little to no distribution of values as compared to what one would see in a randomly distributed collection of geometries and values.
Function `cdb_moran_local_rate` only differs in that the `attr` input
parameter is substituted by `numerator` and `denominator`.
#### Arguments
| Name | Type | Description |
|------|------|-------------|
| subquery | TEXT | SQL query that exposes the data to be analyzed (e.g., `SELECT * FROM interesting_table`). This query must have the geometry column name `the_geom` and id column name `cartodb_id` unless otherwise specified in the input arguments |
| column_name | TEXT | Name of column (e.g., should be `'interesting_value'` instead of `interesting_value` without single quotes) used for the analysis. |
| weight type (optional) | TEXT | Type of weight to use when finding neighbors. Currently available options are 'knn' (default) and 'queen'. Read more about weight types in [PySAL's weights documentation](https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/weights.html). |
| num_ngbrs (optional) | INT | Number of neighbors if using k-nearest neighbors weight type. Defaults to 5. |
| permutations (optional) | INT | Number of permutations to check against a random arrangement of the values in `column_name`. This influences the accuracy of the output field `significance`. Defaults to 99. |
| geom_col (optional) | TEXT | The column name for the geometries. Defaults to `'the_geom'` |
| id_col (optional) | TEXT | The column name for the unique ID of each geometry/value pair. Defaults to `'cartodb_id'`. |
#### Returns
A table with the following columns.
| Column Name | Type | Description |
|-------------|------|-------------|
| moran | NUMERIC | Value of Moran's I (spatial autocorrelation measure) for the entire dataset. Values closer to one indicate cluster, closer to -1 mean more outliers, and near zero indicates a random distribution of data. |
| significance | NUMERIC | The statistical significance of the `moran` measure. |
#### Examples
```sql
SELECT *
FROM CDB_AreasOfInterestGlobal('SELECT * FROM commute_data', 'num_cyclists_per_total_population')
```
### CDB_AreasOfInterestLocalRate(subquery text, numerator_column text, denominator_column text)
Just like `CDB_AreasOfInterestLocal`, this function classifies your data as being part of a cluster, as an outlier, or not part of a pattern based the significance of a classification. This function differs in that it calculates the classifications based on input `numerator` and `denominator` columns for finding the areas where there are clusters and outliers for the resulting rate of those two values.
#### Arguments
| Name | Type | Description |
|------|------|-------------|
| subquery | TEXT | SQL query that exposes the data to be analyzed (e.g., `SELECT * FROM interesting_table`). This query must have the geometry column name `the_geom` and id column name `cartodb_id` unless otherwise specified in the input arguments |
| numerator | TEXT | Name of the numerator for forming a rate to be used in analysis. |
| denominator | TEXT | Name of the denominator for forming a rate to be used in analysis. |
| weight type (optional) | TEXT | Type of weight to use when finding neighbors. Currently available options are 'knn' (default) and 'queen'. Read more about weight types in [PySAL's weights documentation](https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/weights.html). |
| num_ngbrs (optional) | INT | Number of neighbors if using k-nearest neighbors weight type. Defaults to 5. |
| permutations (optional) | INT | Number of permutations to check against a random arrangement of the values in `column_name`. This influences the accuracy of the output field `significance`. Defaults to 99. |
| geom_col (optional) | TEXT | The column name for the geometries. Defaults to `'the_geom'` |
| id_col (optional) | TEXT | The column name for the unique ID of each geometry/value pair. Defaults to `'cartodb_id'`. |
#### Returns
A table with the following columns.
| Column Name | Type | Description |
|-------------|------|-------------|
| moran | NUMERIC | Value of Moran's I (spatial autocorrelation measure) for the geometry with id of `rowid` |
| quads | TEXT | Classification of geometry. Result is one of 'HH' (a high value with neighbors high on average), 'LL' (opposite of 'HH'), 'HL' (a high value surrounded by lows on average), and 'LH' (opposite of 'HL'). Null values are returned when nulls exist in the original data. |
| significance | NUMERIC | The statistical significance (from 0 to 1) of a cluster or outlier classification. Lower numbers are more significant. |
| rowid | INT | Row id of the values which correspond to the input rows. |
| vals | NUMERIC | Values from `'column_name'`. |
#### Example Usage
```sql
SELECT
c.the_geom,
aoi.quads,
aoi.significance,
c.cyclists_per_total_population
FROM CDB_GetAreasOfInterestLocalRate('SELECT * FROM commute_data'
'num_cyclists',
'total_population') As aoi
JOIN commute_data As c
ON c.cartodb_id = aoi.rowid;
```
### CDB_AreasOfInterestGlobalRate(subquery text, column_name text)
This function identifies the extent to which geometries cluster (the groupings of geometries with similarly high or low values relative to the mean) or form outliers (areas where geometries have values opposite of their neighbors). The output of this function gives values between -1 and 1 as well as a significance of that classification. Values close to 0 mean that there is little to no distribution of values as compared to what one would see in a randomly distributed collection of geometries and values.
#### Arguments
| Name | Type | Description |
|------|------|-------------|
| subquery | TEXT | SQL query that exposes the data to be analyzed (e.g., `SELECT * FROM interesting_table`). This query must have the geometry column name `the_geom` and id column name `cartodb_id` unless otherwise specified in the input arguments |
| numerator | TEXT | Name of the numerator for forming a rate to be used in analysis. |
| denominator | TEXT | Name of the denominator for forming a rate to be used in analysis. |
| weight type (optional) | TEXT | Type of weight to use when finding neighbors. Currently available options are 'knn' (default) and 'queen'. Read more about weight types in [PySAL's weights documentation](https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/weights.html). |
| num_ngbrs (optional) | INT | Number of neighbors if using k-nearest neighbors weight type. Defaults to 5. |
| permutations (optional) | INT | Number of permutations to check against a random arrangement of the values in `column_name`. This influences the accuracy of the output field `significance`. Defaults to 99. |
| geom_col (optional) | TEXT | The column name for the geometries. Defaults to `'the_geom'` |
| id_col (optional) | TEXT | The column name for the unique ID of each geometry/value pair. Defaults to `'cartodb_id'`. |
#### Returns
A table with the following columns.
| Column Name | Type | Description |
|-------------|------|-------------|
| moran | NUMERIC | Value of Moran's I (spatial autocorrelation measure) for the entire dataset. Values closer to one indicate cluster, closer to -1 mean more outliers, and near zero indicates a random distribution of data. |
| significance | NUMERIC | The statistical significance of the `moran` measure. |
#### Examples
```sql
SELECT *
FROM CDB_AreasOfInterestGlobalRate('SELECT * FROM commute_data',
'num_cyclists',
'total_population')
```
## Hotspot, Coldspot, and Outlier Functions
These functions are convenience functions for extracting only information that you are interested in exposing based on the outputs of the `CDB_AreasOfInterest` functions. For instance, you can use `CDB_GetSpatialHotspots` to output only the classifications of `HH` and `HL`.
### Non-rate functions
#### CDB_GetSpatialHotspots
This function's inputs and outputs exactly mirror `CDB_AreasOfInterestLocal` except that the outputs are filtered to be only 'HH' and 'HL' (areas of high values). For more information about this function's use, see `CDB_AreasOfInterestLocal`.
#### CDB_GetSpatialColdspots
This function's inputs and outputs exactly mirror `CDB_AreasOfInterestLocal` except that the outputs are filtered to be only 'LL' and 'LH' (areas of low values). For more information about this function's use, see `CDB_AreasOfInterestLocal`.
#### CDB_GetSpatialOutliers
This function's inputs and outputs exactly mirror `CDB_AreasOfInterestLocal` except that the outputs are filtered to be only 'HL' and 'LH' (areas where highs or lows are surrounded by opposite values on average). For more information about this function's use, see `CDB_AreasOfInterestLocal`.
### Rate functions
#### CDB_GetSpatialHotspotsRate
This function's inputs and outputs exactly mirror `CDB_AreasOfInterestLocalRate` except that the outputs are filtered to be only 'HH' and 'HL' (areas of high values). For more information about this function's use, see `CDB_AreasOfInterestLocalRate`.
#### CDB_GetSpatialColdspotsRate
This function's inputs and outputs exactly mirror `CDB_AreasOfInterestLocalRate` except that the outputs are filtered to be only 'LL' and 'LH' (areas of low values). For more information about this function's use, see `CDB_AreasOfInterestLocalRate`.
#### CDB_GetSpatialOutliersRate
This function's inputs and outputs exactly mirror `CDB_AreasOfInterestLocalRate` except that the outputs are filtered to be only 'HL' and 'LH' (areas where highs or lows are surrounded by opposite values on average). For more information about this function's use, see `CDB_AreasOfInterestLocalRate`.

78
doc/07_gravity.md Normal file
View File

@@ -0,0 +1,78 @@
## Gravity Model
Gravity Models are derived from Newton's Law of Gravity and are used to predict the interaction between a group of populated areas (sources) and a specific target among a group of potential targets, in terms of an attraction factor (weight)
**CDB_Gravity** is based on the model defined in *Huff's Law of Shopper attraction (1963)*
### CDB_Gravity(t_id bigint[], t_geom geometry[], t_weight numeric[], s_id bigint[], s_geom geometry[], s_pop numeric[], target bigint, radius integer, minval numeric DEFAULT -10e307)
#### Arguments
| Name | Type | Description |
|------|------|-------------|
| t_id | bigint[] | Array of targets ID |
| t_geom | geometry[] | Array of targets' geometries |
| t_weight | numeric[] | Array of targets's weights |
| s_id | bigint[] | Array of sources ID |
| s_geom | geometry[] | Array of sources' geometries |
| s_pop | numeric[] | Array of sources's population |
| target | bigint | ID of the target under study |
| radius | integer | Radius in meters around the target under study that will be taken into account|
| minval (optional) | numeric | Lowest accepted value of weight, defaults to numeric min_value |
### CDB_Gravity( target_query text, weight_column text, source_query text, pop_column text, target bigint, radius integer, minval numeric DEFAULT -10e307)
#### Arguments
| Name | Type | Description |
|------|------|-------------|
| target_query | text | Query that defines targets |
| weight_column | text | Column name of weights |
| source_query | text | Query that defines sources |
| pop_column | text | Column name of population |
| target | bigint | cartodb_id of the target under study |
| radius | integer | Radius in meters around the target under study that will be taken into account|
| minval (optional) | numeric | Lowest accepted value of weight, defaults to numeric min_value |
### Returns
| Column Name | Type | Description |
|-------------|------|-------------|
| the_geom | geometry | Geometries of the sources within the radius |
| source_id | bigint | ID of the source |
| target_id | bigint | Target ID from input |
| dist | numeric | Distance in meters source to target (if not points, distance between centroids) |
| h | numeric | Probability of patronage |
| hpop | numeric | Patronaging population |
#### Example Usage
```sql
with t as (
SELECT
array_agg(cartodb_id::bigint) as id,
array_agg(the_geom) as g,
array_agg(coalesce(gla,0)::numeric) as w
FROM
abel.centros_comerciales_de_madrid
WHERE not no_cc
),
s as (
SELECT
array_agg(cartodb_id::bigint) as id,
array_agg(center) as g,
array_agg(coalesce(t1_1, 0)::numeric) as p
FROM
sscc_madrid
)
select
g.the_geom,
trunc(g.h,2) as h,
round(g.hpop) as hpop,
trunc(g.dist/1000,2) as dist_km
FROM t, s, CDB_Gravity1(t.id, t.g, t.w, s.id, s.g, s.p, newmall_ID, 100000, 5000) g
```

24
doc/docs_template.md Normal file
View File

@@ -0,0 +1,24 @@
## Name
## Synopsis
## Description
Availability: v...
## Examples
```SQL
-- example of the function in use
SELECT cdb_awesome_function(the_geom, 'total_pop')
FROM table_name
```
## API Usage
_asdf_
## See Also
_Other function pages_

0
release/.gitignore vendored Normal file
View File

View File

@@ -0,0 +1,74 @@
CREATE OR REPLACE FUNCTION cdb_crankshaft.cdb_crankshaft_version()
RETURNS text AS $$
SELECT '0.0.2'::text;
$$ language 'sql' STABLE STRICT;
CREATE OR REPLACE FUNCTION cdb_crankshaft._cdb_crankshaft_internal_version()
RETURNS text AS $$
SELECT installed_version FROM pg_available_extensions where name='crankshaft' and pg_available_extensions IS NOT NULL;
$$ language 'sql' STABLE STRICT;
CREATE OR REPLACE FUNCTION cdb_crankshaft._cdb_crankshaft_virtualenvs_path()
RETURNS text
AS $$
BEGIN
RETURN '/home/ubuntu/crankshaft/envs';
END;
$$ language plpgsql IMMUTABLE STRICT;
CREATE OR REPLACE FUNCTION cdb_crankshaft._cdb_crankshaft_activate_py()
RETURNS VOID
AS $$
import os
# plpy.notice('%',str(os.environ))
# activate virtualenv
crankshaft_version = plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_internal_version()')[0]['_cdb_crankshaft_internal_version']
base_path = plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_virtualenvs_path()')[0]['_cdb_crankshaft_virtualenvs_path']
default_venv_path = os.path.join(base_path, crankshaft_version)
venv_path = os.environ.get('CRANKSHAFT_VENV', default_venv_path)
activate_path = venv_path + '/bin/activate_this.py'
exec(open(activate_path).read(), dict(__file__=activate_path))
$$ LANGUAGE plpythonu;
CREATE OR REPLACE FUNCTION
cdb_crankshaft._cdb_random_seeds (seed_value INTEGER) RETURNS VOID
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft import random_seeds
random_seeds.set_random_seeds(seed_value)
$$ LANGUAGE plpythonu;
-- Moran's I
CREATE OR REPLACE FUNCTION
cdb_crankshaft.cdb_moran_local (
t TEXT,
attr TEXT,
significance float DEFAULT 0.05,
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_column TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn')
RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT)
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran_local(t, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
$$ LANGUAGE plpythonu;
CREATE OR REPLACE FUNCTION
cdb_crankshaft.cdb_moran_local_rate(t TEXT,
numerator TEXT,
denominator TEXT,
significance FLOAT DEFAULT 0.05,
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_column TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn')
RETURNS TABLE(moran FLOAT, quads TEXT, significance FLOAT, ids INT, y numeric)
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local_rate
# TODO: use named parameters or a dictionary
return moran_local_rate(t, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
$$ LANGUAGE plpythonu;

View File

@@ -0,0 +1,148 @@
--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES
-- Complain if script is sourced in psql, rather than via CREATE EXTENSION
\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit
-- Internal function.
-- Set the seeds of the RNGs (Random Number Generators)
-- used internally.
CREATE OR REPLACE FUNCTION
_cdb_random_seeds (seed_value INTEGER) RETURNS VOID
AS $$
from crankshaft import random_seeds
random_seeds.set_random_seeds(seed_value)
$$ LANGUAGE plpythonu;
-- Moran's I
CREATE OR REPLACE FUNCTION
cdb_moran_local (
t TEXT,
attr TEXT,
significance float DEFAULT 0.05,
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_column TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn')
RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT)
AS $$
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran_local(t, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
$$ LANGUAGE plpythonu;
-- Moran's I Local Rate
CREATE OR REPLACE FUNCTION
cdb_moran_local_rate(t TEXT,
numerator TEXT,
denominator TEXT,
significance FLOAT DEFAULT 0.05,
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_column TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn')
RETURNS TABLE(moran FLOAT, quads TEXT, significance FLOAT, ids INT, y numeric)
AS $$
from crankshaft.clustering import moran_local_rate
# TODO: use named parameters or a dictionary
return moran_local_rate(t, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
$$ LANGUAGE plpythonu;
-- Function by Stuart Lynn for a simple interpolation of a value
-- from a polygon table over an arbitrary polygon
-- (weighted by the area proportion overlapped)
-- Aereal weighting is a very simple form of aereal interpolation.
--
-- Parameters:
-- * geom a Polygon geometry which defines the area where a value will be
-- estimated as the area-weighted sum of a given table/column
-- * target_table_name table name of the table that provides the values
-- * target_column column name of the column that provides the values
-- * schema_name optional parameter to defina the schema the target table
-- belongs to, which is necessary if its not in the search_path.
-- Note that target_table_name should never include the schema in it.
-- Return value:
-- Aereal-weighted interpolation of the column values over the geometry
CREATE OR REPLACE
FUNCTION cdb_overlap_sum(geom geometry, target_table_name text, target_column text, schema_name text DEFAULT NULL)
RETURNS numeric AS
$$
DECLARE
result numeric;
qualified_name text;
BEGIN
IF schema_name IS NULL THEN
qualified_name := Format('%I', target_table_name);
ELSE
qualified_name := Format('%I.%s', schema_name, target_table_name);
END IF;
EXECUTE Format('
SELECT sum(%I*ST_Area(St_Intersection($1, a.the_geom))/ST_Area(a.the_geom))
FROM %s AS a
WHERE $1 && a.the_geom
', target_column, qualified_name)
USING geom
INTO result;
RETURN result;
END;
$$ LANGUAGE plpgsql;
--
-- Creates N points randomly distributed arround the polygon
--
-- @param g - the geometry to be turned in to points
--
-- @param no_points - the number of points to generate
--
-- @params max_iter_per_point - the function generates points in the polygon's bounding box
-- and discards points which don't lie in the polygon. max_iter_per_point specifies how many
-- misses per point the funciton accepts before giving up.
--
-- Returns: Multipoint with the requested points
CREATE OR REPLACE FUNCTION cdb_dot_density(geom geometry , no_points Integer, max_iter_per_point Integer DEFAULT 1000)
RETURNS GEOMETRY AS $$
DECLARE
extent GEOMETRY;
test_point Geometry;
width NUMERIC;
height NUMERIC;
x0 NUMERIC;
y0 NUMERIC;
xp NUMERIC;
yp NUMERIC;
no_left INTEGER;
remaining_iterations INTEGER;
points GEOMETRY[];
bbox_line GEOMETRY;
intersection_line GEOMETRY;
BEGIN
extent := ST_Envelope(geom);
width := ST_XMax(extent) - ST_XMIN(extent);
height := ST_YMax(extent) - ST_YMIN(extent);
x0 := ST_XMin(extent);
y0 := ST_YMin(extent);
no_left := no_points;
LOOP
if(no_left=0) THEN
EXIT;
END IF;
yp = y0 + height*random();
bbox_line = ST_MakeLine(
ST_SetSRID(ST_MakePoint(yp, x0),4326),
ST_SetSRID(ST_MakePoint(yp, x0+width),4326)
);
intersection_line = ST_Intersection(bbox_line,geom);
test_point = ST_LineInterpolatePoint(st_makeline(st_linemerge(intersection_line)),random());
points := points || test_point;
no_left = no_left - 1 ;
END LOOP;
RETURN ST_Collect(points);
END;
$$
LANGUAGE plpgsql VOLATILE;
-- Make sure by default there are no permissions for publicuser
-- NOTE: this happens at extension creation time, as part of an implicit transaction.
-- REVOKE ALL PRIVILEGES ON SCHEMA cdb_crankshaft FROM PUBLIC, publicuser CASCADE;
-- Grant permissions on the schema to publicuser (but just the schema)
GRANT USAGE ON SCHEMA cdb_crankshaft TO publicuser;
-- Revoke execute permissions on all functions in the schema by default
-- REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA cdb_crankshaft FROM PUBLIC, publicuser;

View File

@@ -1,6 +1,12 @@
-- Moran's I
CREATE OR REPLACE FUNCTION
cdb_moran_local (
cdb_crankshaft._cdb_random_seeds (seed_value INTEGER) RETURNS VOID
AS $$
from crankshaft import random_seeds
random_seeds.set_random_seeds(seed_value)
$$ LANGUAGE plpythonu;
CREATE OR REPLACE FUNCTION
cdb_crankshaft.cdb_moran_local (
t TEXT,
attr TEXT,
significance float DEFAULT 0.05,
@@ -16,9 +22,8 @@ AS $$
return moran_local(t, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
$$ LANGUAGE plpythonu;
-- Moran's I Local Rate
CREATE OR REPLACE FUNCTION
cdb_moran_local_rate(t TEXT,
cdb_crankshaft.cdb_moran_local_rate(t TEXT,
numerator TEXT,
denominator TEXT,
significance FLOAT DEFAULT 0.05,
@@ -33,3 +38,7 @@ AS $$
# TODO: use named parameters or a dictionary
return moran_local_rate(t, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
$$ LANGUAGE plpythonu;
DROP FUNCTION IF EXISTS cdb_crankshaft.cdb_crankshaft_version();
DROP FUNCTION IF EXISTS cdb_crankshaft._cdb_crankshaft_internal_version();
DROP FUNCTION IF EXISTS cdb_crankshaft._cdb_crankshaft_activate_py();

View File

@@ -0,0 +1,186 @@
--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES
-- Complain if script is sourced in psql, rather than via CREATE EXTENSION
\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit
-- Version number of the extension release
CREATE OR REPLACE FUNCTION cdb_crankshaft_version()
RETURNS text AS $$
SELECT '0.0.2'::text;
$$ language 'sql' STABLE STRICT;
-- Internal identifier of the installed extension instence
-- e.g. 'dev' for current development version
CREATE OR REPLACE FUNCTION _cdb_crankshaft_internal_version()
RETURNS text AS $$
SELECT installed_version FROM pg_available_extensions where name='crankshaft' and pg_available_extensions IS NOT NULL;
$$ language 'sql' STABLE STRICT;
CREATE OR REPLACE FUNCTION _cdb_crankshaft_virtualenvs_path()
RETURNS text
AS $$
BEGIN
-- RETURN '/opt/virtualenvs/crankshaft';
RETURN '/home/ubuntu/crankshaft/envs';
END;
$$ language plpgsql IMMUTABLE STRICT;
-- Use the crankshaft python module
CREATE OR REPLACE FUNCTION _cdb_crankshaft_activate_py()
RETURNS VOID
AS $$
import os
# plpy.notice('%',str(os.environ))
# activate virtualenv
crankshaft_version = plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_internal_version()')[0]['_cdb_crankshaft_internal_version']
base_path = plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_virtualenvs_path()')[0]['_cdb_crankshaft_virtualenvs_path']
default_venv_path = os.path.join(base_path, crankshaft_version)
venv_path = os.environ.get('CRANKSHAFT_VENV', default_venv_path)
activate_path = venv_path + '/bin/activate_this.py'
exec(open(activate_path).read(), dict(__file__=activate_path))
$$ LANGUAGE plpythonu;
-- Internal function.
-- Set the seeds of the RNGs (Random Number Generators)
-- used internally.
CREATE OR REPLACE FUNCTION
_cdb_random_seeds (seed_value INTEGER) RETURNS VOID
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft import random_seeds
random_seeds.set_random_seeds(seed_value)
$$ LANGUAGE plpythonu;
-- Moran's I
CREATE OR REPLACE FUNCTION
cdb_moran_local (
t TEXT,
attr TEXT,
significance float DEFAULT 0.05,
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_column TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn')
RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT)
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran_local(t, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
$$ LANGUAGE plpythonu;
-- Moran's I Local Rate
CREATE OR REPLACE FUNCTION
cdb_moran_local_rate(t TEXT,
numerator TEXT,
denominator TEXT,
significance FLOAT DEFAULT 0.05,
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_column TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn')
RETURNS TABLE(moran FLOAT, quads TEXT, significance FLOAT, ids INT, y numeric)
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local_rate
# TODO: use named parameters or a dictionary
return moran_local_rate(t, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
$$ LANGUAGE plpythonu;
-- Function by Stuart Lynn for a simple interpolation of a value
-- from a polygon table over an arbitrary polygon
-- (weighted by the area proportion overlapped)
-- Aereal weighting is a very simple form of aereal interpolation.
--
-- Parameters:
-- * geom a Polygon geometry which defines the area where a value will be
-- estimated as the area-weighted sum of a given table/column
-- * target_table_name table name of the table that provides the values
-- * target_column column name of the column that provides the values
-- * schema_name optional parameter to defina the schema the target table
-- belongs to, which is necessary if its not in the search_path.
-- Note that target_table_name should never include the schema in it.
-- Return value:
-- Aereal-weighted interpolation of the column values over the geometry
CREATE OR REPLACE
FUNCTION cdb_overlap_sum(geom geometry, target_table_name text, target_column text, schema_name text DEFAULT NULL)
RETURNS numeric AS
$$
DECLARE
result numeric;
qualified_name text;
BEGIN
IF schema_name IS NULL THEN
qualified_name := Format('%I', target_table_name);
ELSE
qualified_name := Format('%I.%s', schema_name, target_table_name);
END IF;
EXECUTE Format('
SELECT sum(%I*ST_Area(St_Intersection($1, a.the_geom))/ST_Area(a.the_geom))
FROM %s AS a
WHERE $1 && a.the_geom
', target_column, qualified_name)
USING geom
INTO result;
RETURN result;
END;
$$ LANGUAGE plpgsql;
--
-- Creates N points randomly distributed arround the polygon
--
-- @param g - the geometry to be turned in to points
--
-- @param no_points - the number of points to generate
--
-- @params max_iter_per_point - the function generates points in the polygon's bounding box
-- and discards points which don't lie in the polygon. max_iter_per_point specifies how many
-- misses per point the funciton accepts before giving up.
--
-- Returns: Multipoint with the requested points
CREATE OR REPLACE FUNCTION cdb_dot_density(geom geometry , no_points Integer, max_iter_per_point Integer DEFAULT 1000)
RETURNS GEOMETRY AS $$
DECLARE
extent GEOMETRY;
test_point Geometry;
width NUMERIC;
height NUMERIC;
x0 NUMERIC;
y0 NUMERIC;
xp NUMERIC;
yp NUMERIC;
no_left INTEGER;
remaining_iterations INTEGER;
points GEOMETRY[];
bbox_line GEOMETRY;
intersection_line GEOMETRY;
BEGIN
extent := ST_Envelope(geom);
width := ST_XMax(extent) - ST_XMIN(extent);
height := ST_YMax(extent) - ST_YMIN(extent);
x0 := ST_XMin(extent);
y0 := ST_YMin(extent);
no_left := no_points;
LOOP
if(no_left=0) THEN
EXIT;
END IF;
yp = y0 + height*random();
bbox_line = ST_MakeLine(
ST_SetSRID(ST_MakePoint(yp, x0),4326),
ST_SetSRID(ST_MakePoint(yp, x0+width),4326)
);
intersection_line = ST_Intersection(bbox_line,geom);
test_point = ST_LineInterpolatePoint(st_makeline(st_linemerge(intersection_line)),random());
points := points || test_point;
no_left = no_left - 1 ;
END LOOP;
RETURN ST_Collect(points);
END;
$$
LANGUAGE plpgsql VOLATILE;
-- Make sure by default there are no permissions for publicuser
-- NOTE: this happens at extension creation time, as part of an implicit transaction.
-- REVOKE ALL PRIVILEGES ON SCHEMA cdb_crankshaft FROM PUBLIC, publicuser CASCADE;
-- Grant permissions on the schema to publicuser (but just the schema)
GRANT USAGE ON SCHEMA cdb_crankshaft TO publicuser;
-- Revoke execute permissions on all functions in the schema by default
-- REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA cdb_crankshaft FROM PUBLIC, publicuser;

View File

@@ -0,0 +1,5 @@
comment = 'CartoDB Spatial Analysis extension'
default_version = '0.0.2'
requires = 'plpythonu, postgis, cartodb'
superuser = true
schema = cdb_crankshaft

0
release/python/.gitignore vendored Normal file
View File

View File

@@ -0,0 +1,2 @@
import random_seeds
import clustering

View File

@@ -0,0 +1 @@
from moran import *

View File

@@ -0,0 +1,321 @@
"""
Moran's I geostatistics (global clustering & outliers presence)
"""
# TODO: Fill in local neighbors which have null/NoneType values with the
# average of the their neighborhood
import numpy as np
import pysal as ps
import plpy
# High level interface ---------------------------------------
def moran_local(t, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
"""
Moran's I implementation for PL/Python
Andy Eschbacher
"""
# TODO: ensure that the significance output can be smaller that 1e-3 (0.001)
# TODO: make a wishlist of output features (zscores, pvalues, raw local lisa, what else?)
plpy.notice('** Constructing query')
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors
qvals = {"id_col": id_col,
"attr1": attr,
"geom_col": geom_column,
"table": t,
"num_ngbrs": num_ngbrs}
q = get_query(w_type, qvals)
try:
r = plpy.execute(q)
plpy.notice('** Query returned with %d rows' % len(r))
except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q)
plpy.notice('** Exiting function')
return zip([None], [None], [None], [None])
y = get_attributes(r, 1)
w = get_weight(r, w_type)
# calculate LISA values
lisa = ps.Moran_Local(y, w)
# find units of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
plpy.notice('** Finished calculations')
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order)
def moran_local_rate(t, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
"""
Moran's I Local Rate
Andy Eschbacher
"""
plpy.notice('** Constructing query')
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors
qvals = {"id_col": id_col,
"numerator": numerator,
"denominator": denominator,
"geom_col": geom_column,
"table": t,
"num_ngbrs": num_ngbrs}
q = get_query(w_type, qvals)
try:
r = plpy.execute(q)
plpy.notice('** Query returned with %d rows' % len(r))
except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q)
plpy.notice('** Error: %s' % plpy.SPIError)
plpy.notice('** Exiting function')
return zip([None], [None], [None], [None])
plpy.notice('r.nrows() = %d' % r.nrows())
## collect attributes
numer = get_attributes(r, 1)
denom = get_attributes(r, 2)
w = get_weight(r, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, w, permutations=permutations)
# find units of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
plpy.notice('** Finished calculations')
## TODO: Decide on which return values here
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order, lisa.y)
def moran_local_bv(t, attr1, attr2, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
plpy.notice('** Constructing query')
qvals = {"num_ngbrs": num_ngbrs,
"attr1": attr1,
"attr2": attr2,
"table": t,
"geom_col": geom_column,
"id_col": id_col}
q = get_query(w_type, qvals)
try:
r = plpy.execute(q)
plpy.notice('** Query returned with %d rows' % len(r))
except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q)
plpy.notice('** Error: %s' % plpy.SPIError)
plpy.notice('** Exiting function')
return zip([None], [None], [None], [None])
## collect attributes
attr1_vals = get_attributes(r, 1)
attr2_vals = get_attributes(r, 2)
# create weights
w = get_weight(r, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, w)
plpy.notice("len of Is: %d" % len(lisa.Is))
# find clustering of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
plpy.notice('** Finished calculations')
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order)
# Low level functions ----------------------------------------
def map_quads(coord):
"""
Map a quadrant number to Moran's I designation
HH=1, LH=2, LL=3, HL=4
Input:
:param coord (int): quadrant of a specific measurement
"""
if coord == 1:
return 'HH'
elif coord == 2:
return 'LH'
elif coord == 3:
return 'LL'
elif coord == 4:
return 'HL'
else:
return None
def query_attr_select(params):
"""
Create portion of SELECT statement for attributes inolved in query.
:param params: dict of information used in query (column names,
table name, etc.)
"""
attrs = [k for k in params
if k not in ('id_col', 'geom_col', 'table', 'num_ngbrs')]
template = "i.\"{%(col)s}\"::numeric As attr%(alias_num)s, "
attr_string = ""
for idx, val in enumerate(sorted(attrs)):
attr_string += template % {"col": val, "alias_num": idx + 1}
return attr_string
def query_attr_where(params):
"""
Create portion of WHERE clauses for weeding out NULL-valued geometries
"""
attrs = sorted([k for k in params
if k not in ('id_col', 'geom_col', 'table', 'num_ngbrs')])
attr_string = []
for attr in attrs:
attr_string.append("idx_replace.\"{%s}\" IS NOT NULL" % attr)
if len(attrs) == 2:
attr_string.append("idx_replace.\"{%s}\" <> 0" % attrs[1])
out = " AND ".join(attr_string)
return out
def knn(params):
"""SQL query for k-nearest neighbors.
:param vars: dict of values to fill template
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM \"{table}\" As j " \
"WHERE %(attr_where_j)s " \
"ORDER BY j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
"LIMIT {num_ngbrs} OFFSET 1 ) " \
") As neighbors " \
"FROM \"{table}\" As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## SQL query for finding queens neighbors (all contiguous polygons)
def queen(params):
"""SQL query for queen neighbors.
:param params: dict of information to fill query
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM \"{table}\" As j " \
"WHERE ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
"%(attr_where_j)s)" \
") As neighbors " \
"FROM \"{table}\" As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## to add more weight methods open a ticket or pull request
def get_query(w_type, query_vals):
"""Return requested query.
:param w_type: type of neighbors to calculate (knn or queen)
:param query_vals: values used to construct the query
"""
if w_type == 'knn':
return knn(query_vals)
else:
return queen(query_vals)
def get_attributes(query_res, attr_num):
"""
:param query_res: query results with attributes and neighbors
:param attr_num: attribute number (1, 2, ...)
"""
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
## Build weight object
def get_weight(query_res, w_type='queen', num_ngbrs=5):
"""
Construct PySAL weight from return value of query
:param query_res: query results with attributes and neighbors
"""
if w_type == 'knn':
row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
weights = {x['id']: row_normed_weights for x in query_res}
elif w_type == 'queen':
weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
if len(x['neighbors']) > 0
else [] for x in query_res}
neighbors = {x['id']: x['neighbors'] for x in query_res}
return ps.W(neighbors, weights)
def quad_position(quads):
"""
Produce Moran's I classification based of n
"""
lisa_sig = np.array([map_quads(q) for q in quads])
return lisa_sig
def lisa_sig_vals(pvals, quads, threshold):
"""
Produce Moran's I classification based of n
"""
sig = (pvals <= threshold)
lisa_sig = np.empty(len(sig), np.chararray)
for idx, val in enumerate(sig):
if val:
lisa_sig[idx] = map_quads(quads[idx])
else:
lisa_sig[idx] = 'Not significant'
return lisa_sig

View File

@@ -0,0 +1,10 @@
import random
import numpy
def set_random_seeds(value):
"""
Set the seeds of the RNGs (Random Number Generators)
used internally.
"""
random.seed(value)
numpy.random.seed(value)

View File

@@ -0,0 +1,48 @@
"""
CartoDB Spatial Analysis Python Library
See:
https://github.com/CartoDB/crankshaft
"""
from setuptools import setup, find_packages
setup(
name='crankshaft',
version='0.0.01',
description='CartoDB Spatial Analysis Python Library',
url='https://github.com/CartoDB/crankshaft',
author='Data Services Team - CartoDB',
author_email='dataservices@cartodb.com',
license='MIT',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Mapping comunity',
'Topic :: Maps :: Mapping Tools',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2.7',
],
keywords='maps mapping tools spatial analysis geostatistics',
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
extras_require={
'dev': ['unittest'],
'test': ['unittest', 'nose', 'mock'],
},
# The choice of component versions is dictated by what's
# provisioned in the production servers.
install_requires=['pysal==1.11.0','numpy==1.6.1','scipy==0.17.0'],
requires=['pysal', 'numpy'],
test_suite='test'
)

View File

@@ -0,0 +1,52 @@
[[0.9319096128346788, "HH"],
[-1.135787401862846, "HL"],
[0.11732030672508517, "Not significant"],
[0.6152779669180425, "Not significant"],
[-0.14657336660125297, "Not significant"],
[0.6967858120189607, "Not significant"],
[0.07949310115714454, "Not significant"],
[0.4703198759258987, "Not significant"],
[0.4421125200498064, "Not significant"],
[0.5724288737143592, "Not significant"],
[0.8970743435692062, "LL"],
[0.18327334401918674, "Not significant"],
[-0.01466729201304962, "Not significant"],
[0.3481559372544409, "Not significant"],
[0.06547094736902978, "Not significant"],
[0.15482141569329988, "HH"],
[0.4373841193538136, "Not significant"],
[0.15971286468915544, "Not significant"],
[1.0543588860308968, "Not significant"],
[1.7372866900020818, "HH"],
[1.091998586053999, "LL"],
[0.1171572584252222, "Not significant"],
[0.08438455015300014, "Not significant"],
[0.06547094736902978, "Not significant"],
[0.15482141569329985, "HH"],
[1.1627044812890683, "HH"],
[0.06547094736902978, "Not significant"],
[0.795275137550483, "Not significant"],
[0.18562939195219, "LL"],
[0.3010757406693439, "Not significant"],
[2.8205795942839376, "HH"],
[0.11259190602909264, "Not significant"],
[-0.07116352791516614, "Not significant"],
[-0.09945240794119009, "Not significant"],
[0.18562939195219, "LL"],
[0.1832733440191868, "Not significant"],
[-0.39054253768447705, "Not significant"],
[-0.1672071289487642, "HL"],
[0.3337669247916343, "Not significant"],
[0.2584386102554792, "Not significant"],
[-0.19733845476322634, "HL"],
[-0.9379282899805409, "LH"],
[-0.028770969951095866, "Not significant"],
[0.051367269430983485, "Not significant"],
[-0.2172548045913472, "LH"],
[0.05136726943098351, "Not significant"],
[0.04191046803899837, "Not significant"],
[0.7482357030403517, "HH"],
[-0.014585767863118111, "Not significant"],
[0.5410013139159929, "Not significant"],
[1.0223932668429925, "LL"],
[1.4179402898927476, "LL"]]

View File

@@ -0,0 +1,54 @@
[
{"neighbors": [48, 26, 20, 9, 31], "id": 1, "value": 0.5},
{"neighbors": [30, 16, 46, 3, 4], "id": 2, "value": 0.7},
{"neighbors": [46, 30, 2, 12, 16], "id": 3, "value": 0.2},
{"neighbors": [18, 30, 23, 2, 52], "id": 4, "value": 0.1},
{"neighbors": [47, 40, 45, 37, 28], "id": 5, "value": 0.3},
{"neighbors": [10, 21, 41, 14, 37], "id": 6, "value": 0.05},
{"neighbors": [8, 17, 43, 25, 12], "id": 7, "value": 0.4},
{"neighbors": [17, 25, 43, 22, 7], "id": 8, "value": 0.7},
{"neighbors": [39, 34, 1, 26, 48], "id": 9, "value": 0.5},
{"neighbors": [6, 37, 5, 45, 49], "id": 10, "value": 0.04},
{"neighbors": [51, 41, 29, 21, 14], "id": 11, "value": 0.08},
{"neighbors": [44, 46, 43, 50, 3], "id": 12, "value": 0.2},
{"neighbors": [45, 23, 14, 28, 18], "id": 13, "value": 0.4},
{"neighbors": [41, 29, 13, 23, 6], "id": 14, "value": 0.2},
{"neighbors": [36, 27, 32, 33, 24], "id": 15, "value": 0.3},
{"neighbors": [19, 2, 46, 44, 28], "id": 16, "value": 0.4},
{"neighbors": [8, 25, 43, 7, 22], "id": 17, "value": 0.6},
{"neighbors": [23, 4, 29, 14, 13], "id": 18, "value": 0.3},
{"neighbors": [42, 16, 28, 26, 40], "id": 19, "value": 0.7},
{"neighbors": [1, 48, 31, 26, 42], "id": 20, "value": 0.8},
{"neighbors": [41, 6, 11, 14, 10], "id": 21, "value": 0.1},
{"neighbors": [25, 50, 43, 31, 44], "id": 22, "value": 0.4},
{"neighbors": [18, 13, 14, 4, 2], "id": 23, "value": 0.1},
{"neighbors": [33, 49, 34, 47, 27], "id": 24, "value": 0.3},
{"neighbors": [43, 8, 22, 17, 50], "id": 25, "value": 0.4},
{"neighbors": [1, 42, 20, 31, 48], "id": 26, "value": 0.6},
{"neighbors": [32, 15, 36, 33, 24], "id": 27, "value": 0.3},
{"neighbors": [40, 45, 19, 5, 13], "id": 28, "value": 0.8},
{"neighbors": [11, 51, 41, 14, 18], "id": 29, "value": 0.3},
{"neighbors": [2, 3, 4, 46, 18], "id": 30, "value": 0.1},
{"neighbors": [20, 26, 1, 50, 48], "id": 31, "value": 0.9},
{"neighbors": [27, 36, 15, 49, 24], "id": 32, "value": 0.3},
{"neighbors": [24, 27, 49, 34, 32], "id": 33, "value": 0.4},
{"neighbors": [47, 9, 39, 40, 24], "id": 34, "value": 0.3},
{"neighbors": [38, 51, 11, 21, 41], "id": 35, "value": 0.3},
{"neighbors": [15, 32, 27, 49, 33], "id": 36, "value": 0.2},
{"neighbors": [49, 10, 5, 47, 24], "id": 37, "value": 0.5},
{"neighbors": [35, 21, 51, 11, 41], "id": 38, "value": 0.4},
{"neighbors": [9, 34, 48, 1, 47], "id": 39, "value": 0.6},
{"neighbors": [28, 47, 5, 9, 34], "id": 40, "value": 0.5},
{"neighbors": [11, 14, 29, 21, 6], "id": 41, "value": 0.4},
{"neighbors": [26, 19, 1, 9, 31], "id": 42, "value": 0.2},
{"neighbors": [25, 12, 8, 22, 44], "id": 43, "value": 0.3},
{"neighbors": [12, 50, 46, 16, 43], "id": 44, "value": 0.2},
{"neighbors": [28, 13, 5, 40, 19], "id": 45, "value": 0.3},
{"neighbors": [3, 12, 44, 2, 16], "id": 46, "value": 0.2},
{"neighbors": [34, 40, 5, 49, 24], "id": 47, "value": 0.3},
{"neighbors": [1, 20, 26, 9, 39], "id": 48, "value": 0.5},
{"neighbors": [24, 37, 47, 5, 33], "id": 49, "value": 0.2},
{"neighbors": [44, 22, 31, 42, 26], "id": 50, "value": 0.6},
{"neighbors": [11, 29, 41, 14, 21], "id": 51, "value": 0.01},
{"neighbors": [4, 18, 29, 51, 23], "id": 52, "value": 0.01}
]

View File

@@ -0,0 +1,13 @@
import unittest
from mock_plpy import MockPlPy
plpy = MockPlPy()
import sys
sys.modules['plpy'] = plpy
import os
def fixture_file(name):
dir = os.path.dirname(os.path.realpath(__file__))
return os.path.join(dir, 'fixtures', name)

View File

@@ -0,0 +1,34 @@
import re
class MockPlPy:
def __init__(self):
self._reset()
def _reset(self):
self.infos = []
self.notices = []
self.debugs = []
self.logs = []
self.warnings = []
self.errors = []
self.fatals = []
self.executes = []
self.results = []
self.prepares = []
self.results = []
def _define_result(self, query, result):
pattern = re.compile(query, re.IGNORECASE | re.MULTILINE)
self.results.append([pattern, result])
def notice(self, msg):
self.notices.append(msg)
def info(self, msg):
self.infos.append(msg)
def execute(self, query): # TODO: additional arguments
for result in self.results:
if result[0].match(query):
return result[1]
return []

View File

@@ -0,0 +1,144 @@
import unittest
import numpy as np
import unittest
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
#
# import sys
# sys.modules['plpy'] = plpy
from helper import plpy, fixture_file
import crankshaft.clustering as cc
from crankshaft import random_seeds
import json
class MoranTest(unittest.TestCase):
"""Testing class for Moran's I functions."""
def setUp(self):
plpy._reset()
self.params = {"id_col": "cartodb_id",
"attr1": "andy",
"attr2": "jay_z",
"table": "a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.neighbors_data = json.loads(open(fixture_file('neighbors.json')).read())
self.moran_data = json.loads(open(fixture_file('moran.json')).read())
def test_map_quads(self):
"""Test map_quads."""
self.assertEqual(cc.map_quads(1), 'HH')
self.assertEqual(cc.map_quads(2), 'LH')
self.assertEqual(cc.map_quads(3), 'LL')
self.assertEqual(cc.map_quads(4), 'HL')
self.assertEqual(cc.map_quads(33), None)
self.assertEqual(cc.map_quads('andy'), None)
def test_query_attr_select(self):
"""Test query_attr_select."""
ans = "i.\"{attr1}\"::numeric As attr1, " \
"i.\"{attr2}\"::numeric As attr2, "
self.assertEqual(cc.query_attr_select(self.params), ans)
def test_query_attr_where(self):
"""Test query_attr_where."""
ans = "idx_replace.\"{attr1}\" IS NOT NULL AND "\
"idx_replace.\"{attr2}\" IS NOT NULL AND "\
"idx_replace.\"{attr2}\" <> 0"
self.assertEqual(cc.query_attr_where(self.params), ans)
def test_knn(self):
"""Test knn function."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM \"a_list\" As j WHERE j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0 ORDER BY " \
"j.\"the_geom\" <-> i.\"the_geom\" ASC LIMIT 321 OFFSET 1 ) ) " \
"As neighbors FROM \"a_list\" As i WHERE i.\"andy\" IS NOT " \
"NULL AND i.\"jay_z\" IS NOT NULL AND i.\"jay_z\" <> 0 ORDER " \
"BY i.\"cartodb_id\" ASC;"
self.assertEqual(cc.knn(self.params), ans)
def test_queen(self):
"""Test queen neighbors function."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT " \
"j.\"cartodb_id\" FROM \"a_list\" As j WHERE ST_Touches(" \
"i.\"the_geom\", j.\"the_geom\") AND j.\"andy\" IS NOT NULL " \
"AND j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0)) As " \
"neighbors FROM \"a_list\" As i WHERE i.\"andy\" IS NOT NULL " \
"AND i.\"jay_z\" IS NOT NULL AND i.\"jay_z\" <> 0 ORDER BY " \
"i.\"cartodb_id\" ASC;"
self.assertEqual(cc.queen(self.params), ans)
def test_get_query(self):
"""Test get_query."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT " \
"j.\"cartodb_id\" FROM \"a_list\" As j WHERE j.\"andy\" IS " \
"NOT NULL AND j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0 " \
"ORDER BY j.\"the_geom\" <-> i.\"the_geom\" ASC LIMIT 321 " \
"OFFSET 1 ) ) As neighbors FROM \"a_list\" As i WHERE " \
"i.\"andy\" IS NOT NULL AND i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(cc.get_query('knn', self.params), ans)
def test_get_attributes(self):
"""Test get_attributes."""
## need to add tests
self.assertEqual(True, True)
def test_get_weight(self):
"""Test get_weight."""
self.assertEqual(True, True)
def test_quad_position(self):
"""Test lisa_sig_vals."""
quads = np.array([1, 2, 3, 4], np.int)
ans = np.array(['HH', 'LH', 'LL', 'HL'])
test_ans = cc.quad_position(quads)
self.assertTrue((test_ans == ans).all())
def test_moran_local(self):
"""Test Moran's I local"""
data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local('table', 'value', 0.05, 5, 99, 'the_geom', 'cartodb_id', 'knn')
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
self.assertAlmostEqual(res_val, exp_val)
self.assertEqual(res_quad, exp_quad)
def test_moran_local_rate(self):
"""Test Moran's I rate"""
data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local_rate('table', 'numerator', 'denominator', 0.05, 5, 99, 'the_geom', 'cartodb_id', 'knn')
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
self.assertAlmostEqual(res_val, exp_val)

View File

@@ -0,0 +1,2 @@
import random_seeds
import clustering

View File

@@ -0,0 +1 @@
from moran import *

View File

@@ -0,0 +1,321 @@
"""
Moran's I geostatistics (global clustering & outliers presence)
"""
# TODO: Fill in local neighbors which have null/NoneType values with the
# average of the their neighborhood
import numpy as np
import pysal as ps
import plpy
# High level interface ---------------------------------------
def moran_local(t, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
"""
Moran's I implementation for PL/Python
Andy Eschbacher
"""
# TODO: ensure that the significance output can be smaller that 1e-3 (0.001)
# TODO: make a wishlist of output features (zscores, pvalues, raw local lisa, what else?)
plpy.notice('** Constructing query')
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors
qvals = {"id_col": id_col,
"attr1": attr,
"geom_col": geom_column,
"table": t,
"num_ngbrs": num_ngbrs}
q = get_query(w_type, qvals)
try:
r = plpy.execute(q)
plpy.notice('** Query returned with %d rows' % len(r))
except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q)
plpy.notice('** Exiting function')
return zip([None], [None], [None], [None])
y = get_attributes(r, 1)
w = get_weight(r, w_type)
# calculate LISA values
lisa = ps.Moran_Local(y, w)
# find units of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
plpy.notice('** Finished calculations')
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order)
def moran_local_rate(t, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
"""
Moran's I Local Rate
Andy Eschbacher
"""
plpy.notice('** Constructing query')
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors
qvals = {"id_col": id_col,
"numerator": numerator,
"denominator": denominator,
"geom_col": geom_column,
"table": t,
"num_ngbrs": num_ngbrs}
q = get_query(w_type, qvals)
try:
r = plpy.execute(q)
plpy.notice('** Query returned with %d rows' % len(r))
except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q)
plpy.notice('** Error: %s' % plpy.SPIError)
plpy.notice('** Exiting function')
return zip([None], [None], [None], [None])
plpy.notice('r.nrows() = %d' % r.nrows())
## collect attributes
numer = get_attributes(r, 1)
denom = get_attributes(r, 2)
w = get_weight(r, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, w, permutations=permutations)
# find units of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
plpy.notice('** Finished calculations')
## TODO: Decide on which return values here
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order, lisa.y)
def moran_local_bv(t, attr1, attr2, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
plpy.notice('** Constructing query')
qvals = {"num_ngbrs": num_ngbrs,
"attr1": attr1,
"attr2": attr2,
"table": t,
"geom_col": geom_column,
"id_col": id_col}
q = get_query(w_type, qvals)
try:
r = plpy.execute(q)
plpy.notice('** Query returned with %d rows' % len(r))
except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q)
plpy.notice('** Error: %s' % plpy.SPIError)
plpy.notice('** Exiting function')
return zip([None], [None], [None], [None])
## collect attributes
attr1_vals = get_attributes(r, 1)
attr2_vals = get_attributes(r, 2)
# create weights
w = get_weight(r, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, w)
plpy.notice("len of Is: %d" % len(lisa.Is))
# find clustering of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
plpy.notice('** Finished calculations')
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order)
# Low level functions ----------------------------------------
def map_quads(coord):
"""
Map a quadrant number to Moran's I designation
HH=1, LH=2, LL=3, HL=4
Input:
:param coord (int): quadrant of a specific measurement
"""
if coord == 1:
return 'HH'
elif coord == 2:
return 'LH'
elif coord == 3:
return 'LL'
elif coord == 4:
return 'HL'
else:
return None
def query_attr_select(params):
"""
Create portion of SELECT statement for attributes inolved in query.
:param params: dict of information used in query (column names,
table name, etc.)
"""
attrs = [k for k in params
if k not in ('id_col', 'geom_col', 'table', 'num_ngbrs')]
template = "i.\"{%(col)s}\"::numeric As attr%(alias_num)s, "
attr_string = ""
for idx, val in enumerate(sorted(attrs)):
attr_string += template % {"col": val, "alias_num": idx + 1}
return attr_string
def query_attr_where(params):
"""
Create portion of WHERE clauses for weeding out NULL-valued geometries
"""
attrs = sorted([k for k in params
if k not in ('id_col', 'geom_col', 'table', 'num_ngbrs')])
attr_string = []
for attr in attrs:
attr_string.append("idx_replace.\"{%s}\" IS NOT NULL" % attr)
if len(attrs) == 2:
attr_string.append("idx_replace.\"{%s}\" <> 0" % attrs[1])
out = " AND ".join(attr_string)
return out
def knn(params):
"""SQL query for k-nearest neighbors.
:param vars: dict of values to fill template
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM \"{table}\" As j " \
"WHERE %(attr_where_j)s " \
"ORDER BY j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
"LIMIT {num_ngbrs} OFFSET 1 ) " \
") As neighbors " \
"FROM \"{table}\" As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## SQL query for finding queens neighbors (all contiguous polygons)
def queen(params):
"""SQL query for queen neighbors.
:param params: dict of information to fill query
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM \"{table}\" As j " \
"WHERE ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
"%(attr_where_j)s)" \
") As neighbors " \
"FROM \"{table}\" As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## to add more weight methods open a ticket or pull request
def get_query(w_type, query_vals):
"""Return requested query.
:param w_type: type of neighbors to calculate (knn or queen)
:param query_vals: values used to construct the query
"""
if w_type == 'knn':
return knn(query_vals)
else:
return queen(query_vals)
def get_attributes(query_res, attr_num):
"""
:param query_res: query results with attributes and neighbors
:param attr_num: attribute number (1, 2, ...)
"""
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
## Build weight object
def get_weight(query_res, w_type='queen', num_ngbrs=5):
"""
Construct PySAL weight from return value of query
:param query_res: query results with attributes and neighbors
"""
if w_type == 'knn':
row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
weights = {x['id']: row_normed_weights for x in query_res}
elif w_type == 'queen':
weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
if len(x['neighbors']) > 0
else [] for x in query_res}
neighbors = {x['id']: x['neighbors'] for x in query_res}
return ps.W(neighbors, weights)
def quad_position(quads):
"""
Produce Moran's I classification based of n
"""
lisa_sig = np.array([map_quads(q) for q in quads])
return lisa_sig
def lisa_sig_vals(pvals, quads, threshold):
"""
Produce Moran's I classification based of n
"""
sig = (pvals <= threshold)
lisa_sig = np.empty(len(sig), np.chararray)
for idx, val in enumerate(sig):
if val:
lisa_sig[idx] = map_quads(quads[idx])
else:
lisa_sig[idx] = 'Not significant'
return lisa_sig

View File

@@ -0,0 +1,10 @@
import random
import numpy
def set_random_seeds(value):
"""
Set the seeds of the RNGs (Random Number Generators)
used internally.
"""
random.seed(value)
numpy.random.seed(value)

View File

@@ -0,0 +1,48 @@
"""
CartoDB Spatial Analysis Python Library
See:
https://github.com/CartoDB/crankshaft
"""
from setuptools import setup, find_packages
setup(
name='crankshaft',
version='0.0.2',
description='CartoDB Spatial Analysis Python Library',
url='https://github.com/CartoDB/crankshaft',
author='Data Services Team - CartoDB',
author_email='dataservices@cartodb.com',
license='MIT',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Mapping comunity',
'Topic :: Maps :: Mapping Tools',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2.7',
],
keywords='maps mapping tools spatial analysis geostatistics',
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
extras_require={
'dev': ['unittest'],
'test': ['unittest', 'nose', 'mock'],
},
# The choice of component versions is dictated by what's
# provisioned in the production servers.
install_requires=['pysal==1.9.1'],
requires=['pysal', 'numpy' ],
test_suite='test'
)

View File

@@ -0,0 +1,52 @@
[[0.9319096128346788, "HH"],
[-1.135787401862846, "HL"],
[0.11732030672508517, "Not significant"],
[0.6152779669180425, "Not significant"],
[-0.14657336660125297, "Not significant"],
[0.6967858120189607, "Not significant"],
[0.07949310115714454, "Not significant"],
[0.4703198759258987, "Not significant"],
[0.4421125200498064, "Not significant"],
[0.5724288737143592, "Not significant"],
[0.8970743435692062, "LL"],
[0.18327334401918674, "Not significant"],
[-0.01466729201304962, "Not significant"],
[0.3481559372544409, "Not significant"],
[0.06547094736902978, "Not significant"],
[0.15482141569329988, "HH"],
[0.4373841193538136, "Not significant"],
[0.15971286468915544, "Not significant"],
[1.0543588860308968, "Not significant"],
[1.7372866900020818, "HH"],
[1.091998586053999, "LL"],
[0.1171572584252222, "Not significant"],
[0.08438455015300014, "Not significant"],
[0.06547094736902978, "Not significant"],
[0.15482141569329985, "HH"],
[1.1627044812890683, "HH"],
[0.06547094736902978, "Not significant"],
[0.795275137550483, "Not significant"],
[0.18562939195219, "LL"],
[0.3010757406693439, "Not significant"],
[2.8205795942839376, "HH"],
[0.11259190602909264, "Not significant"],
[-0.07116352791516614, "Not significant"],
[-0.09945240794119009, "Not significant"],
[0.18562939195219, "LL"],
[0.1832733440191868, "Not significant"],
[-0.39054253768447705, "Not significant"],
[-0.1672071289487642, "HL"],
[0.3337669247916343, "Not significant"],
[0.2584386102554792, "Not significant"],
[-0.19733845476322634, "HL"],
[-0.9379282899805409, "LH"],
[-0.028770969951095866, "Not significant"],
[0.051367269430983485, "Not significant"],
[-0.2172548045913472, "LH"],
[0.05136726943098351, "Not significant"],
[0.04191046803899837, "Not significant"],
[0.7482357030403517, "HH"],
[-0.014585767863118111, "Not significant"],
[0.5410013139159929, "Not significant"],
[1.0223932668429925, "LL"],
[1.4179402898927476, "LL"]]

View File

@@ -0,0 +1,54 @@
[
{"neighbors": [48, 26, 20, 9, 31], "id": 1, "value": 0.5},
{"neighbors": [30, 16, 46, 3, 4], "id": 2, "value": 0.7},
{"neighbors": [46, 30, 2, 12, 16], "id": 3, "value": 0.2},
{"neighbors": [18, 30, 23, 2, 52], "id": 4, "value": 0.1},
{"neighbors": [47, 40, 45, 37, 28], "id": 5, "value": 0.3},
{"neighbors": [10, 21, 41, 14, 37], "id": 6, "value": 0.05},
{"neighbors": [8, 17, 43, 25, 12], "id": 7, "value": 0.4},
{"neighbors": [17, 25, 43, 22, 7], "id": 8, "value": 0.7},
{"neighbors": [39, 34, 1, 26, 48], "id": 9, "value": 0.5},
{"neighbors": [6, 37, 5, 45, 49], "id": 10, "value": 0.04},
{"neighbors": [51, 41, 29, 21, 14], "id": 11, "value": 0.08},
{"neighbors": [44, 46, 43, 50, 3], "id": 12, "value": 0.2},
{"neighbors": [45, 23, 14, 28, 18], "id": 13, "value": 0.4},
{"neighbors": [41, 29, 13, 23, 6], "id": 14, "value": 0.2},
{"neighbors": [36, 27, 32, 33, 24], "id": 15, "value": 0.3},
{"neighbors": [19, 2, 46, 44, 28], "id": 16, "value": 0.4},
{"neighbors": [8, 25, 43, 7, 22], "id": 17, "value": 0.6},
{"neighbors": [23, 4, 29, 14, 13], "id": 18, "value": 0.3},
{"neighbors": [42, 16, 28, 26, 40], "id": 19, "value": 0.7},
{"neighbors": [1, 48, 31, 26, 42], "id": 20, "value": 0.8},
{"neighbors": [41, 6, 11, 14, 10], "id": 21, "value": 0.1},
{"neighbors": [25, 50, 43, 31, 44], "id": 22, "value": 0.4},
{"neighbors": [18, 13, 14, 4, 2], "id": 23, "value": 0.1},
{"neighbors": [33, 49, 34, 47, 27], "id": 24, "value": 0.3},
{"neighbors": [43, 8, 22, 17, 50], "id": 25, "value": 0.4},
{"neighbors": [1, 42, 20, 31, 48], "id": 26, "value": 0.6},
{"neighbors": [32, 15, 36, 33, 24], "id": 27, "value": 0.3},
{"neighbors": [40, 45, 19, 5, 13], "id": 28, "value": 0.8},
{"neighbors": [11, 51, 41, 14, 18], "id": 29, "value": 0.3},
{"neighbors": [2, 3, 4, 46, 18], "id": 30, "value": 0.1},
{"neighbors": [20, 26, 1, 50, 48], "id": 31, "value": 0.9},
{"neighbors": [27, 36, 15, 49, 24], "id": 32, "value": 0.3},
{"neighbors": [24, 27, 49, 34, 32], "id": 33, "value": 0.4},
{"neighbors": [47, 9, 39, 40, 24], "id": 34, "value": 0.3},
{"neighbors": [38, 51, 11, 21, 41], "id": 35, "value": 0.3},
{"neighbors": [15, 32, 27, 49, 33], "id": 36, "value": 0.2},
{"neighbors": [49, 10, 5, 47, 24], "id": 37, "value": 0.5},
{"neighbors": [35, 21, 51, 11, 41], "id": 38, "value": 0.4},
{"neighbors": [9, 34, 48, 1, 47], "id": 39, "value": 0.6},
{"neighbors": [28, 47, 5, 9, 34], "id": 40, "value": 0.5},
{"neighbors": [11, 14, 29, 21, 6], "id": 41, "value": 0.4},
{"neighbors": [26, 19, 1, 9, 31], "id": 42, "value": 0.2},
{"neighbors": [25, 12, 8, 22, 44], "id": 43, "value": 0.3},
{"neighbors": [12, 50, 46, 16, 43], "id": 44, "value": 0.2},
{"neighbors": [28, 13, 5, 40, 19], "id": 45, "value": 0.3},
{"neighbors": [3, 12, 44, 2, 16], "id": 46, "value": 0.2},
{"neighbors": [34, 40, 5, 49, 24], "id": 47, "value": 0.3},
{"neighbors": [1, 20, 26, 9, 39], "id": 48, "value": 0.5},
{"neighbors": [24, 37, 47, 5, 33], "id": 49, "value": 0.2},
{"neighbors": [44, 22, 31, 42, 26], "id": 50, "value": 0.6},
{"neighbors": [11, 29, 41, 14, 21], "id": 51, "value": 0.01},
{"neighbors": [4, 18, 29, 51, 23], "id": 52, "value": 0.01}
]

View File

@@ -0,0 +1,13 @@
import unittest
from mock_plpy import MockPlPy
plpy = MockPlPy()
import sys
sys.modules['plpy'] = plpy
import os
def fixture_file(name):
dir = os.path.dirname(os.path.realpath(__file__))
return os.path.join(dir, 'fixtures', name)

View File

@@ -0,0 +1,34 @@
import re
class MockPlPy:
def __init__(self):
self._reset()
def _reset(self):
self.infos = []
self.notices = []
self.debugs = []
self.logs = []
self.warnings = []
self.errors = []
self.fatals = []
self.executes = []
self.results = []
self.prepares = []
self.results = []
def _define_result(self, query, result):
pattern = re.compile(query, re.IGNORECASE | re.MULTILINE)
self.results.append([pattern, result])
def notice(self, msg):
self.notices.append(msg)
def info(self, msg):
self.infos.append(msg)
def execute(self, query): # TODO: additional arguments
for result in self.results:
if result[0].match(query):
return result[1]
return []

View File

@@ -0,0 +1,144 @@
import unittest
import numpy as np
import unittest
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
#
# import sys
# sys.modules['plpy'] = plpy
from helper import plpy, fixture_file
import crankshaft.clustering as cc
from crankshaft import random_seeds
import json
class MoranTest(unittest.TestCase):
"""Testing class for Moran's I functions."""
def setUp(self):
plpy._reset()
self.params = {"id_col": "cartodb_id",
"attr1": "andy",
"attr2": "jay_z",
"table": "a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.neighbors_data = json.loads(open(fixture_file('neighbors.json')).read())
self.moran_data = json.loads(open(fixture_file('moran.json')).read())
def test_map_quads(self):
"""Test map_quads."""
self.assertEqual(cc.map_quads(1), 'HH')
self.assertEqual(cc.map_quads(2), 'LH')
self.assertEqual(cc.map_quads(3), 'LL')
self.assertEqual(cc.map_quads(4), 'HL')
self.assertEqual(cc.map_quads(33), None)
self.assertEqual(cc.map_quads('andy'), None)
def test_query_attr_select(self):
"""Test query_attr_select."""
ans = "i.\"{attr1}\"::numeric As attr1, " \
"i.\"{attr2}\"::numeric As attr2, "
self.assertEqual(cc.query_attr_select(self.params), ans)
def test_query_attr_where(self):
"""Test query_attr_where."""
ans = "idx_replace.\"{attr1}\" IS NOT NULL AND "\
"idx_replace.\"{attr2}\" IS NOT NULL AND "\
"idx_replace.\"{attr2}\" <> 0"
self.assertEqual(cc.query_attr_where(self.params), ans)
def test_knn(self):
"""Test knn function."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM \"a_list\" As j WHERE j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0 ORDER BY " \
"j.\"the_geom\" <-> i.\"the_geom\" ASC LIMIT 321 OFFSET 1 ) ) " \
"As neighbors FROM \"a_list\" As i WHERE i.\"andy\" IS NOT " \
"NULL AND i.\"jay_z\" IS NOT NULL AND i.\"jay_z\" <> 0 ORDER " \
"BY i.\"cartodb_id\" ASC;"
self.assertEqual(cc.knn(self.params), ans)
def test_queen(self):
"""Test queen neighbors function."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT " \
"j.\"cartodb_id\" FROM \"a_list\" As j WHERE ST_Touches(" \
"i.\"the_geom\", j.\"the_geom\") AND j.\"andy\" IS NOT NULL " \
"AND j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0)) As " \
"neighbors FROM \"a_list\" As i WHERE i.\"andy\" IS NOT NULL " \
"AND i.\"jay_z\" IS NOT NULL AND i.\"jay_z\" <> 0 ORDER BY " \
"i.\"cartodb_id\" ASC;"
self.assertEqual(cc.queen(self.params), ans)
def test_get_query(self):
"""Test get_query."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT " \
"j.\"cartodb_id\" FROM \"a_list\" As j WHERE j.\"andy\" IS " \
"NOT NULL AND j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0 " \
"ORDER BY j.\"the_geom\" <-> i.\"the_geom\" ASC LIMIT 321 " \
"OFFSET 1 ) ) As neighbors FROM \"a_list\" As i WHERE " \
"i.\"andy\" IS NOT NULL AND i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(cc.get_query('knn', self.params), ans)
def test_get_attributes(self):
"""Test get_attributes."""
## need to add tests
self.assertEqual(True, True)
def test_get_weight(self):
"""Test get_weight."""
self.assertEqual(True, True)
def test_quad_position(self):
"""Test lisa_sig_vals."""
quads = np.array([1, 2, 3, 4], np.int)
ans = np.array(['HH', 'LH', 'LL', 'HL'])
test_ans = cc.quad_position(quads)
self.assertTrue((test_ans == ans).all())
def test_moran_local(self):
"""Test Moran's I local"""
data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local('table', 'value', 0.05, 5, 99, 'the_geom', 'cartodb_id', 'knn')
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
self.assertAlmostEqual(res_val, exp_val)
self.assertEqual(res_quad, exp_quad)
def test_moran_local_rate(self):
"""Test Moran's I rate"""
data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local_rate('table', 'numerator', 'denominator', 0.05, 5, 99, 'the_geom', 'cartodb_id', 'knn')
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
self.assertAlmostEqual(res_val, exp_val)

View File

@@ -1,11 +1,15 @@
# Generation of a new development version 'dev' (with an alias 'current' for
# updating easily by upgrading to 'current', then 'dev')
include ../../Makefile.global
# sudo make install -- generate the 'dev' version from current source
# and make it available to PostgreSQL
# PGUSER=postgres make installcheck -- test the 'dev' extension
EXTENSION = crankshaft
# Development tasks:
#
# * install generates the control & script files into src/pg/
# and installs then into the PostgreSQL extensions directory;
# requires sudo. In additionof the current development version
# named 'dev', an alias 'current' is generating for ease of
# update (upgrade to 'current', then to 'dev').
# the python module is installed in a virtualenv in envs/dev/
# * test runs the tests for the currently generated Development
# extension.
DATA = $(EXTENSION)--dev.sql \
$(EXTENSION)--current--dev.sql \
@@ -14,8 +18,14 @@ DATA = $(EXTENSION)--dev.sql \
SOURCES_DATA_DIR = sql
SOURCES_DATA = $(wildcard $(SOURCES_DATA_DIR)/*.sql)
VIRTUALENV_PATH = $(realpath ../../envs)
ESC_VIRVIRTUALENV_PATH = $(subst /,\/,$(VIRTUALENV_PATH))
REPLACEMENTS = -e 's/@@VERSION@@/$(EXTVERSION)/g' \
-e 's/@@VIRTUALENV_PATH@@/$(ESC_VIRVIRTUALENV_PATH)/g'
$(DATA): $(SOURCES_DATA)
cat $(SOURCES_DATA_DIR)/*.sql > $@
$(SED) $(REPLACEMENTS) $(SOURCES_DATA_DIR)/*.sql > $@
TEST_DIR = test
REGRESS = $(notdir $(basename $(wildcard $(TEST_DIR)/sql/*test.sql)))
@@ -28,14 +38,23 @@ include $(PGXS)
# This seems to be needed at least for PG 9.3.11
all: $(DATA)
# WIP: goals for releasing the extension...
test: export PGUSER=postgres
test: installcheck
EXTVERSION = $(shell grep default_version $(EXTENSION).control | sed -e "s/default_version[[:space:]]*=[[:space:]]*'\([^']*\)'/\1/")
# Release tasks
../release/$(EXTENSION).control: $(EXTENSION).control
../../release/$(EXTENSION).control: $(EXTENSION).control
cp $< $@
release: ../release/$(EXTENSION).control
cp $(EXTENSION)--dev.sql $(EXTENSION)--$(EXTVERSION).sql
# pending: create upgrade/downgrade scripts,
# commit, push, tag....
# Prepare new release from the currently installed development version,
# for the current version X.Y.Z (defined in the control file)
# producing the extension script and control files in releases/
# and the python package in releases/python/X.Y.Z/crankshaft/
release: ../../release/$(EXTENSION).control $(SOURCES_DATA)
$(SED) $(REPLACEMENTS) $(SOURCES_DATA_DIR)/*.sql > ../../release/$(EXTENSION)--$(EXTVERSION).sql
# Install the current relese into the PostgreSQL extensions directory
# and the Python package in a virtual environment envs/X.Y.Z
deploy:
$(INSTALL_DATA) ../../release/$(EXTENSION).control '$(DESTDIR)$(datadir)/extension/'
$(INSTALL_DATA) ../../release/*.sql '$(DESTDIR)$(datadir)/extension/'

View File

@@ -1,7 +0,0 @@
# Running the tests:
```
sudo make install
PGUSER=postgres make installcheck
```

View File

@@ -1,5 +1,5 @@
comment = 'CartoDB Spatial Analysis extension'
default_version = '0.0.1'
default_version = '0.0.2'
requires = 'plpythonu, postgis, cartodb'
superuser = true
schema = cdb_crankshaft

12
src/pg/sql/01_version.sql Normal file
View File

@@ -0,0 +1,12 @@
-- Version number of the extension release
CREATE OR REPLACE FUNCTION cdb_crankshaft_version()
RETURNS text AS $$
SELECT '@@VERSION@@'::text;
$$ language 'sql' STABLE STRICT;
-- Internal identifier of the installed extension instence
-- e.g. 'dev' for current development version
CREATE OR REPLACE FUNCTION _cdb_crankshaft_internal_version()
RETURNS text AS $$
SELECT installed_version FROM pg_available_extensions where name='crankshaft' and pg_available_extensions IS NOT NULL;
$$ language 'sql' STABLE STRICT;

23
src/pg/sql/02_py.sql Normal file
View File

@@ -0,0 +1,23 @@
CREATE OR REPLACE FUNCTION _cdb_crankshaft_virtualenvs_path()
RETURNS text
AS $$
BEGIN
-- RETURN '/opt/virtualenvs/crankshaft';
RETURN '@@VIRTUALENV_PATH@@';
END;
$$ language plpgsql IMMUTABLE STRICT;
-- Use the crankshaft python module
CREATE OR REPLACE FUNCTION _cdb_crankshaft_activate_py()
RETURNS VOID
AS $$
import os
# plpy.notice('%',str(os.environ))
# activate virtualenv
crankshaft_version = plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_internal_version()')[0]['_cdb_crankshaft_internal_version']
base_path = plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_virtualenvs_path()')[0]['_cdb_crankshaft_virtualenvs_path']
default_venv_path = os.path.join(base_path, crankshaft_version)
venv_path = os.environ.get('CRANKSHAFT_VENV', default_venv_path)
activate_path = venv_path + '/bin/activate_this.py'
exec(open(activate_path).read(), dict(__file__=activate_path))
$$ LANGUAGE plpythonu;

View File

@@ -4,6 +4,7 @@
CREATE OR REPLACE FUNCTION
_cdb_random_seeds (seed_value INTEGER) RETURNS VOID
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft import random_seeds
random_seeds.set_random_seeds(seed_value)
$$ LANGUAGE plpythonu;

115
src/pg/sql/07_gravity.sql Normal file
View File

@@ -0,0 +1,115 @@
CREATE OR REPLACE FUNCTION CDB_Gravity(
IN target_query text,
IN weight_column text,
IN source_query text,
IN pop_column text,
IN target bigint,
IN radius integer,
IN minval numeric DEFAULT -10e307
)
RETURNS TABLE(
the_geom geometry,
source_id bigint,
target_id bigint,
dist numeric,
h numeric,
hpop numeric) AS $$
DECLARE
t_id bigint[];
t_geom geometry[];
t_weight numeric[];
s_id bigint[];
s_geom geometry[];
s_pop numeric[];
BEGIN
EXECUTE 'WITH foo as('+target_query+') SELECT array_agg(cartodb_id), array_agg(the_geom), array_agg(' || weight_column || ') FROM foo' INTO t_id, t_geom, t_weight;
EXECUTE 'WITH foo as('+source_query+') SELECT array_agg(cartodb_id), array_agg(the_geom), array_agg(' || pop_column || ') FROM foo' INTO s_id, s_geom, s_pop;
RETURN QUERY
SELECT g.* FROM t, s, CDB_Gravity(t_id, t_geom, t_weight, s_id, s_geom, s_pop, target, radius, minval) g;
END;
$$ language plpgsql;
CREATE OR REPLACE FUNCTION CDB_Gravity(
IN t_id bigint[],
IN t_geom geometry[],
IN t_weight numeric[],
IN s_id bigint[],
IN s_geom geometry[],
IN s_pop numeric[],
IN target bigint,
IN radius integer,
IN minval numeric DEFAULT -10e307
)
RETURNS TABLE(
the_geom geometry,
source_id bigint,
target_id bigint,
dist numeric,
h numeric,
hpop numeric) AS $$
DECLARE
t_type text;
s_type text;
t_center geometry[];
s_center geometry[];
BEGIN
t_type := GeometryType(t_geom[1]);
s_type := GeometryType(s_geom[1]);
IF t_type = 'POINT' THEN
t_center := t_geom;
ELSE
WITH tmp as (SELECT unnest(t_geom) as g) SELECT array_agg(ST_Centroid(g)) INTO t_center FROM tmp;
END IF;
IF s_type = 'POINT' THEN
s_center := s_geom;
ELSE
WITH tmp as (SELECT unnest(s_geom) as g) SELECT array_agg(ST_Centroid(g)) INTO s_center FROM tmp;
END IF;
RETURN QUERY
with target0 as(
SELECT unnest(t_center) as tc, unnest(t_weight) as tw, unnest(t_id) as td
),
source0 as(
SELECT unnest(s_center) as sc, unnest(s_id) as sd, unnest (s_geom) as sg, unnest(s_pop) as sp
),
prev0 as(
SELECT
source0.sg,
source0.sd as sourc_id,
coalesce(source0.sp,0) as sp,
target.td as targ_id,
coalesce(target.tw,0) as tw,
GREATEST(1.0,ST_Distance(geography(target.tc), geography(source0.sc)))::numeric as distance
FROM source0
CROSS JOIN LATERAL
(
SELECT
*
FROM target0
WHERE tw > minval
AND ST_DWithin(geography(source0.sc), geography(tc), radius)
) AS target
),
deno as(
SELECT
sourc_id,
sum(tw/distance) as h_deno
FROM
prev0
GROUP BY sourc_id
)
SELECT
p.sg as the_geom,
p.sourc_id as source_id,
p.targ_id as target_id,
case when p.distance > 1 then p.distance else 0.0 end as dist,
100*(p.tw/p.distance)/d.h_deno as h,
p.sp*(p.tw/p.distance)/d.h_deno as hpop
FROM
prev0 p,
deno d
WHERE
p.targ_id = target AND
p.sourc_id = d.sourc_id;
END;
$$ language plpgsql;

233
src/pg/sql/10_moran.sql Normal file
View File

@@ -0,0 +1,233 @@
-- Moran's I Global Measure (public-facing)
CREATE OR REPLACE FUNCTION
CDB_AreasOfInterestGlobal(
subquery TEXT,
column_name TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS TABLE (moran NUMERIC, significance NUMERIC)
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
$$ LANGUAGE plpythonu;
-- Moran's I Local (internal function)
CREATE OR REPLACE FUNCTION
_CDB_AreasOfInterestLocal(
subquery TEXT,
column_name TEXT,
w_type TEXT,
num_ngbrs INT,
permutations INT,
geom_col TEXT,
id_col TEXT)
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran_local(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
$$ LANGUAGE plpythonu;
-- Moran's I Local (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_AreasOfInterestLocal(
subquery TEXT,
column_name TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col);
$$ LANGUAGE SQL;
-- Moran's I only for HH and HL (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_GetSpatialHotspots(
subquery TEXT,
column_name TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
WHERE quads IN ('HH', 'HL');
$$ LANGUAGE SQL;
-- Moran's I only for LL and LH (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_GetSpatialColdspots(
subquery TEXT,
attr TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col)
WHERE quads IN ('LL', 'LH');
$$ LANGUAGE SQL;
-- Moran's I only for LH and HL (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_GetSpatialOutliers(
subquery TEXT,
attr TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col)
WHERE quads IN ('HL', 'LH');
$$ LANGUAGE SQL;
-- Moran's I Global Rate (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_AreasOfInterestGlobalRate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS TABLE (moran FLOAT, significance FLOAT)
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
$$ LANGUAGE plpythonu;
-- Moran's I Local Rate (internal function)
CREATE OR REPLACE FUNCTION
_CDB_AreasOfInterestLocalRate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
w_type TEXT,
num_ngbrs INT,
permutations INT,
geom_col TEXT,
id_col TEXT)
RETURNS
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local_rate
# TODO: use named parameters or a dictionary
return moran_local_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
$$ LANGUAGE plpythonu;
-- Moran's I Local Rate (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_AreasOfInterestLocalRate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col);
$$ LANGUAGE SQL;
-- Moran's I Local Rate only for HH and HL (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_GetSpatialHotspotsRate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
WHERE quads IN ('HH', 'HL');
$$ LANGUAGE SQL;
-- Moran's I Local Rate only for LL and LH (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_GetSpatialColdspotsRate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
WHERE quads IN ('LL', 'LH');
$$ LANGUAGE SQL;
-- Moran's I Local Rate only for LH and HL (public-facing function)
CREATE OR REPLACE FUNCTION
CDB_GetSpatialOutliersRate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
AS $$
SELECT moran, quads, significance, rowid, vals
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
WHERE quads IN ('HL', 'LH');
$$ LANGUAGE SQL;

View File

@@ -1,260 +1,277 @@
\pset format unaligned
\set ECHO all
\i test/fixtures/ppoints.sql
-- test table (spanish province centroids with some invented values)
CREATE TABLE ppoints (cartodb_id integer, the_geom geometry, the_geom_webmercator geometry, code text, region_code text, value float);
INSERT INTO ppoints VALUES
( 1,'0101000020E6100000A8306DC0CBC305C051D14B6CE56A4540'::geometry,ST_Transform('0101000020E6100000A8306DC0CBC305C051D14B6CE56A4540'::geometry, 3857),'01','16',0.5),
( 4,'0101000020E6100000E220A4362DC202C0FD8AFA5119994240'::geometry,ST_Transform('0101000020E6100000E220A4362DC202C0FD8AFA5119994240'::geometry, 3857),'04','01',0.1),
( 5,'0101000020E610000004377E573AC813C0CB5871BB17494440'::geometry,ST_Transform('0101000020E610000004377E573AC813C0CB5871BB17494440'::geometry, 3857),'05','07',0.3),
( 2,'0101000020E610000000F49BE19BAFFFBF639958FDA6694340'::geometry,ST_Transform('0101000020E610000000F49BE19BAFFFBF639958FDA6694340'::geometry, 3857),'02','08',0.7),
( 3,'0101000020E61000005D0B7E63C832E2BFDB63EB00443D4340'::geometry,ST_Transform('0101000020E61000005D0B7E63C832E2BFDB63EB00443D4340'::geometry, 3857),'03','10',0.2),
( 6,'0101000020E61000006F3742B7FB9018C0DD967DC4D95A4340'::geometry,ST_Transform('0101000020E61000006F3742B7FB9018C0DD967DC4D95A4340'::geometry, 3857),'06','11',0.05),
( 7,'0101000020E6100000E4BB36995F4C0740EAC0E5CA9FC94340'::geometry,ST_Transform('0101000020E6100000E4BB36995F4C0740EAC0E5CA9FC94340'::geometry, 3857),'07','04',0.4),
( 8,'0101000020E61000003D43CC6CAFBEFF3F6B52E66F91DD4440'::geometry,ST_Transform('0101000020E61000003D43CC6CAFBEFF3F6B52E66F91DD4440'::geometry, 3857),'08','09',0.7),
( 9,'0101000020E61000003CC797BD99AF0CC0495A87FA312F4540'::geometry,ST_Transform('0101000020E61000003CC797BD99AF0CC0495A87FA312F4540'::geometry, 3857),'09','07',0.5),
(13,'0101000020E61000001CAA00A9F19F0EC05DF9267B7A764340'::geometry,ST_Transform('0101000020E61000001CAA00A9F19F0EC05DF9267B7A764340'::geometry, 3857),'13','08',0.4),
(16,'0101000020E6100000D8208F3CBC9001C065638DC1B1F24340'::geometry,ST_Transform('0101000020E6100000D8208F3CBC9001C065638DC1B1F24340'::geometry, 3857),'16','08',0.4),
(17,'0101000020E6100000E9E6A94A71630540AD7A0CB062104540'::geometry,ST_Transform('0101000020E6100000E9E6A94A71630540AD7A0CB062104540'::geometry, 3857),'17','09',0.6),
(18,'0101000020E6100000719792D59E240AC098AC548E00A84240'::geometry,ST_Transform('0101000020E6100000719792D59E240AC098AC548E00A84240'::geometry, 3857),'18','01',0.3),
(19,'0101000020E6100000972C878B50FD04C0123C881D1F684440'::geometry,ST_Transform('0101000020E6100000972C878B50FD04C0123C881D1F684440'::geometry, 3857),'19','08',0.7),
(21,'0101000020E6100000F7893E9934511BC0EAA4BF03E1C94240'::geometry,ST_Transform('0101000020E6100000F7893E9934511BC0EAA4BF03E1C94240'::geometry, 3857),'21','01',0.1),
(22,'0101000020E6100000572C2123B2A8B2BF7ED7FABAFD194540'::geometry,ST_Transform('0101000020E6100000572C2123B2A8B2BF7ED7FABAFD194540'::geometry, 3857),'22','02',0.4),
(25,'0101000020E6100000461B67D688C4F03FD990EEC3A0054540'::geometry,ST_Transform('0101000020E6100000461B67D688C4F03FD990EEC3A0054540'::geometry, 3857),'25','09',0.4),
(26,'0101000020E6100000A139FB06E82204C0539D84F62E234540'::geometry,ST_Transform('0101000020E6100000A139FB06E82204C0539D84F62E234540'::geometry, 3857),'26','17',0.6),
(27,'0101000020E6100000A92E54E618C91DC00D3A947B81814540'::geometry,ST_Transform('0101000020E6100000A92E54E618C91DC00D3A947B81814540'::geometry, 3857),'27','12',0.3),
(28,'0101000020E6100000971DC8B682BC0DC016D0E8055F3F4440'::geometry,ST_Transform('0101000020E6100000971DC8B682BC0DC016D0E8055F3F4440'::geometry, 3857),'28','13',0.8),
(30,'0101000020E6100000A2DC1964A8C5F7BF19299C994D004340'::geometry,ST_Transform('0101000020E6100000A2DC1964A8C5F7BF19299C994D004340'::geometry, 3857),'30','14',0.1),
(31,'0101000020E6100000DCA1FCC87B56FABF9B88E9D866554540'::geometry,ST_Transform('0101000020E6100000DCA1FCC87B56FABF9B88E9D866554540'::geometry, 3857),'31','15',0.9),
(32,'0101000020E6100000E1517AFCD15E1EC0A18D8D4825194540'::geometry,ST_Transform('0101000020E6100000E1517AFCD15E1EC0A18D8D4825194540'::geometry, 3857),'32','12',0.3),
(33,'0101000020E6100000A7FF33825AF917C0FABE7DFB6BA54540'::geometry,ST_Transform('0101000020E6100000A7FF33825AF917C0FABE7DFB6BA54540'::geometry, 3857),'33','03',0.4),
(34,'0101000020E6100000FB4E4EBEB72412C0898E7240982F4540'::geometry,ST_Transform('0101000020E6100000FB4E4EBEB72412C0898E7240982F4540'::geometry, 3857),'34','07',0.3),
(35,'0101000020E6100000224682B01B1A2DC011091656CC5C3C40'::geometry,ST_Transform('0101000020E6100000224682B01B1A2DC011091656CC5C3C40'::geometry, 3857),'35','05',0.3),
(36,'0101000020E6100000F7C9447110EC20C04C5D4823C7374540'::geometry,ST_Transform('0101000020E6100000F7C9447110EC20C04C5D4823C7374540'::geometry, 3857),'36','12',0.2),
(37,'0101000020E610000053D6A26DFB4218C09D58FAE209674440'::geometry,ST_Transform('0101000020E610000053D6A26DFB4218C09D58FAE209674440'::geometry, 3857),'37','07',0.5),
(38,'0101000020E6100000B1D1B5FC910431C03C0C89BA03503C40'::geometry,ST_Transform('0101000020E6100000B1D1B5FC910431C03C0C89BA03503C40'::geometry, 3857),'38','05',0.4),
(39,'0101000020E610000086E6FEE1BD1E10C00417096748994540'::geometry,ST_Transform('0101000020E610000086E6FEE1BD1E10C00417096748994540'::geometry, 3857),'39','06',0.6),
(40,'0101000020E6100000FB51C33F733710C038D01729E4954440'::geometry,ST_Transform('0101000020E6100000FB51C33F733710C038D01729E4954440'::geometry, 3857),'40','07',0.5),
(41,'0101000020E6100000912D6FDA28BB16C031321F08C4B74240'::geometry,ST_Transform('0101000020E6100000912D6FDA28BB16C031321F08C4B74240'::geometry, 3857),'41','01',0.4),
(42,'0101000020E6100000554432EABEB504C069ECD78775CF4440'::geometry,ST_Transform('0101000020E6100000554432EABEB504C069ECD78775CF4440'::geometry, 3857),'42','07',0.2),
(43,'0101000020E6100000157F117C1A2EEA3F027CD1F2368B4440'::geometry,ST_Transform('0101000020E6100000157F117C1A2EEA3F027CD1F2368B4440'::geometry, 3857),'43','09',0.3),
(44,'0101000020E610000051AA5B1BD718EABFEE67613BA4544440'::geometry,ST_Transform('0101000020E610000051AA5B1BD718EABFEE67613BA4544440'::geometry, 3857),'44','02',0.2),
(45,'0101000020E610000022C5C01BB69710C08563BC1499E54340'::geometry,ST_Transform('0101000020E610000022C5C01BB69710C08563BC1499E54340'::geometry, 3857),'45','08',0.3),
(46,'0101000020E6100000D5FCF78A11A0E9BFDEA46F8E64AF4340'::geometry,ST_Transform('0101000020E6100000D5FCF78A11A0E9BFDEA46F8E64AF4340'::geometry, 3857),'46','10',0.2),
(47,'0101000020E61000003AE63525866313C02100050B2BD14440'::geometry,ST_Transform('0101000020E61000003AE63525866313C02100050B2BD14440'::geometry, 3857),'47','07',0.3),
(48,'0101000020E610000030F187FD1FD206C0C767E1496C9E4540'::geometry,ST_Transform('0101000020E610000030F187FD1FD206C0C767E1496C9E4540'::geometry, 3857),'48','16',0.5),
(49,'0101000020E61000009C22867B12EC17C006C5F40C14DD4440'::geometry,ST_Transform('0101000020E61000009C22867B12EC17C006C5F40C14DD4440'::geometry, 3857),'49','07',0.2),
(50,'0101000020E6100000F7D5EFC62D08F1BF69D1231D68CF4440'::geometry,ST_Transform('0101000020E6100000F7D5EFC62D08F1BF69D1231D68CF4440'::geometry, 3857),'50','02',0.6),
(51,'0101000020E61000005B0E1F8DAA5F15C0530BFE285BF24140'::geometry,ST_Transform('0101000020E61000005B0E1F8DAA5F15C0530BFE285BF24140'::geometry, 3857),'51','18',0.01),
(10,'0101000020E61000000FD65D82AEA418C06192D1351FDB4340'::geometry,ST_Transform('0101000020E61000000FD65D82AEA418C06192D1351FDB4340'::geometry, 3857),'10','11',0.04),
(11,'0101000020E6100000B305531DAB0A17C0DEAFCD4EE5464240'::geometry,ST_Transform('0101000020E6100000B305531DAB0A17C0DEAFCD4EE5464240'::geometry, 3857),'11','01',0.08),
(12,'0101000020E610000059721A7297C9C2BF9EBE383BE51E4440'::geometry,ST_Transform('0101000020E610000059721A7297C9C2BF9EBE383BE51E4440'::geometry, 3857),'12','10',0.2),
(14,'0101000020E610000000C86313AF3C13C0E530879C10FF4240'::geometry,ST_Transform('0101000020E610000000C86313AF3C13C0E530879C10FF4240'::geometry, 3857),'14','01',0.2),
(15,'0101000020E61000002A475497B6ED20C06643D4131A904540'::geometry,ST_Transform('0101000020E61000002A475497B6ED20C06643D4131A904540'::geometry, 3857),'15','12',0.3),
(20,'0101000020E6100000F975566FAD8D01C0E840C33F67924540'::geometry,ST_Transform('0101000020E6100000F975566FAD8D01C0E840C33F67924540'::geometry, 3857),'20','16',0.8),
(23,'0101000020E610000025FA13E595880BC022BB07131D024340'::geometry,ST_Transform('0101000020E610000025FA13E595880BC022BB07131D024340'::geometry, 3857),'23','01',0.1),
(24,'0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry,ST_Transform('0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry, 3857),'24','07',0.3),
(29,'0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry,ST_Transform('0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry, 3857),'29','01',0.3),
(52,'0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry,ST_Transform('0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry, 3857),'52','19',0.01)
\i test/fixtures/ppoints2.sql
-- test table (spanish province centroids with some invented values)
CREATE TABLE ppoints2 (cartodb_id integer, the_geom geometry, code text, region_code text, numerator float, denominator float);
INSERT INTO ppoints2 VALUES
( 1,'0101000020E6100000A8306DC0CBC305C051D14B6CE56A4540'::geometry,'01','16',0.5, 1.0),
( 4,'0101000020E6100000E220A4362DC202C0FD8AFA5119994240'::geometry,'04','01',0.1, 1.0),
( 5,'0101000020E610000004377E573AC813C0CB5871BB17494440'::geometry,'05','07',0.3, 1.0),
( 2,'0101000020E610000000F49BE19BAFFFBF639958FDA6694340'::geometry,'02','08',0.7, 1.0),
( 3,'0101000020E61000005D0B7E63C832E2BFDB63EB00443D4340'::geometry,'03','10',0.2, 1.0),
( 6,'0101000020E61000006F3742B7FB9018C0DD967DC4D95A4340'::geometry,'06','11',0.05, 1.0),
( 7,'0101000020E6100000E4BB36995F4C0740EAC0E5CA9FC94340'::geometry,'07','04',0.4, 1.0),
( 8,'0101000020E61000003D43CC6CAFBEFF3F6B52E66F91DD4440'::geometry,'08','09',0.7, 1.0),
( 9,'0101000020E61000003CC797BD99AF0CC0495A87FA312F4540'::geometry,'09','07',0.5, 1.0),
(13,'0101000020E61000001CAA00A9F19F0EC05DF9267B7A764340'::geometry,'13','08',0.4, 1.0),
(16,'0101000020E6100000D8208F3CBC9001C065638DC1B1F24340'::geometry,'16','08',0.4, 1.0),
(17,'0101000020E6100000E9E6A94A71630540AD7A0CB062104540'::geometry,'17','09',0.6, 1.0),
(18,'0101000020E6100000719792D59E240AC098AC548E00A84240'::geometry,'18','01',0.3, 1.0),
(19,'0101000020E6100000972C878B50FD04C0123C881D1F684440'::geometry,'19','08',0.7, 1.0),
(21,'0101000020E6100000F7893E9934511BC0EAA4BF03E1C94240'::geometry,'21','01',0.1, 1.0),
(22,'0101000020E6100000572C2123B2A8B2BF7ED7FABAFD194540'::geometry,'22','02',0.4, 1.0),
(25,'0101000020E6100000461B67D688C4F03FD990EEC3A0054540'::geometry,'25','09',0.4, 1.0),
(26,'0101000020E6100000A139FB06E82204C0539D84F62E234540'::geometry,'26','17',0.6, 1.0),
(27,'0101000020E6100000A92E54E618C91DC00D3A947B81814540'::geometry,'27','12',0.3, 1.0),
(28,'0101000020E6100000971DC8B682BC0DC016D0E8055F3F4440'::geometry,'28','13',0.8, 1.0),
(30,'0101000020E6100000A2DC1964A8C5F7BF19299C994D004340'::geometry,'30','14',0.1, 1.0),
(31,'0101000020E6100000DCA1FCC87B56FABF9B88E9D866554540'::geometry,'31','15',0.9, 1.0),
(32,'0101000020E6100000E1517AFCD15E1EC0A18D8D4825194540'::geometry,'32','12',0.3, 1.0),
(33,'0101000020E6100000A7FF33825AF917C0FABE7DFB6BA54540'::geometry,'33','03',0.4, 1.0),
(34,'0101000020E6100000FB4E4EBEB72412C0898E7240982F4540'::geometry,'34','07',0.3, 1.0),
(35,'0101000020E6100000224682B01B1A2DC011091656CC5C3C40'::geometry,'35','05',0.3, 1.0),
(36,'0101000020E6100000F7C9447110EC20C04C5D4823C7374540'::geometry,'36','12',0.2, 1.0),
(37,'0101000020E610000053D6A26DFB4218C09D58FAE209674440'::geometry,'37','07',0.5, 1.0),
(38,'0101000020E6100000B1D1B5FC910431C03C0C89BA03503C40'::geometry,'38','05',0.4, 1.0),
(39,'0101000020E610000086E6FEE1BD1E10C00417096748994540'::geometry,'39','06',0.6, 1.0),
(40,'0101000020E6100000FB51C33F733710C038D01729E4954440'::geometry,'40','07',0.5, 1.0),
(41,'0101000020E6100000912D6FDA28BB16C031321F08C4B74240'::geometry,'41','01',0.4, 1.0),
(42,'0101000020E6100000554432EABEB504C069ECD78775CF4440'::geometry,'42','07',0.2, 1.0),
(43,'0101000020E6100000157F117C1A2EEA3F027CD1F2368B4440'::geometry,'43','09',0.3, 1.0),
(44,'0101000020E610000051AA5B1BD718EABFEE67613BA4544440'::geometry,'44','02',0.2, 1.0),
(45,'0101000020E610000022C5C01BB69710C08563BC1499E54340'::geometry,'45','08',0.3, 1.0),
(46,'0101000020E6100000D5FCF78A11A0E9BFDEA46F8E64AF4340'::geometry,'46','10',0.2, 1.0),
(47,'0101000020E61000003AE63525866313C02100050B2BD14440'::geometry,'47','07',0.3, 1.0),
(48,'0101000020E610000030F187FD1FD206C0C767E1496C9E4540'::geometry,'48','16',0.5, 1.0),
(49,'0101000020E61000009C22867B12EC17C006C5F40C14DD4440'::geometry,'49','07',0.2, 1.0),
(50,'0101000020E6100000F7D5EFC62D08F1BF69D1231D68CF4440'::geometry,'50','02',0.6, 1.0),
(51,'0101000020E61000005B0E1F8DAA5F15C0530BFE285BF24140'::geometry,'51','18',0.01, 1.0),
(10,'0101000020E61000000FD65D82AEA418C06192D1351FDB4340'::geometry,'10','11',0.04, 1.0),
(11,'0101000020E6100000B305531DAB0A17C0DEAFCD4EE5464240'::geometry,'11','01',0.08, 1.0),
(12,'0101000020E610000059721A7297C9C2BF9EBE383BE51E4440'::geometry,'12','10',0.2, 1.0),
(14,'0101000020E610000000C86313AF3C13C0E530879C10FF4240'::geometry,'14','01',0.2, 1.0),
(15,'0101000020E61000002A475497B6ED20C06643D4131A904540'::geometry,'15','12',0.3, 1.0),
(20,'0101000020E6100000F975566FAD8D01C0E840C33F67924540'::geometry,'20','16',0.8, 1.0),
(23,'0101000020E610000025FA13E595880BC022BB07131D024340'::geometry,'23','01',0.1, 1.0),
(24,'0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry,'24','07',0.3, 1.0),
(29,'0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry,'29','01',0.3, 1.0),
(52,'0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry,'52','19',0.0, 1.01)
-- Moral functions perform some nondeterministic computations
-- (to estimate the significance); we will set the seeds for the RNGs
-- that affect those results to have repeateble results
SELECT cdb_crankshaft._cdb_random_seeds(1234);
_cdb_random_seeds
-------------------
(1 row)
SET client_min_messages TO WARNING;
\set ECHO none
_cdb_random_seeds
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_crankshaft.cdb_moran_local('ppoints', 'value') m
ON ppoints.cartodb_id = m.ids
ORDER BY ppoints.code;
NOTICE: ** Constructing query
CONTEXT: PL/Python function "cdb_moran_local"
NOTICE: ** Query returned with 52 rows
CONTEXT: PL/Python function "cdb_moran_local"
NOTICE: ** Finished calculations
CONTEXT: PL/Python function "cdb_moran_local"
code | quads
------+-----------------
01 | HH
02 | HL
03 | Not significant
04 | Not significant
05 | Not significant
06 | Not significant
07 | Not significant
08 | Not significant
09 | Not significant
10 | Not significant
11 | LL
12 | Not significant
13 | Not significant
14 | Not significant
15 | Not significant
16 | HH
17 | Not significant
18 | Not significant
19 | Not significant
20 | HH
21 | LL
22 | Not significant
23 | Not significant
24 | Not significant
25 | HH
26 | HH
27 | Not significant
28 | Not significant
29 | LL
30 | Not significant
31 | HH
32 | Not significant
33 | Not significant
34 | Not significant
35 | LL
36 | Not significant
37 | Not significant
38 | HL
39 | Not significant
40 | Not significant
41 | HL
42 | LH
43 | Not significant
44 | Not significant
45 | LH
46 | Not significant
47 | Not significant
48 | HH
49 | Not significant
50 | Not significant
51 | LL
52 | LL
(1 row)
code|quads
01|HH
02|HL
03|LL
04|LL
05|LH
06|LL
07|HH
08|HH
09|HH
10|LL
11|LL
12|LL
13|HL
14|LL
15|LL
16|HH
17|HH
18|LL
19|HH
20|HH
21|LL
22|HH
23|LL
24|LL
25|HH
26|HH
27|LL
28|HH
29|LL
30|LL
31|HH
32|LL
33|HL
34|LH
35|LL
36|LL
37|HL
38|HL
39|HH
40|HH
41|HL
42|LH
43|LH
44|LL
45|LH
46|LL
47|LL
48|HH
49|LH
50|HH
51|LL
52|LL
(52 rows)
_cdb_random_seeds
SELECT cdb_crankshaft._cdb_random_seeds(1234);
_cdb_random_seeds
-------------------
(1 row)
code|quads
01|HH
02|HL
07|HH
08|HH
09|HH
13|HL
16|HH
17|HH
19|HH
20|HH
22|HH
25|HH
26|HH
28|HH
31|HH
33|HL
37|HL
38|HL
39|HH
40|HH
41|HL
48|HH
50|HH
(23 rows)
_cdb_random_seeds
SELECT ppoints2.code, m.quads
FROM ppoints2
JOIN cdb_crankshaft.cdb_moran_local_rate('ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.ids
ORDER BY ppoints2.code;
NOTICE: ** Constructing query
CONTEXT: PL/Python function "cdb_moran_local_rate"
NOTICE: ** Query returned with 51 rows
CONTEXT: PL/Python function "cdb_moran_local_rate"
NOTICE: ** Finished calculations
CONTEXT: PL/Python function "cdb_moran_local_rate"
code | quads
------+-----------------
01 | LL
02 | Not significant
03 | Not significant
04 | Not significant
05 | Not significant
06 | Not significant
07 | Not significant
08 | Not significant
09 | LL
10 | Not significant
11 | HH
12 | Not significant
13 | Not significant
14 | Not significant
15 | Not significant
16 | Not significant
17 | LL
18 | Not significant
19 | Not significant
20 | LL
21 | Not significant
22 | Not significant
23 | Not significant
24 | Not significant
25 | LL
26 | LL
27 | Not significant
28 | Not significant
29 | LH
30 | Not significant
31 | LL
32 | Not significant
33 | Not significant
34 | Not significant
35 | LH
36 | Not significant
37 | Not significant
38 | LH
39 | Not significant
40 | Not significant
41 | LH
42 | HL
43 | Not significant
44 | Not significant
45 | LL
46 | Not significant
47 | Not significant
48 | LL
49 | Not significant
50 | Not significant
51 | Not significant
(1 row)
code|quads
03|LL
04|LL
05|LH
06|LL
10|LL
11|LL
12|LL
14|LL
15|LL
18|LL
21|LL
23|LL
24|LL
27|LL
29|LL
30|LL
32|LL
34|LH
35|LL
36|LL
42|LH
43|LH
44|LL
45|LH
46|LL
47|LL
49|LH
51|LL
52|LL
(29 rows)
_cdb_random_seeds
(1 row)
code|quads
02|HL
05|LH
13|HL
33|HL
34|LH
37|HL
38|HL
41|HL
42|LH
43|LH
45|LH
49|LH
(12 rows)
_cdb_random_seeds
(1 row)
code|quads
01|LL
02|LH
03|HH
04|HH
05|LL
06|HH
07|LL
08|LL
09|LL
10|HH
11|HH
12|HL
13|LL
14|HH
15|LL
16|LL
17|LL
18|LH
19|LL
20|LL
21|HH
22|LL
23|HL
24|LL
25|LL
26|LL
27|LL
28|LL
29|LH
30|HH
31|LL
32|LL
33|LL
34|LL
35|LH
36|HL
37|LH
38|LH
39|LL
40|LL
41|LH
42|HL
43|LL
44|HL
45|LL
46|HL
47|LL
48|LL
49|HL
50|LL
51|HH
(51 rows)
_cdb_random_seeds
(1 row)
code|quads
03|HH
04|HH
06|HH
10|HH
11|HH
12|HL
14|HH
21|HH
23|HL
30|HH
36|HL
42|HL
44|HL
46|HL
49|HL
51|HH
(16 rows)
_cdb_random_seeds
(1 row)
code|quads
01|LL
02|LH
05|LL
07|LL
08|LL
09|LL
13|LL
15|LL
16|LL
17|LL
18|LH
19|LL
20|LL
22|LL
24|LL
25|LL
26|LL
27|LL
28|LL
29|LH
31|LL
32|LL
33|LL
34|LL
35|LH
37|LH
38|LH
39|LL
40|LL
41|LH
43|LL
45|LL
47|LL
48|LL
50|LL
(35 rows)
_cdb_random_seeds
(1 row)
code|quads
02|LH
12|HL
18|LH
23|HL
29|LH
35|LH
36|HL
37|LH
38|LH
41|LH
42|HL
44|HL
46|HL
49|HL
(14 rows)

View File

@@ -1,21 +1,11 @@
\i test/fixtures/polyg_values.sql
CREATE TABLE values (cartodb_id integer, value float, the_geom geometry);
INSERT INTO values(cartodb_id, value, the_geom) VALUES
(1,10,'0106000020E61000000100000001030000000100000005000000E5AF3500C03608C08068629111374440C7BC0A00C00F02C0AC0551523B414440C7BC0A00C0A700C0CAF23B6E74FB4340A7267FFFFF5206C0FBB7E41B7EE74340E5AF3500C03608C08068629111374440'::geometry),
(2,20,'0106000020E610000001000000010300000001000000050000002439EC00804AF7BF07D6CCB5C3064440C7BC0A00C0A700C0CAF23B6E74FB4340C7BC0A00C00F02C0AC0551523B414440E20CD5FFFF30FABFBE4F76AFEA4B44402439EC00804AF7BF07D6CCB5C3064440'::geometry)
SELECT round(cdb_crankshaft.cdb_overlap_sum(
'0106000020E61000000100000001030000000100000004000000FFFFFFFFFF3604C09A0B9ECEC42E444000000000C060FBBF30C7FD70E01D44400000000040AD02C06481F1C8CD034440FFFFFFFFFF3604C09A0B9ECEC42E4440'::geometry,
'values', 'value'
), 2);
SET client_min_messages TO WARNING;
\set ECHO none
round
-------
4.42
(1 row)
SELECT round(cdb_crankshaft.cdb_overlap_sum(
'0106000020E61000000100000001030000000100000004000000FFFFFFFFFF3604C09A0B9ECEC42E444000000000C060FBBF30C7FD70E01D44400000000040AD02C06481F1C8CD034440FFFFFFFFFF3604C09A0B9ECEC42E4440'::geometry,
'values', 'value', schema_name := 'public'
), 2);
round
-------
4.42

View File

@@ -0,0 +1,11 @@
the_geom | h | hpop | dist
--------------------------------------------+-------------------------+--------------------------+----------------
01010000001361C3D32B650140DD24068195B34440 | 1.51078258369747945249 | 12.08626066957983561994 | 4964.714459152
01010000002497FF907EFB0040713D0AD7A3B04440 | 98.29730954183620807430 | 688.08116679285345652007 | 99.955141922
0101000000A167B3EA733501401D5A643BDFAF4440 | 63.70532894711274639196 | 382.23197368267647835174 | 2488.330566505
010100000062A1D634EF380140BE9F1A2FDDB44440 | 35.35415870080995954879 | 176.77079350404979774397 | 4359.370460594
010100000052B81E85EB510140355EBA490CB24440 | 33.12290506987740864904 | 132.49162027950963459615 | 3703.664449828
0101000000C286A757CA320140736891ED7CAF4440 | 65.45251754279248087849 | 196.35755262837744263547 | 2512.092358644
01010000007DD0B359F5390140C976BE9F1AAF4440 | 62.83927792471345639225 | 125.67855584942691278449 | 2926.25725244
0101000000D237691A140D01407E6FD39FFDB44440 | 53.54905726651871279586 | 53.54905726651871279586 | 3744.515577777
(8 rows)

View File

@@ -1,3 +1,5 @@
SET client_min_messages TO WARNING;
\set ECHO none
CREATE TABLE values (cartodb_id integer, value float, the_geom geometry);
INSERT INTO values(cartodb_id, value, the_geom) VALUES
(1,10,'0106000020E61000000100000001030000000100000005000000E5AF3500C03608C08068629111374440C7BC0A00C00F02C0AC0551523B414440C7BC0A00C0A700C0CAF23B6E74FB4340A7267FFFFF5206C0FBB7E41B7EE74340E5AF3500C03608C08068629111374440'::geometry),

View File

@@ -1,3 +1,5 @@
SET client_min_messages TO WARNING;
\set ECHO none
-- test table (spanish province centroids with some invented values)
CREATE TABLE ppoints (cartodb_id integer, the_geom geometry, the_geom_webmercator geometry, code text, region_code text, value float);
INSERT INTO ppoints VALUES

View File

@@ -1,3 +1,5 @@
SET client_min_messages TO WARNING;
\set ECHO none
-- test table (spanish province centroids with some invented values)
CREATE TABLE ppoints2 (cartodb_id integer, the_geom geometry, code text, region_code text, numerator float, denominator float);
INSERT INTO ppoints2 VALUES

View File

@@ -1,21 +1,79 @@
\pset format unaligned
\set ECHO all
\i test/fixtures/ppoints.sql
\i test/fixtures/ppoints2.sql
-- Moral functions perform some nondeterministic computations
-- Areas of Interest functions perform some nondeterministic computations
-- (to estimate the significance); we will set the seeds for the RNGs
-- that affect those results to have repeateble results
SELECT cdb_crankshaft._cdb_random_seeds(1234);
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_crankshaft.cdb_moran_local('ppoints', 'value') m
ON ppoints.cartodb_id = m.ids
JOIN cdb_crankshaft.CDB_AreasOfInterestLocal('SELECT * FROM ppoints', 'value') m
ON ppoints.cartodb_id = m.rowid
ORDER BY ppoints.code;
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Spatial Hotspots
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_crankshaft.CDB_GetSpatialHotspots('SELECT * FROM ppoints', 'value') m
ON ppoints.cartodb_id = m.rowid
ORDER BY ppoints.code;
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Spatial Coldspots
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_crankshaft.CDB_GetSpatialColdspots('SELECT * FROM ppoints', 'value') m
ON ppoints.cartodb_id = m.rowid
ORDER BY ppoints.code;
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Spatial Outliers
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_crankshaft.CDB_GetSpatialOutliers('SELECT * FROM ppoints', 'value') m
ON ppoints.cartodb_id = m.rowid
ORDER BY ppoints.code;
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Areas of Interest (rate)
SELECT ppoints2.code, m.quads
FROM ppoints2
JOIN cdb_crankshaft.cdb_moran_local_rate('ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.ids
JOIN cdb_crankshaft.CDB_AreasOfInterestLocalRate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.rowid
ORDER BY ppoints2.code;
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Spatial Hotspots (rate)
SELECT ppoints2.code, m.quads
FROM ppoints2
JOIN cdb_crankshaft.CDB_GetSpatialHotspotsRate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.rowid
ORDER BY ppoints2.code;
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Spatial Coldspots (rate)
SELECT ppoints2.code, m.quads
FROM ppoints2
JOIN cdb_crankshaft.CDB_GetSpatialColdspotsRate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.rowid
ORDER BY ppoints2.code;
SELECT cdb_crankshaft._cdb_random_seeds(1234);
-- Spatial Outliers (rate)
SELECT ppoints2.code, m.quads
FROM ppoints2
JOIN cdb_crankshaft.CDB_GetSpatialOutliersRate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.rowid
ORDER BY ppoints2.code;

View File

@@ -0,0 +1,21 @@
WITH t AS (
SELECT
ARRAY[1,2,3] AS id,
ARRAY[7.0,8.0,3.0] AS w,
ARRAY[ST_GeomFromText('POINT(2.1744 41.4036)'),ST_GeomFromText('POINT(2.1228 41.3809)'),ST_GeomFromText('POINT(2.1511 41.3742)')] AS g
),
s AS (
SELECT
ARRAY[10,20,30,40,50,60,70,80] AS id,
ARRAY[800, 700, 600, 500, 400, 300, 200, 100] AS p,
ARRAY[ST_GeomFromText('POINT(2.1744 41.403)'),ST_GeomFromText('POINT(2.1228 41.380)'),ST_GeomFromText('POINT(2.1511 41.374)'),ST_GeomFromText('POINT(2.1528 41.413)'),ST_GeomFromText('POINT(2.165 41.391)'),ST_GeomFromText('POINT(2.1498 41.371)'),ST_GeomFromText('POINT(2.1533 41.368)'),ST_GeomFromText('POINT(2.131386 41.41399)')] AS g
)
SELECT
g.the_geom,
g.h,
g.hpop,
g.dist
FROM
t,
s,
CDB_Gravity(t.id, t.g, t.w, s.id, s.g, s.p, 2, 100000, 3) g;

View File

@@ -9,7 +9,7 @@ SET search_path TO public,cartodb,cdb_crankshaft;
-- Exercise public functions
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_moran_local('ppoints', 'value') m
JOIN CDB_AreasOfInterest_Local('ppoints', 'value') m
ON ppoints.cartodb_id = m.ids
ORDER BY ppoints.code;
SELECT round(cdb_overlap_sum(

2
src/py/.gitignore vendored
View File

@@ -1,2 +0,0 @@
*.pyc
dev/

View File

@@ -1,9 +1,22 @@
include ../../Makefile.global
# Install the package locally for development
install:
virtualenv dev
./dev/bin/pip install ./crankshaft --upgrade
./dev/bin/pip install nose
virtualenv --system-site-packages ../../envs/dev
# source ../../envs/dev/bin/activate
../../envs/dev/bin/pip install -I ./crankshaft
../../envs/dev/bin/pip install -I nose
# Test develpment install
testinstalled:
./dev/bin/nosetests crankshaft/test/
test:
../../envs/dev/bin/nosetests crankshaft/test/
release: ../../release/$(EXTENSION).control $(SOURCES_DATA)
mkdir -p ../../release/python/$(EXTVERSION)
cp -r ./$(PACKAGE) ../../release/python/$(EXTVERSION)/
$(SED) -i -r 's/version='"'"'[0-9]+\.[0-9]+\.[0-9]+'"'"'/version='"'"'$(EXTVERSION)'"'"'/g' ../../release/python/$(EXTVERSION)/$(PACKAGE)/setup.py
deploy:
virtualenv --system-site-packages $(VIRTUALENV_PATH)/$(RELEASE_VERSION)
$(VIRTUALENV_PATH)/$(RELEASE_VERSION)/bin/pip install -I -U ../../release/python/$(RELEASE_VERSION)/$(PACKAGE)
$(VIRTUALENV_PATH)/$(RELEASE_VERSION)/bin/pip install -I nose

View File

@@ -7,3 +7,82 @@
cd crankshaft
nosetests test/
```
## Notes about Python dependencies
* This extension is targeted at production databases. Therefore certain restrictions must be assumed about the production environment vs other experimental environments.
* We're using `pip` and `virtualenv` to generate a suitable isolated environment for python code that has all the dependencies
* Every dependency should be:
- Added to the `setup.py` file
- Installed through it
- Tested, when they have a test suite.
- Fixed in the `requirements.txt`
* At present we use Python version 2.7.3
---
To avoid troublesome compilations/linkings we will use
the available system package `python-scipy`.
This package and its dependencies provide numpy 1.6.1
and scipy 0.9.0. To be able to use these versions we cannot
PySAL 1.10 or later, so we'll stick to 1.9.1.
```
apt-get install -y python-scipy
```
We'll use virtual environments to install our packages,
but configued to use also system modules so that the
mentioned scipy and numpy are used.
# Create a virtual environment for python
$ virtualenv --system-site-packages dev
# Activate the virtualenv
$ source dev/bin/activate
# Install all the requirements
# expect this to take a while, as it will trigger a few compilations
(dev) $ pip install -I ./crankshaft
#### Test the libraries with that virtual env
##### Test numpy library dependency:
import numpy
numpy.test('full')
##### Run scipy tests
import scipy
scipy.test('full')
##### Testing pysal
See [http://pysal.readthedocs.org/en/latest/developers/testing.html]
This will require putting this into `dev/lib/python2.7/site-packages/setup.cfg`:
```
[nosetests]
ignore-files=collection
exclude-dir=pysal/contrib
[wheel]
universal=1
```
And copying some files before executing the tests:
(we'll use a temporary directory from where the tests will be executed because
some tests expect some files in the current directory). Next must be executed
from
```
cp dev/lib/python2.7/site-packages/pysal/examples/geodanet/* dev/local/lib/python2.7/site-packages/pysal/examples
mkdir -p test_tmp && cd test_tmp && cp ../dev/lib/python2.7/site-packages/pysal/examples/geodanet/* ./
```
Then, execute the tests with:
import pysal
import nose
nose.runmodule('pysal')

View File

@@ -5,143 +5,226 @@ Moran's I geostatistics (global clustering & outliers presence)
# TODO: Fill in local neighbors which have null/NoneType values with the
# average of the their neighborhood
import numpy as np
import pysal as ps
import plpy
# crankshaft module
import crankshaft.pysal_utils as pu
# High level interface ---------------------------------------
def moran_local(t, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
def moran(subquery, attr_name,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I (global)
Implementation building neighbors with a PostGIS database and Moran's I
core clusters with PySAL.
Andy Eschbacher
"""
qvals = {"id_col": id_col,
"attr1": attr_name,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs}
query = pu.construct_neighbor_query(w_type, qvals)
plpy.notice('** Query: %s' % query)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(2)
plpy.notice('** Query returned with %d rows' % len(result))
except plpy.SPIError:
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError)
return pu.empty_zipped_array(2)
## collect attributes
attr_vals = pu.get_attributes(result)
## calculate weights
weight = pu.get_weight(result, w_type, num_ngbrs)
## calculate moran global
moran_global = ps.esda.moran.Moran(attr_vals, weight,
permutations=permutations)
return zip([moran_global.I], [moran_global.EI])
def moran_local(subquery, attr,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I implementation for PL/Python
Andy Eschbacher
"""
# TODO: ensure that the significance output can be smaller that 1e-3 (0.001)
# TODO: make a wishlist of output features (zscores, pvalues, raw local lisa, what else?)
plpy.notice('** Constructing query')
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors
qvals = {"id_col": id_col,
"attr1": attr,
"geom_col": geom_column,
"table": t,
"attr1": attr,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs}
q = get_query(w_type, qvals)
query = pu.construct_neighbor_query(w_type, qvals)
try:
r = plpy.execute(q)
plpy.notice('** Query returned with %d rows' % len(r))
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(5)
except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q)
plpy.notice('** Exiting function')
return zip([None], [None], [None], [None])
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
return pu.empty_zipped_array(5)
y = get_attributes(r, 1)
w = get_weight(r, w_type)
attr_vals = pu.get_attributes(result)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.Moran_Local(y, w)
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
permutations=permutations)
# find units of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
# find quadrants for each geometry
quads = quad_position(lisa.q)
plpy.notice('** Finished calculations')
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order)
def moran_local_rate(t, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
def moran_rate(subquery, numerator, denominator,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I Local Rate
Moran's I Rate (global)
Andy Eschbacher
"""
plpy.notice('** Constructing query')
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors
qvals = {"id_col": id_col,
"numerator": numerator,
"denominator": denominator,
"geom_col": geom_column,
"table": t,
"attr1": numerator,
"attr2": denominator,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs}
q = get_query(w_type, qvals)
query = pu.construct_neighbor_query(w_type, qvals)
plpy.notice('** Query: %s' % query)
try:
r = plpy.execute(q)
plpy.notice('** Query returned with %d rows' % len(r))
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(2)
plpy.notice('** Query returned with %d rows' % len(result))
except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q)
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError)
plpy.notice('** Exiting function')
return zip([None], [None], [None], [None])
plpy.notice('r.nrows() = %d' % r.nrows())
return pu.empty_zipped_array(2)
## collect attributes
numer = get_attributes(r, 1)
denom = get_attributes(r, 2)
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
w = get_weight(r, w_type, num_ngbrs)
weight = pu.get_weight(result, w_type, num_ngbrs)
## calculate moran global rate
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
permutations=permutations)
return zip([lisa_rate.I], [lisa_rate.EI])
def moran_local_rate(subquery, numerator, denominator,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I Local Rate
Andy Eschbacher
"""
# geometries with values that are null are ignored
# resulting in a collection of not as near neighbors
query = pu.construct_neighbor_query(w_type,
{"id_col": id_col,
"numerator": numerator,
"denominator": denominator,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs})
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(5)
except plpy.SPIError:
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError)
return pu.empty_zipped_array(5)
## collect attributes
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, w, permutations=permutations)
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
permutations=permutations)
# find units of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
quads = quad_position(lisa.q)
plpy.notice('** Finished calculations')
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
## TODO: Decide on which return values here
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order, lisa.y)
def moran_local_bv(t, attr1, attr2, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
def moran_local_bv(subquery, attr1, attr2,
permutations, geom_col, id_col, w_type, num_ngbrs):
"""
Moran's I (local) Bivariate (untested)
"""
plpy.notice('** Constructing query')
qvals = {"num_ngbrs": num_ngbrs,
"attr1": attr1,
"attr2": attr2,
"table": t,
"geom_col": geom_column,
"subquery": subquery,
"geom_col": geom_col,
"id_col": id_col}
q = get_query(w_type, qvals)
query = pu.construct_neighbor_query(w_type, qvals)
try:
r = plpy.execute(q)
plpy.notice('** Query returned with %d rows' % len(r))
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(4)
except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q)
plpy.notice('** Error: %s' % plpy.SPIError)
plpy.notice('** Exiting function')
return zip([None], [None], [None], [None])
plpy.error("Error: areas of interest query failed, " \
"check input parameters")
plpy.notice('** Query failed: "%s"' % query)
return pu.empty_zipped_array(4)
## collect attributes
attr1_vals = get_attributes(r, 1)
attr2_vals = get_attributes(r, 2)
attr1_vals = pu.get_attributes(result, 1)
attr2_vals = pu.get_attributes(result, 2)
# create weights
w = get_weight(r, w_type, num_ngbrs)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, w)
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
permutations=permutations)
plpy.notice("len of Is: %d" % len(lisa.Is))
# find clustering of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
lisa_sig = quad_position(lisa.q)
plpy.notice('** Finished calculations')
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order)
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
# Low level functions ----------------------------------------
@@ -150,7 +233,9 @@ def map_quads(coord):
Map a quadrant number to Moran's I designation
HH=1, LH=2, LL=3, HL=4
Input:
:param coord (int): quadrant of a specific measurement
@param coord (int): quadrant of a specific measurement
Output:
classification (one of 'HH', 'LH', 'LL', or 'HL')
"""
if coord == 1:
return 'HH'
@@ -163,159 +248,13 @@ def map_quads(coord):
else:
return None
def query_attr_select(params):
"""
Create portion of SELECT statement for attributes inolved in query.
:param params: dict of information used in query (column names,
table name, etc.)
"""
attrs = [k for k in params
if k not in ('id_col', 'geom_col', 'table', 'num_ngbrs')]
template = "i.\"{%(col)s}\"::numeric As attr%(alias_num)s, "
attr_string = ""
for idx, val in enumerate(sorted(attrs)):
attr_string += template % {"col": val, "alias_num": idx + 1}
return attr_string
def query_attr_where(params):
"""
Create portion of WHERE clauses for weeding out NULL-valued geometries
"""
attrs = sorted([k for k in params
if k not in ('id_col', 'geom_col', 'table', 'num_ngbrs')])
attr_string = []
for attr in attrs:
attr_string.append("idx_replace.\"{%s}\" IS NOT NULL" % attr)
if len(attrs) == 2:
attr_string.append("idx_replace.\"{%s}\" <> 0" % attrs[1])
out = " AND ".join(attr_string)
return out
def knn(params):
"""SQL query for k-nearest neighbors.
:param vars: dict of values to fill template
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM \"{table}\" As j " \
"WHERE %(attr_where_j)s " \
"ORDER BY j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
"LIMIT {num_ngbrs} OFFSET 1 ) " \
") As neighbors " \
"FROM \"{table}\" As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## SQL query for finding queens neighbors (all contiguous polygons)
def queen(params):
"""SQL query for queen neighbors.
:param params: dict of information to fill query
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM \"{table}\" As j " \
"WHERE ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
"%(attr_where_j)s)" \
") As neighbors " \
"FROM \"{table}\" As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## to add more weight methods open a ticket or pull request
def get_query(w_type, query_vals):
"""Return requested query.
:param w_type: type of neighbors to calculate (knn or queen)
:param query_vals: values used to construct the query
"""
if w_type == 'knn':
return knn(query_vals)
else:
return queen(query_vals)
def get_attributes(query_res, attr_num):
"""
:param query_res: query results with attributes and neighbors
:param attr_num: attribute number (1, 2, ...)
"""
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
## Build weight object
def get_weight(query_res, w_type='queen', num_ngbrs=5):
"""
Construct PySAL weight from return value of query
:param query_res: query results with attributes and neighbors
"""
if w_type == 'knn':
row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
weights = {x['id']: row_normed_weights for x in query_res}
elif w_type == 'queen':
weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
if len(x['neighbors']) > 0
else [] for x in query_res}
neighbors = {x['id']: x['neighbors'] for x in query_res}
return ps.W(neighbors, weights)
def quad_position(quads):
"""
Produce Moran's I classification based of n
Input:
@param quads ndarray: an array of quads classified by
1-4 (PySAL default)
Output:
@param list: an array of quads classied by 'HH', 'LL', etc.
"""
lisa_sig = np.array([map_quads(q) for q in quads])
return lisa_sig
def lisa_sig_vals(pvals, quads, threshold):
"""
Produce Moran's I classification based of n
"""
sig = (pvals <= threshold)
lisa_sig = np.empty(len(sig), np.chararray)
for idx, val in enumerate(sig):
if val:
lisa_sig[idx] = map_quads(quads[idx])
else:
lisa_sig[idx] = 'Not significant'
return lisa_sig
return [map_quads(q) for q in quads]

View File

@@ -0,0 +1 @@
from pysal_utils import *

View File

@@ -0,0 +1,152 @@
"""
Utilities module for generic PySAL functionality, mainly centered on translating queries into numpy arrays or PySAL weights objects
"""
import numpy as np
import pysal as ps
def construct_neighbor_query(w_type, query_vals):
"""Return query (a string) used for finding neighbors
@param w_type text: type of neighbors to calculate ('knn' or 'queen')
@param query_vals dict: values used to construct the query
"""
if w_type.lower() == 'knn':
return knn(query_vals)
else:
return queen(query_vals)
## Build weight object
def get_weight(query_res, w_type='knn', num_ngbrs=5):
"""
Construct PySAL weight from return value of query
@param query_res: query results with attributes and neighbors
"""
if w_type.lower() == 'knn':
row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
weights = {x['id']: row_normed_weights for x in query_res}
else:
weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
if len(x['neighbors']) > 0
else [] for x in query_res}
neighbors = {x['id']: x['neighbors'] for x in query_res}
return ps.W(neighbors, weights)
def query_attr_select(params):
"""
Create portion of SELECT statement for attributes inolved in query.
@param params: dict of information used in query (column names,
table name, etc.)
"""
attrs = [k for k in params
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs')]
template = "i.\"{%(col)s}\"::numeric As attr%(alias_num)s, "
attr_string = ""
for idx, val in enumerate(sorted(attrs)):
attr_string += template % {"col": val, "alias_num": idx + 1}
return attr_string
def query_attr_where(params):
"""
Create portion of WHERE clauses for weeding out NULL-valued geometries
"""
attrs = sorted([k for k in params
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs')])
attr_string = []
for attr in attrs:
attr_string.append("idx_replace.\"{%s}\" IS NOT NULL" % attr)
if len(attrs) == 2:
attr_string.append("idx_replace.\"{%s}\" <> 0" % attrs[1])
out = " AND ".join(attr_string)
return out
def knn(params):
"""SQL query for k-nearest neighbors.
@param vars: dict of values to fill template
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM ({subquery}) As j " \
"WHERE " \
"i.\"{id_col}\" <> j.\"{id_col}\" AND " \
"%(attr_where_j)s " \
"ORDER BY " \
"j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
"LIMIT {num_ngbrs})" \
") As neighbors " \
"FROM ({subquery}) As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## SQL query for finding queens neighbors (all contiguous polygons)
def queen(params):
"""SQL query for queen neighbors.
@param params dict: information to fill query
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM ({subquery}) As j " \
"WHERE i.\"{id_col}\" <> j.\"{id_col}\" AND " \
"ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
"%(attr_where_j)s)" \
") As neighbors " \
"FROM ({subquery}) As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## to add more weight methods open a ticket or pull request
def get_attributes(query_res, attr_num=1):
"""
@param query_res: query results with attributes and neighbors
@param attr_num: attribute number (1, 2, ...)
"""
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
def empty_zipped_array(num_nones):
"""
prepare return values for cases of empty weights objects (no neighbors)
Input:
@param num_nones int: number of columns (e.g., 4)
Output:
[(None, None, None, None)]
"""
return [tuple([None] * num_nones)]

View File

@@ -10,7 +10,7 @@ from setuptools import setup, find_packages
setup(
name='crankshaft',
version='0.0.1',
version='0.0.0',
description='CartoDB Spatial Analysis Python Library',
@@ -40,9 +40,9 @@ setup(
# The choice of component versions is dictated by what's
# provisioned in the production servers.
install_requires=['pysal==1.11.0','numpy==1.6.1','scipy==0.17.0'],
install_requires=['pysal==1.9.1'],
requires=['pysal', 'numpy'],
requires=['pysal', 'numpy' ],
test_suite='test'
)

View File

@@ -1,52 +1,52 @@
[[0.9319096128346788, "HH"],
[-1.135787401862846, "HL"],
[0.11732030672508517, "Not significant"],
[0.6152779669180425, "Not significant"],
[-0.14657336660125297, "Not significant"],
[0.6967858120189607, "Not significant"],
[0.07949310115714454, "Not significant"],
[0.4703198759258987, "Not significant"],
[0.4421125200498064, "Not significant"],
[0.5724288737143592, "Not significant"],
[0.11732030672508517, "LL"],
[0.6152779669180425, "LL"],
[-0.14657336660125297, "LH"],
[0.6967858120189607, "LL"],
[0.07949310115714454, "HH"],
[0.4703198759258987, "HH"],
[0.4421125200498064, "HH"],
[0.5724288737143592, "LL"],
[0.8970743435692062, "LL"],
[0.18327334401918674, "Not significant"],
[-0.01466729201304962, "Not significant"],
[0.3481559372544409, "Not significant"],
[0.06547094736902978, "Not significant"],
[0.18327334401918674, "LL"],
[-0.01466729201304962, "HL"],
[0.3481559372544409, "LL"],
[0.06547094736902978, "LL"],
[0.15482141569329988, "HH"],
[0.4373841193538136, "Not significant"],
[0.15971286468915544, "Not significant"],
[1.0543588860308968, "Not significant"],
[0.4373841193538136, "HH"],
[0.15971286468915544, "LL"],
[1.0543588860308968, "HH"],
[1.7372866900020818, "HH"],
[1.091998586053999, "LL"],
[0.1171572584252222, "Not significant"],
[0.08438455015300014, "Not significant"],
[0.06547094736902978, "Not significant"],
[0.1171572584252222, "HH"],
[0.08438455015300014, "LL"],
[0.06547094736902978, "LL"],
[0.15482141569329985, "HH"],
[1.1627044812890683, "HH"],
[0.06547094736902978, "Not significant"],
[0.795275137550483, "Not significant"],
[0.06547094736902978, "LL"],
[0.795275137550483, "HH"],
[0.18562939195219, "LL"],
[0.3010757406693439, "Not significant"],
[0.3010757406693439, "LL"],
[2.8205795942839376, "HH"],
[0.11259190602909264, "Not significant"],
[-0.07116352791516614, "Not significant"],
[-0.09945240794119009, "Not significant"],
[0.11259190602909264, "LL"],
[-0.07116352791516614, "HL"],
[-0.09945240794119009, "LH"],
[0.18562939195219, "LL"],
[0.1832733440191868, "Not significant"],
[-0.39054253768447705, "Not significant"],
[0.1832733440191868, "LL"],
[-0.39054253768447705, "HL"],
[-0.1672071289487642, "HL"],
[0.3337669247916343, "Not significant"],
[0.2584386102554792, "Not significant"],
[0.3337669247916343, "HH"],
[0.2584386102554792, "HH"],
[-0.19733845476322634, "HL"],
[-0.9379282899805409, "LH"],
[-0.028770969951095866, "Not significant"],
[0.051367269430983485, "Not significant"],
[-0.028770969951095866, "LH"],
[0.051367269430983485, "LL"],
[-0.2172548045913472, "LH"],
[0.05136726943098351, "Not significant"],
[0.04191046803899837, "Not significant"],
[0.05136726943098351, "LL"],
[0.04191046803899837, "LL"],
[0.7482357030403517, "HH"],
[-0.014585767863118111, "Not significant"],
[0.5410013139159929, "Not significant"],
[-0.014585767863118111, "LH"],
[0.5410013139159929, "HH"],
[1.0223932668429925, "LL"],
[1.4179402898927476, "LL"]]
[1.4179402898927476, "LL"]]

View File

@@ -1,8 +1,6 @@
import unittest
import numpy as np
import unittest
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
@@ -12,25 +10,26 @@ import unittest
from helper import plpy, fixture_file
import crankshaft.clustering as cc
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
import json
class MoranTest(unittest.TestCase):
"""Testing class for Moran's I functions."""
"""Testing class for Moran's I functions"""
def setUp(self):
plpy._reset()
self.params = {"id_col": "cartodb_id",
"attr1": "andy",
"attr2": "jay_z",
"table": "a_list",
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.neighbors_data = json.loads(open(fixture_file('neighbors.json')).read())
self.moran_data = json.loads(open(fixture_file('moran.json')).read())
def test_map_quads(self):
"""Test map_quads."""
"""Test map_quads"""
self.assertEqual(cc.map_quads(1), 'HH')
self.assertEqual(cc.map_quads(2), 'LH')
self.assertEqual(cc.map_quads(3), 'LL')
@@ -38,80 +37,8 @@ class MoranTest(unittest.TestCase):
self.assertEqual(cc.map_quads(33), None)
self.assertEqual(cc.map_quads('andy'), None)
def test_query_attr_select(self):
"""Test query_attr_select."""
ans = "i.\"{attr1}\"::numeric As attr1, " \
"i.\"{attr2}\"::numeric As attr2, "
self.assertEqual(cc.query_attr_select(self.params), ans)
def test_query_attr_where(self):
"""Test query_attr_where."""
ans = "idx_replace.\"{attr1}\" IS NOT NULL AND "\
"idx_replace.\"{attr2}\" IS NOT NULL AND "\
"idx_replace.\"{attr2}\" <> 0"
self.assertEqual(cc.query_attr_where(self.params), ans)
def test_knn(self):
"""Test knn function."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM \"a_list\" As j WHERE j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0 ORDER BY " \
"j.\"the_geom\" <-> i.\"the_geom\" ASC LIMIT 321 OFFSET 1 ) ) " \
"As neighbors FROM \"a_list\" As i WHERE i.\"andy\" IS NOT " \
"NULL AND i.\"jay_z\" IS NOT NULL AND i.\"jay_z\" <> 0 ORDER " \
"BY i.\"cartodb_id\" ASC;"
self.assertEqual(cc.knn(self.params), ans)
def test_queen(self):
"""Test queen neighbors function."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT " \
"j.\"cartodb_id\" FROM \"a_list\" As j WHERE ST_Touches(" \
"i.\"the_geom\", j.\"the_geom\") AND j.\"andy\" IS NOT NULL " \
"AND j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0)) As " \
"neighbors FROM \"a_list\" As i WHERE i.\"andy\" IS NOT NULL " \
"AND i.\"jay_z\" IS NOT NULL AND i.\"jay_z\" <> 0 ORDER BY " \
"i.\"cartodb_id\" ASC;"
self.assertEqual(cc.queen(self.params), ans)
def test_get_query(self):
"""Test get_query."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT " \
"j.\"cartodb_id\" FROM \"a_list\" As j WHERE j.\"andy\" IS " \
"NOT NULL AND j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0 " \
"ORDER BY j.\"the_geom\" <-> i.\"the_geom\" ASC LIMIT 321 " \
"OFFSET 1 ) ) As neighbors FROM \"a_list\" As i WHERE " \
"i.\"andy\" IS NOT NULL AND i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(cc.get_query('knn', self.params), ans)
def test_get_attributes(self):
"""Test get_attributes."""
## need to add tests
self.assertEqual(True, True)
def test_get_weight(self):
"""Test get_weight."""
self.assertEqual(True, True)
def test_quad_position(self):
"""Test lisa_sig_vals."""
"""Test lisa_sig_vals"""
quads = np.array([1, 2, 3, 4], np.int)
@@ -125,7 +52,7 @@ class MoranTest(unittest.TestCase):
data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local('table', 'value', 0.05, 5, 99, 'the_geom', 'cartodb_id', 'knn')
result = cc.moran_local('subquery', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id')
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
@@ -137,8 +64,20 @@ class MoranTest(unittest.TestCase):
data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1234)
result = cc.moran_local_rate('table', 'numerator', 'denominator', 0.05, 5, 99, 'the_geom', 'cartodb_id', 'knn')
result = cc.moran_local_rate('subquery', 'numerator', 'denominator', 'knn', 5, 99, 'the_geom', 'cartodb_id')
print 'result == None? ', result == None
result = [(row[0], row[1]) for row in result]
expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
self.assertAlmostEqual(res_val, exp_val)
def test_moran(self):
"""Test Moran's I global"""
data = [{ 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1235)
result = cc.moran('table', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id')
print 'result == None?', result == None
result_moran = result[0][0]
expected_moran = np.array([row[0] for row in self.moran_data]).mean()
self.assertAlmostEqual(expected_moran, result_moran, delta=10e-2)

View File

@@ -0,0 +1,107 @@
import unittest
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
class PysalUtilsTest(unittest.TestCase):
"""Testing class for utility functions related to PySAL integrations"""
def setUp(self):
self.params = {"id_col": "cartodb_id",
"attr1": "andy",
"attr2": "jay_z",
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
def test_query_attr_select(self):
"""Test query_attr_select"""
ans = "i.\"{attr1}\"::numeric As attr1, " \
"i.\"{attr2}\"::numeric As attr2, "
self.assertEqual(pu.query_attr_select(self.params), ans)
def test_query_attr_where(self):
"""Test pu.query_attr_where"""
ans = "idx_replace.\"{attr1}\" IS NOT NULL AND " \
"idx_replace.\"{attr2}\" IS NOT NULL AND " \
"idx_replace.\"{attr2}\" <> 0"
self.assertEqual(pu.query_attr_where(self.params), ans)
def test_knn(self):
"""Test knn neighbors constructor"""
ans = "SELECT i.\"cartodb_id\" As id, " \
"i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE " \
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND " \
"j.\"jay_z\" <> 0 " \
"ORDER BY " \
"j.\"the_geom\" <-> i.\"the_geom\" ASC " \
"LIMIT 321)) As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"andy\" IS NOT NULL AND " \
"i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 " \
"ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(pu.knn(self.params), ans)
def test_queen(self):
"""Test queen neighbors constructor"""
ans = "SELECT i.\"cartodb_id\" As id, " \
"i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE " \
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"ST_Touches(i.\"the_geom\", " \
"j.\"the_geom\") AND " \
"j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND " \
"j.\"jay_z\" <> 0)" \
") As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"andy\" IS NOT NULL AND " \
"i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 " \
"ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(pu.queen(self.params), ans)
def test_construct_neighbor_query(self):
"""Test construct_neighbor_query"""
# Compare to raw knn query
self.assertEqual(pu.construct_neighbor_query('knn', self.params),
pu.knn(self.params))
def test_get_attributes(self):
"""Test get_attributes"""
## need to add tests
self.assertEqual(True, True)
def test_get_weight(self):
"""Test get_weight"""
self.assertEqual(True, True)
def test_empty_zipped_array(self):
"""Test empty_zipped_array"""
ans2 = [(None, None)]
ans4 = [(None, None, None, None)]
self.assertEqual(pu.empty_zipped_array(2), ans2)
self.assertEqual(pu.empty_zipped_array(4), ans4)